用户名: 密码: 验证码:
双稳态压电悬臂梁发电系统的动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子设备低功耗的特点使利用环境振动进行自供电成为可能。压电式结构是常用的发电结构形式之一,目前研究的压电发电系统多是线性的,具有单一的固有频率,只有当激励频率和系统固有频率接近时,才会具有较高的发电效率。但实际环境振动经常是非周期、低频和宽频激励,这使系统很难工作在共振状态。而双稳态压电系统在周期或随机激励下,可在低宽频激励下产生大幅运动,是最具可能实现利用振动进行发电的结构之一,因此成为近两年国际研究的一个热点。
     本文利用数值计算、解析分析和实验的方法研究了双稳态压电发电系统的响应特性及影响其产生大幅运动的因素,对双稳态压电发电系统的设计及应用具有重要意义。主要研究工作和成果如下:
     1、全面总结了压电发电的发展、主要研究方法、实现宽频响应的方式,着重介绍了双稳态压电发电系统的研究现状,简单介绍了本文所用非线性振动分析方法及用于研究混沌运动的Melnikov方法。
     2、建立了两永久磁铁之间的磁力模型和简谐激励下双稳态压电悬臂梁发电系统的一阶模型。通过数值计算分析了简谐激励下双稳态运动的频率响应范围,指出系统在较低的激励频率和幅值下能发生大幅运动。利用增量谐波平衡法(IHB)对双稳态压电发电系统的发电性能进行了研究,发现双稳态压电发电系统的电压幅值解存在跳跃现象;当非线性系数增加时,幅频曲线向右偏移,大幅运动的响应频带变宽,最大幅值变大;存在匹配电阻使得系统的发电功率最大。与线性系统相对比,在低频激励下,双稳态压电发电系统具有更高的发电效率。
     3、分别用一阶和二阶Melnikov函数计算了双稳态压电发电系统的混沌阈值,分析了混沌阈值表达式中激励频率和阻抗对混沌阈值的影响,得到对混沌阈值影响最大的激励频率和电阻值。结果表明,二阶Melnikov函数的计算精度比一阶Melnikov函数高44%,最后给出了不同激励和电阻参数下系统产生大幅运动的吸引域。
     4、用数值方法研究了随机激励下噪声强度、负载阻抗、初始值对系统响应的影响。发现噪声强度的增加会减少双稳态系统两个稳定平衡点之间的跳跃时间;与简谐激励下双稳态压电发电系统的响应相似,随机激励下系统也存在匹配阻抗使得输出功率最大;通过给出大幅运动的吸引域说明初始值会影响系统的运动状态,从而影响输出功率,同时也证明负载阻抗值会影响系统的运动。
     5、设计了双稳态压电悬臂梁发电装置,通过实验分析了在简谐激励和随机激励下系统的响应特性。在简谐激励下,分析了激励频率、激励幅值、磁铁距离、负载阻抗和初始值对系统响应的影响,证明了双稳态压电发电系统适于低频激励;激励幅值越大,系统具有越高的能量逃离势阱产生大幅运动,并且系统的输出电压也越高,响应频带越宽;通过对比双稳态系统和线性系统的幅频曲线,得到在低频下双稳态系统的幅值比线性系统高;存在匹配负载阻抗使得系统的输出功率最大;初始值可以将系统从小幅运动吸引到大幅运动状态上。在随机激励下,分析了激励强度和负载阻抗对系统响应的影响,实验结果与理论计算相吻合。
     通过上述工作,较为全面地获得了双稳态压电发电系统的动力学和发电特性,深入把握了主要因素对系统产生大幅周期运动和混沌运动的影响规律。由于从物理参数建立了磁力模型和机电耦合动力学模型,本文结论可具体指导双稳态压电发电结构的设计和优化。
Low-power requirements of microelectromechanical system (MEMS) enableenergy extraction from ambient vibrations. One of the common power generationstructures is the piezoelectric power generator. There are many researches on linearpiezoelectric power generation systems which have high output efficiency atresonance excitation. But the ambient vibration is generally non-periodic, random andbroandband, it is hard for linear system to work at resonance state. While bistablepiezeoelectric power generators can produce large amplitude motion under periodicand random excitation, which are most possible to realize power generation usingambient vibration. So it becomes a research focus in recent two years.
     The response characteristics and influencing factors of large amplitude motion ofbistable piezoelectric power generators are studied by numerical calculation,analytical analysis and experiment, it has important significance for designing andapplication of the bistable piezoelectric power generation system. The main researchwork and results in the thesis are as follow:
     1. The main research methods of piezoelectric power generation system, themethod of realizing resonance on a wide frequency and the research status of bistablepiezoelectric power generation system are summarized. Besides, the general analyticmethods of nonlinear system and Melnikov method are introduced.
     2. A magnetic force model and a lumped parameter model of piezoelectriccantilever power generation system are established. The response characteristics ofthe system are studied numerically. The results show that the frequency response has abroadband and the beam undergoes large-amplitude motion at low frequency and lowamplitude of the excitation. By the Incremental Harmonic Balance method(IHB), theelectrical performance of the bistable piezoelectric power generation system isanalyzed. It is shown that the jump phenomenon is present on theamplitude-frequency response curve, and with magnetization increasing, the curveoffsets to the right, the frequency band is broadened, and the value of maximumamplitude is increased. In addition, the generation power reaches the maximum byproper selections of resistance. Comparison with the linear piezoelectric powergeneration system shows the bistable piezoelectric power generation system hashigher power under a lower broadband frequency.
