用户名: 密码: 验证码:
锥体海洋结构的冰荷载研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰荷载是寒区海洋结构的控制荷载。由于海冰的破坏和断裂理论尚未成熟,使得冰荷载研究发展缓慢,迄