     3. The chaos threshold of the bistable piezoelectric power generation system iscalculated by the first and second order Melnikov function respectively. The effects ofexciting frequency and impedance item in chaos threshold value expression areanalyzed, and the excitation frequency and resistance values are found which have themost influence on chaos threshold value. The precision of the second order Melnikovfunction is44%more than the first order. The attraction of the large amplitude motionunder different excitation and resistance parameters is given.
     4. The effect of noise intensity, load impedance and initial value on the systemresponse under random excitation are studied numerically. The time interval of thejump between two equilibrium points is reduced as the noise intensity increasing.There is a matching impedance making the generation power maximum under randomexcitation being same as harmonic excitation. The initial value and impedance willinfluence motion of the system, being proved by drawing the attraction domain oflarge amplitude motion.
     5. A bistable piezoelectric cantilever power generation device is designed andmanufactured. The response of the bistable system under harmonic excitation andrandom excitation are measured respectively. Under harmonic excitation, thefollowing conclusions are proved by measuring the responses under different excitingfrequency, excitation amplitude, load impedance, magnet distance and initial value.firstly, the bistable piezoelectric cantilever power generation system is suitable forworking at low frequency; Secondly, the system has high energy escaped frompotential well when the excitation amplitude increases, the output voltage is higher, aswell as the frequency range is wider; Thirdly, under a low excitation frequency, thebistable system has higher amplitudes than that of a linear system; Finally, thegeneration power reaches the maximum by proper selection of load resistance and thesystem will be attracted to a large amplitude montion by changing the initial value.Under random excitation, the effects of excitation intensity and load impedance on theresponse of the bistable system are measured, and the experiment results are identicalwith the theoretical calculations.
     By aforementioned work, the dynamic and generating characteristics of thebistable piezoelectric power generation system are overall obtained, and the influencelaw of main factors on large amplitude periodic motion and chaos are grasped.Because the model of piezoelectric cantilever power generation system is establishedbased on actual physical parameters, the conclusions of this paper can provide concrete guidance for designing and optimization of the bistable piezoelectric powergeneration structure.
引文
[1]石庚辰.微机电系统技术基础[M].北京:国防工业出版社,2006.
    [2] Wise K D. Integrated Microsystems: Merging MEMS, micropower electronics,and wireless communications[C]. Washington: Proceedings of12thAnnualIEEE International ASIC/SOC Conference,1999: xxiii-xxix.
    [3]杜小振,褚金奎,朴相镐.基于微型悬臂梁的发电机制探索[J].中国机械工程,2005,16增:41-43.
    [4] El-hami M, Glynne-Jones P, White N M, et al. Design and fabrication of a newvibration-based electromechanical power generator[J]. Sensors and ActuatorsA: Physical,2001,92:335-342.
    [5] Sodano H A, Inman D J, Park G. A review of power harvesting from vibrationusing piezoelectric materials[J]. Shock and Vibration Digest,2004,36:197-206.
    [6] Poulin G, Sarraute E, Costa F. Generation of electrical energy for portabledevices: Comparative study of an electromagnetic and a piezoelectricsystem[J]. Sensors and Actuators A: Physical,2004,116:461-471.
    [7] Glynne-Jones P, Tudor M, Beeby S, et al. An electromagnetic,vibration-powered generator for intelligent sensor systems[J]. Sensors andActuators A: Physical,2004,110:344-349.
    [8] Mitcheson P D, Miao P, Stark B H, et al. MEMS electrostatic micropowergenerator for low frequency operation[J]. Sensors and Actuators A: Physical,2004,115:523-529.
    [9]褚金奎,杜小振,朴相镐.压电发电微电源国外研究进展[J].压电与声光,2008,30(1):22-25.
    [10]杜小振.环境振动驱动微型压电发电装置的关键技术研究[D].大连:大连理工大学,2008.
    [11] Smits J G, Dalke S I, Cooney T K. The constituent equations of piezoelectricbimorphs[J]. Sensors and Actuators A: Physical,1991,28:41-61.
    [12] Huang C, Lin Y, Tang T. Study on the tip-deflection of a piezoelectric bimorphcantilever in the static state[J]. Journal of micromechanics andmicroengineering,2004,14:530-534.
    [13] DeVoe D L, Pisano A P. Modeling and optimal design of piezoelectriccantilever microactuators[J]. Journal of Microelectromechanical Systems,1997,6:266-270.
    [14] Ayers J P, Greve D W, Oppenheim I J. Energy scavenging for sensorapplications using structural strains[J]. Smart Materials and Structures,2003,5057:364-375.
    [15] Johnson T J, Charnegie D, Clark W W, et al. Energy harvesting frommechanical vibrations using piezoelectric cantilever beams[J]. InternationalSociety for Optical Engineering,2006,6169:61690D.
    [16] Van Dyke K S. The Piezo-Electric Resonator and Its Equivalent Network.Proceedings of the Institute of Radio Engineers[J],1928,16:742-764.
    [17] Umeda M, Nakamura K, Ueha S. Analysis of the transformation of mechanicalimpact energy to electric energy using piezoelectric vibrator[J]. JapaneseJournal of Applied Physics,1996,35:3267-3273.
    [18] Flynn A M, Sanders S R. Fundamental limits on energy transfer and circuitconsiderations for piezoelectric transformers[J]. IEEE Transactions on PowerElectronics,2002,17:8-14.
    [19] Roundy S, Wright P K. A piezoelectric vibration based generator for wirelesselectronic[J]. Smart Materials and Structures,2004,13:1131-1142.
    [20] Williams C, Yates R B. Analysis of a micro-electric generator formicrosystems[J]. Sensors and Actuators A: Physical,1996,52:8-11.
    [21] duToit N E, Wardle B L, Kim S-G. Design considerations for MEMS-Scalepiezoelectric mechanical vibration energy harvesters[J]. IntegratedFerroelectrics,2005,71:121-160.
    [22] Jeon Y B, Sood R, Jeong J h, et al. MEMS power generator with transversemode thin film PZT[J]. Sensors and Actuators A,2005,122:16-22.
    [23] Richards C D, Anderson M J, Bahr D F, et al. Efficiency of energy conversionfor devices containing a piezoelectric component[J]. Journal ofMicromechanics and Microengineering,2004,14(5):717-721.
    [24] Stephen N G. On energy harvesting from ambient vibration[J]. Journal ofSound and Vibration,2006,293:409-425.
    [25] Hagood N W, Chung W H, Von Flotow A. Modelling of piezoelectric actuatordynamics for active structural control[J]. Journal of Intelligent MaterialSystems and Structures,1990,1:327-354.
    [26] Sodano H A, Park G, Inman D. Estimation of electric charge output forpiezoelectric energy harvesting[J]. Strain,2004,40:49-58.
    [27] Erturk A, Inman D J. Mechanical considerations for modeling ofvibration-based energy harvesters[C]. Las Vegas: Proceedings of the ASMEInternational Design Engineering Technical Conferences&Computers andInformation in Engineering Conference,2007.
    [28] Erturk A, Inman D J. On Mechanical Modeling of Cantilevered PiezoelectricVibration Energy Harvesters[J]. Journal of Intelligent Material Systems andStructures,2008,19:1311-1325.
    [29] Lu F, Lee H, Lim S. Modeling and analysis of micro piezoelectric powergenerators for micro-electromechanical-systems applications[J]. SmartMaterials and Structures,2004,13:57-67.
    [30] Chen S N, Wang G J, Chien M C. Analytical modeling of piezoelectricvibration-induced micro power generator[J]. Mechattronics,2006,16:379-387.
    [31] Lin J, Wu X, Ren T, et al. Modeling and simulation of piezoelectric MEMSenergy harvesting device[J]. Integrated Ferroelectrics,2007,95:128-141.
    [32]阚君武,唐可洪,任玉,等.压电单晶梁发电机的能量效率[J].光学精密工程,2008,16(12):2398-2405.
    [33]阚君武,唐可洪,王淑云,等.压电悬臂梁发电装置的建模与仿真分析[J].光学精密工程,2007,16(1):71-75.
    [34]张海军,褚金奎,杜小振,等.用于微电池的压电悬臂梁电特性仿真[J].纳米器件与技术,2007,4(4):27-31.
    [35]杜小振,褚金奎,张海军,等.环境振动能收集系统的微型压电悬臂梁设计与制作[J].功能材料与器件学报,2008,14(1):116-120.
    [36]魏双会,褚金奎,杜小振.压电发电器建模研究[J].传感器与微系统,2008,27(6):27-30.
    [37]袁江波,单小彪,谢涛,等.悬臂梁单晶压电发电机的实验[J].光学精密工程,2009,17(5):1072-1077.
    [38]单小彪,袁江波,谢涛,等.悬臂梁单晶压电振子发电的理论建模与仿真[J].浙江大学学报(工学版),2010,44(3):528-532.
    [39]谢涛,袁江波,单小彪.多悬臂梁压电振子频率分析及发电实验研究[J].西安交通大学学报,2011,44(2):98-107.
    [40]谢涛,袁洪波,单小彪,等.鼓形俘能器的有限元分析[J].压电与声光,2009,31(5):753-756.
    [41]单小彪袁江波,谢涛,等.不对称悬臂梁压电发电装置的实验研究[J].压电与声光,2010,32(4):608-614.
    [42]单小彪,袁江波,谢涛,等.不同截面形状悬臂梁双晶压电振子发电能力建模与实验研究[J].振动与冲击,2010,29(4):177-180.
    [43]龚立娇,沈星.一种悬臂压电发电机的研究[J].电工电能新技术,2010,29(1):54-57.
    [44]贺学锋,温志渝,温中泉,等.振动式压电发电机的理论模型与实验[J].纳米技术与精密工程,2007,5(4):307-310.
    [45]贺学锋,温志渝,温中泉.压电式振动发电机的建模及应用[J].光学精密工程,2009,17(6):1436-1441.
    [46]贺学锋,杜志刚,赵兴强,等.悬臂梁式压电振动能采集器的建模及实验验证[J].光学精密工程,2011,19(8):1771-1778.
    [47]李艳宁,李雯,任平,等.压电微悬臂梁振动能量采集器谐振频率和功率的研究[J].天津大学学报,2009,42(4):373-376.
    [48]马玉龙.悬臂梁压电发电技术研究[J].装备制造技术,2009,12:11-12.
    [49]王军龙,鲍丙豪,闻凤连,等.双晶压电悬臂梁发电装置的建模与有限元仿真分析[J].机械设计与制造,2010,9:3-5.
    [50]王治平,刘俊标,姜楠,等.压电式发电的悬臂梁结构参数分析[J].压电与声光,2010,32(5):762-769.
    [51]闫震,何青.激励环境下悬臂梁式压电振动发电机性能分析[J].中国电机工程学报,2011,31(30):140-145.
    [52]刘辉,韩树人,何鹏举,等.压电悬臂梁采收振动能发电能力分析与仿真[J].矿山机械,2011,39(3):98-102.
    [53]王青萍,范跃农.压电单晶悬臂梁的输出电压测试分析[J].电子元件与材料,2011,30(8):12-15.
    [54] Roundy S, Zhang Y. Toward self-tuning adaptive vibration-basedmicrogenerators[C]. Sydney: Proceedings of SPIE Smart Structures, Devices,and Systems II,2005,5649:373-384.
    [55] Wu W, Chen Y, Lee B, et al. Tunable resonant frequency power harvestingdevices[C]. San Diego: Proceedings of SPIE Smart Structures and Materials:Damping and Isolation,2006,6169:61690A.
    [56] Leland E S, Wright P K. Resonance tuning of piezoelectric vibration energyscavenging generators using compressive axial preload[J]. Smart Materialsand Structures,2006,15:1413-1420.
    [57] Morris D J, Youngsman J M, Anderson M J, et al. A resonant frequencytunable, extensional mode piezoelectric vibration harvesting mechanism[J].Smart Materials and Structures,2008,17:065021.
    [58] Wu X, Lin J, Kato S, et al. A frequency adjustable vibration energyharvester[C]. Sendai: Proceedings of PowerMEMS,2008:245-248.
    [59] Challa V R, Prasad M, Shi Y, et al. A vibration energy harvesting device withbidirectional resonance frequency tunability[J]. Smart Materials and Structures,2008,17(1):015035.
    [60] Syms R R A. Electrothermal frequency tuning of folded and coupled vibratingmicromechanical resonators[J]. Journal of Microelectromechanical Systems,1998,7:164-171.
    [61] Remtema T, Lin L. Active frequency tuning for micro resonators by localizedthermal stressing effects[J]. Sensors and Actuators A: Physical,2001,91:326-332.
    [62] Sari I, Balkan T, Kulah H. An electromagnetic micro power generator forwideband environmental vibrations[J]. Sensors and Actuators A: Physical,2008,145:405-413.
    [63] Shahruz S. Design of mechanical band-pass filters for energy scavenging[J].Journal of Sound and Vibration,2006,292(3):987-998.
    [64] Shahruz S. Limits of performance of mechanical band-pass filters used inenergy scavenging[J]. Journal of Sound and Vibration,2006,293:449-461.
    [65] Rastegar J, Pereira C, Nguyen H L. Piezoelectric-based power sources forharvesting energy from platforms with low-frequency vibration[C]. San Diego:Proceedings of Smart Structures and Materials Conference,2006,6171:617101.
    [66] Mann B, Sims N. Energy harvesting from the nonlinear oscillations ofmagnetic levitation[J]. Journal of Sound and Vibration,2009,319:515-530.
    [67] Barton D A W, Burrow S G, Clare L R. Energy harvesting from vibrations witha nonlinear oscillator[J]. Journal of Vibration and Acoustics,2010,132(2):021009.
    [68] Nguyen D S, Halvorsen E. Wideband vibration energy harvesting utilizingnonlinear springs[C]. Washington DC: Proceedings of Power MEMS,2009:411-414.
    [69] Nguyen D S, Halvorsen E. Analysis of vibration energy harvesters utilizing avariety of nonlinear springs[C]. Leuven: Proceedings of PowerMEMS,2010.
    [70] Nguyen D S, Halvorsen E, Jensen G, et al. Fabrication and characterization ofa wideband MEMS energy harvester utilizing nonlinear springs[J]. Journal ofmicromechanics and microengineering,2010,20:125009.
    [71] Burrow S, Clare L, Carrella A, et al. Vibration energy harvesters withnon-linear compliance[C]. San Diego: Proceeding of SPIE Smart Structures/NDE Conference,2008,6928:692807.
    [72] Triplett A, Quinn D D. The effect of non-linear piezoelectric coupling onvibration-based energy harvesting[J]. Journal of Intelligent Material Systemsand Structures,2009,20:1959-1967.
    [73] Quinn D D, Vakakis A F, Bergman L A. Vibration-based energy harvestingwith essential nonlinearities[C]. Las Vegas: Proceedings of the ASME2007International Design Engineering Technical Conference and Computes andInformation in Engineering Conference,2007.
    [74] Stanton S C. Reversible hysteresis for broadband magnetopiezoelastic energyharvesting[J]. Applied Physics Letters,2009,95:174103.
    [75] Daqaq M F, Stabler C, Qaroush Y, et al. Investigation of power harvesting viaparametric excitations[J]. Journal of Intelligent Material Systems andStructures,2009,20:545-557.
    [76] Daqaq M F. Response of uni-modal duffing-type harvesters to random forcedexcitations[J]. Journal of Sound and Vibration,2010,329:3621-3631.
    [77] Masana R, Daqaq M F. Relative performance of a vibratory energy harvesterin mono-and bi-stable potentials[J]. Journal of Sound and Vibration,2011,330:6036-6052.
    [78] Masana R, Daqaq M F. Exploiting super-harmonic resonances of a bi-stableaxially-loaded beam for energy harvesting under low-frequency excitations[C].Washington DC: Proceedings of ASME2011International DesignEngineering Technical Conferences and Computers and Information inEngineering Conference,2011.
    [79] Betz T, Lim D, K s J A. Neuronal growth: a bistable stochastic process[J].Physical Review Letters,2006,96:98103.
    [80] Groflmann F, Jung P, Dittrich T, et al. Tunneling in a periodically drivenbistable system[J]. Zeitschrift für Physik B Condensed Matter,1991,84:315-325.
    [81] Harmer G P, Davis B R, Abbott D. A review of stochastic resonance: Circuitsand measurement[J]. IEEE Transactions on Instrumentation and Measurement,2002,51:299-309.
    [82] Taranenko V, Ganne I, Kuszelewicz R, et al. Patterns and localized structuresin bistable semiconductor resonators[J]. Physical Review A,2000,61:063818.
    [83]牛永迪,马文强,王荣.电光双稳态系统的混沌控制与同步[J].物理学报,2009,58:2934-2938.
    [84]沈伟,庞全,范影乐.双稳态自适应随机共振的强噪声图像复原研究[J].计算机工程与应用,2009,45:180-182.
    [85]唐国涛,王庆伦,廖代正,等.自旋转换现象及其研究进展[J].化学进展,2010,22:257-264.
    [86]王娟,吴义伯,张丛春,等.柔顺双稳态机构的研究现状与进展[J].传感器与微系统,2010,29(7):1-3.
    [87]翁文国,倪顺江,申世飞,等.复杂网络上灾害蔓延动力学研究[J].物理学报,2007,56:1938-1943.
    [88]李淳飞.光学双稳态研究20年[J].物理,1996,5:267-272.
    [89] Szoke A, Daneu V, Goldhar J, et al. Bistable optical element and itsapplications[J]. Applied Physics Letters,1969,15:376-379.
    [90] Moon F C, Holmes P J. A magnetoelastic strange attractor[J]. Journal of Soundand Vibration,1979,65:275-296.
    [91] Moehlis J, DeMartini B E, Rogers J L, et al. Exploiting nonlinearity to providebroadband energy harvesting[C]. California: Proceedings of the ASME2009Dynamic Systems and Control Conference,2009.
    [92] Ramlan R, Brennan M, Mace B, et al. Potential benefits of a non-linearstiffness in an energy harvesting device[J]. Nonlinear Dynamics,2010,59:545-558.
    [93] Jung S M, Yun K S. A wideband energy harvesting device using snap-throughbuckling for mechanical frequency-up conversion[C]. Hong Kong: IEEE23rdInternational Conference on Micro Electro Mechanical Systems (MEMS),2010.
    [94] Jung S M, Yun K S. Energy-harvesting device with mechanical frequency-upconversion mechanism for increased power efficiency and widebandoperation[J]. Applied Physics Letters,2010,96:111906.
    [95] Sneller A, Cette P, Mann B. Experimental investigation of a post-buckledpiezoelectric beam with an attached central mass used to harvest energy[J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal ofSystems and Control Engineering,2011,225:497-509.
    [96] Friswell M I, Ali S F, Bilgen O, et al. Non-linear piezoelectric vibration energyharvesting from a vertical cantilever beam with tip mass[J]. Journal ofIntelligent Material Systems and Structures,2012,23:1505-1521.
    [97] Galchev T, Kim H, Najafi K. Non-resonant bi-stable frequency-increasedpower scavenger from low-frequency ambient vibration[C]. Denver:International Solid-State Sensors, Actuators and Microsystems Conference,2009:632-635.
    [98] Galchev T, Kim H. A parametric frequency increased power generator forscavenging low frequency ambient vibrations[J]. Procedia Chemistry,2009,1:1439-1442.
    [99] Galchev T, Kim H, Najafi K. Micro power generator for harvestinglow-frequency and nonperiodic vibrations[J]. Journal ofMicroelectromechanical Systems,2011,20:852-866.
    [100] Cammarano A, Burrow S, Barton D. Modelling and experimentalcharacterization of an energy harvester with bi-stable compliancecharacteristics[J]. Proceedings of the Institution of Mechanical Engineers, PartI: Journal of Systems and Control Engineering,2011,225:475-484.
    [101] Mann B P. Investigations of a nonlinear energy harvester with a bistablepotential well[J]. Journal of Sound and Vibration,2010,329:1215-1226.
    [102] Ertrurk A, Inman D J. Broadband piezoelectric power generation onhigh-energy orbits of the bistable Duffing oscillator with electromechanicalcoupling[J]. Journal of Sound and Vibration,2011,330(10):2339-2353.
    [103] Erturk A, Hoffmann J, Inman D J. A piezomagnetoelastic structure forbroadband vibration energy harvesting[J]. Applied Physics Letters,2009,94:254102.
    [104] Stanton S C, McGehee C C, Mann B P. Nonlinear dynamics for broadbandenergy harvesting: Investigation of a bistable piezoelectric inertial generator[J].Physica D,2010,640-653.
    [105] Chen Y Y, Vasic D, Liu Y P, et al. Study of a piezoelectric switching circuit forenergy harvesting with bistable broadband technique by work-cycleanalysis[J]. Journal of Intelligent Material Systems and Structures,2012.
    [106] Andò B, Baglio S, Trigona C, et al. Nonlinear mechnism in MEMS devices forenergy harvesting applications[J]. Journal of micromechanics andmicroengineering,2010,20:125020.
    [107] Diaconu C G, Arrieta A F. Dynamic analysis of bistable composite plates[J].Journal of Sound and Vibration,2009,322:987-1004.
    [108] Arrieta A F. Nonlinear dynamic response and modeling of a bistable compositeplate for applications to adaptive structures[J]. Nonlinear Dynamics,2009,58:259-272.
    [109] Arrieta A F, Hagedorn P, Erturk A, et al. A piezoelectric bistable plate fornonlinear broadband energy harvesting[J]. Applied Physics Letters,2010,97:104102.
    [110] Arrieta A F, Wagg D J, Neild S A. Dynamic Snap-through for Morphing ofBi-stable Composite Plates[J]. Journal of Intelligent Material Systems andStructures,2011,22:103-112.
    [111] Betts D N, Kim H A, Bowen C R, et al. Optimization of piezoelectric bistablecomposite plates for broadband vibrational energy harvesting[C]. California:Proceeding of SPIE, Active and Passive Smart Structures and IntegratedSystems,2012,8341:83412Q.
    [112] Lin J T, Alphenaar B. Enhancement of energy harvested from a randomvibration source by magnetic coupling of a piezoelectric cantilever[J]. Journalof Intelligent Material Systems and Structures,2010,21:1337-1341.
    [113] Li X Y, Shen Y D, Pan X M, et al. Piezoelectric Material Based EnergyGenerator Using Bistable Cantilever Beam[J]. Future Wireless Networks andInformation Systems,2012,143:517-522.
    [114]韩权威,李坤,严玲,等.磁场增强压电悬臂梁震动发电装置[J].压电与声光,2011,33(1):85-92.
    [115]马华安,刘景全,唐刚,等.一种宽频的磁式压电振动能量采集器[J].传感器与微系统,2011,30(4):66-68.
    [116] Lau S, Cheung Y. Amplitude incremental variational principle for nonlinearvibration of elastic systems[J]. Journal of Applied Mechanics.198l,48:959-964.
    [117] Lau S, Cheung Y, Wu S. Variable parameter incrementation method fordynamic instability of linear and nonlinear elastic systems[J]. Journal ofapplied mechanics,1982,49:849-853.
    [118] Lau S, Cheung Y, Wu S. Nonlinear vibration of thin elastic plates. I:Generalized incremental Hamilton's principle and element formulation.Journal of applied mechanics,1984,51:837-844.
    [119] Lau S, Cheung Y, Wu S. Nonlinear vibration of thin elastic plates. II: Internalresonance by amplitude-incremental finite element[J]. Journal of appliedmechanics,1984,51:845-851.
    [120] Pusenjak R R, Oblak M M. Incremental harmonic balance method withmultiple time variables for dynamical systems with cubic non-linearities[J].International Journal for Numerical Methods in Engineering,2004,59:255-92.
    [121] Raghothama A, Narayanan S. Bifurcation and chaos in escape equation modelby incremental harmonic balancing[J]. Chaos, Solitons and Fractals,2000,11:1349-1363.
    [122]陈泳斌,杜建伟,陈树辉.关于增量谐波平衡法的一个注解[J].非线性动力学学报,1998,5(增刊):171-176.
    [123]陈树辉.应用于具有二次,三次非线性系统的增量谐波平衡法[J].非线性动力学学报,1993,1:73-79.
    [124]唐南.应用于范德波方程的增量谐波平衡法[J].中山大学研究生学刊自然科学版,1995,16(2):43-50.
    [125]陈树辉,沈建和.基于增量谐波平衡法的马休-杜芬振子分岔及通往混沌道路的分析[C].南京:第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议,2007:62-71.
    [126]王艾伦,龙清. IHB方法在含强非线性摩擦力失谐叶盘系统响应特性研究中的应用[J].机械强度,2012,34(2):159-164.
    [127]鲍和云.两级星型齿轮传动系统分流特性及动力学研究[D].南京:南京航空航天大学,2006.
    [128]陈衍茂,刘济科,孟光.二元机翼非线性颤振系统的若干分析方法[J].振动与冲击,2011,30(3):129-134.
    [129] Chen Y M, Liu J K, Meng G. Incremental harmonic balance method fornonlinear flutter of an airfoil with uncertain-but-bounded parameters[J].Applied Mathematical Modelling,2012,36:657-667.
    [130] Karami M A, Inman D J. Equivalent damping and frequency change for linearand nonlinear hybrid vibrational energy harvesting systems[J]. Journal ofSound and Vibration,2011,330:5583-5597.
    [131] Stanton S C, Owens B A M, and Mann B P. Harmonic balance analysis of thebistable piezoelectric inertial generator[J]. Journal of Sound and Vibration,2012,331:3617-3627.
    [132] Li T Y and Yorke J A. Period three implies chaos[J]. American mathematicalmonthly,1975,82(10):985-992.
    [133] Marotto F R. Snap-back repellers imply chaos in Rn[J]. Journal ofmathematical analysis and applications,1978,63:199-223.
    [134] Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents froma time series[J]. Physica D: Nonlinear Phenomena,1985,16(3):285-317.
    [135]彭芳麟,管靖,胡静,等.理论力学计算机模拟: MATLAB编程应用[M].北京:清华大学出版社,2002.
    [136]胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.
    [137]张琪昌.分岔与混沌理论及应用[M].天津:天津大学出版社,2005.
    [138] Melnikov V K. On the stability of a center for time-periodic perturbations[J].Transactions on Moscow Mathematical Society,1963,12:1-57.
    [139] Arnold V I. Instability of dynamic systems with many degrees of freedom[J].Soviet Mathematics,1964,5:581-585.
    [140] Holmes P. A nonlinear oscillator with a strange attractor[J]. PhilosophicalTransactions of the Royal Society of London,1979,292:419-448.
    [141] Holmes P, Marsden J. A partial differential equation with infinitely manyperiodic orbits: chaotic oscillations of a forced beam[J]. Archive for RationalMechanics and Analysis,1981,76:135-165.
    [142] Moon F C. Chaotic vibrations: An introduction for applied scientists andengineers[M]. New York: Wiley-Interscience,1987.
    [143] Wiggins S. Global bifurcations and chaos: analytical methods[M]. New York:Springer-Verlag,1988.
    [144] Frey M, Simiu E. Noise-induced chaos and phase space flux[J]. Physica D:Nonlinear Phenomena,1993,63:321-340.
    [145] Franaszek M, Simiu E. Noise-induced snap-through of a buckled column withcontinuously distributed mass: A chaotic dynamics approach[J]. InternationalJournal of Non-Linear Mechanics,1996,31:861-869.
    [146] Liu Z H, Zhu W Q. Homoclinic bifurcation and chaos in simple pendulumunder bounded noise excitation[J]. Chaos, Solitons and Fractals,2004,20:593-607.
    [147]郝五零,张伟.用广义MELNIKOV方法研究压电复合材料层合梁的全局分叉和多脉冲混沌动力学[C].天津:第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议,2011.
    [148]葛根,王洪礼,许佳.形状记忆合金梁的建模及混沌阈值计算[J].振动与冲击,2012,31(12):103-107.
    [149]陈树辉,陈洋洋.求非线性自治系统同(异)宿轨线的双曲函数摄动法[J].力学季刊,2009,30:133-137.
    [150]张琪昌,王炜,何学军.研究强非线性振动系统同宿分岔问题的规范形方法[J].物理学报,2008,57:5384-5389.
    [151]刘曾荣,罗诗裕,李继彬.具有缓变周期扰动的动力体系在共振区区域内的浑沌现象[J].工程数学学报,1985,2:143-147.
    [152]张伟,霍拳忠.非线性振动系统的同宿道分叉,次谐分叉和混沌[J].振动工程学报,1991,4(3):41-51.
    [153] Parthasarathy S. Homoclinic bifurcation sets of the parametrically drivenDuffing oscillator[J]. Physical Review A,1992,46:2147-2150.
    [154] Ravichandran V, Chinnathambi V, Rajasekar S. Homoclinic bifurcation andchaos in Duffing oscillator driven by an amplitude-modulated force[J].Physica A,2007,376:223-36.
    [155]李飞,朱湘萍,曹显能.一个杜芬系统的混沌动力学研究.湖南科技学院学报,2009,30(12):1-3.
    [156]李亚峻,李月,卢金,等.微弱信号混沌检测系统混沌阈值的确定[J].吉林大学学报:信息科学版,2004,22(2):106-110.
    [157]苟鹏东,王知人,刘永杰,等.三次非线性动力系统的混沌分析[J].山东理工大学学报:自然科学版,2009,23:66-68.
    [158]刘曾荣.混沌的微扰判据[M].上海:上海科技教育出版社,1994.
    [159]刘曾荣.混沌研究中的解析方法[M].上海大学出版社,2002.
    [160] Lenci S, Rega G. Higher-order Melnikov functions for single-DOF mechanicaloscillators: theoretical treatment and applications[J]. Mathematical Problemsin Engineering,2004,2004(2):145-168.
    [161]潘德林,韩志斌.用高阶Melnikov函数分析转子系统的混沌行为[J].应用数学,2007,20(增):34-37.
    [162] Halvorsen E. Energy harvesters driven by broadband random vibrations[J].Journal of Microelectromechanical Systems,2008,17(5):1061-1071.
    [163] Adhikari S, Friswell M, Inman D. Piezoelectric energy harvesting frombroadband random vibrations[J]. Smart Materials and Structures,2009,18:115005.
    [164] Mann B, Sims N. On the performance and resonant frequency ofelectromagnetic induction energy harvesters[J]. Journal of Sound andVibration,2010,329:1348-1361.
    [165] Tvedt L, Blystad L C J, Halvorsen E. Simulation of an electrostatic energyharvester at large amplitude narrow and wide band vibrations[C]. FrenchRiviera: Symposium on Design, Test, Integration and Packaging ofMEMS/MOEMS,2008.
    [166] Cottone F, Vocca H, Gammaitoni L. Nonlinear energy harvesting[J]. PhysicalReview Letters,2009,102:080601.
    [167] Gammaitoni L, Neri I, Vocca H. Nonlinear oscillators for vibration energyharvesting[J]. Applied Physics Letters,2009,94:164102.
    [168] Daqaq M F. On intentional introduction of stiffness nonlinearities for energyharvesting under white Gaussian excitations[J]. Nonlinear Dynamics,2012,69:1063-1079.
    [169] Tang L, Yang Y, Soh C K. Improving functionality of vibration energyharvesters using magnets[J]. Journal of Intelligent Material Systems andStructures,2012,23:1433-1449.
    [170] Vocca H, Neri I, Travasso F, et al. Kinetic energy harvesting with bistableoscillators. Applied Energy,2012,97:771-776.
    [171] Formosa F, Büssing T, Badel A, et al. Energy harvesting device with enlargedfrequency bandwidth based on stochastic resonance[C]. Washington DC:Proceedings of PowerMEMS,2009,229-232.
    [172] Ferrari M, Ferrari V, Guizzetti M, et al. Improved energy harvesting fromwideband vibrations by nonlinear piezoelectric converters[J]. Sensors andActuators a: Physical,2010,162:425-431.
    [173] Ferrari M. A single-magnet nonlinear piezoelectric converter for enhancedenergy harvesting from random vibrations[J]. Procedia Engineering,2010,5:1156-1159.
    [174] Ali S, Adhikari S, Friswell M. Analysis of magnetopiezoelastic energyharvesters under random excitations: an equivalent linearization approach[C].California: SPIE Smart Structures and Materials+Nondestructive Evaluationand Health Monitoring,2011,7977:79770N.
    [175] Litak G, Friswell M, Adhikari S. Magnetopiezoelastic energy harvestingdriven by random excitations[J]. Applied Physics Letters,2010,96(21):214103.
    [176] Potrykus A, Adhikari S, Friswell M I. Magnetopiezoelastic energy harvestingdriven by stochastic jump processes[C]. Rome: The7th European NonlinearDynamics Conerence(ENOC),2011.
    [177]陈仲生,杨拥民.悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究[J].物理学报,2011,60(7):074301.
    [178] Hu H, Nakano K, Cartmell M P, et al. An experimental study of stochasticresonance in a bistable mechanical system[J]. Journal of Physics: ConferenceSeries,2012,382:012024.
    [179] Zhao S, Erturk A. Electroelastic modeling and experimental validations ofpiezoelectric energy harvesting from broadband random vibrations ofcantilevered bimorphs[J]. Smart Materials and Structures,2013,22:015002.
    [180] Gammaitoni L, Neri I, Vocca H. The benefits of noise and nonlinearity:Extracting energy from random vibrations[J]. Chemical Physics,2010,375:435-438.
    [181] Yung K W, Landecker P B, Villani D D. An analytic solution for the forcebetween two magnetic dipoles[J]. Magnetic and Electrical Separation,1998,9:39-52.
    [182]林敏,孟莹.双稳系统的频率耦合与随机共振机理[J].物理学报,2010,59(6):3627-3632.
    [183]龚璞林,徐健学,孙政策.弱的参数周期扰动对一非线性系统安全域的影响与分形侵蚀安全域的控制[J].物理学报,2001,50(5):841-846.
    [184] Gan C. Noise-induced chaos in a quadratically nonlinear oscillator[J]. Chaos,Solitons&Fractals,2006,30(4):920-929.
    [185]朱位秋.随机振动[M].北京:科学出版社,1998.
    [186] Burns J R. Ocean wave energy conversion using piezoelectric materialmembers[P]. US:4685296,1987.
    [187] Taylor G W, Burns J R, Kammann S M. The energy harvesting Eel: a smallsubsurface ocean/river power generator[J]. IEEE Journal of OceaningEngineering,2001,26:539-547.
    [188] Han B F, Chu J K, Xiong Y S. Modeling and simulation of the novel waveenergy[C]. YiChang: International Conference on Electrical and ControlEngineering,2011.
    [189] Lefeuvre E, Badel A, Richard C, et al. Energy harvesting using piezoelectricmaterials: Case of random vibrations[J]. Journal of Electroceramics,2007,19(4):349-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700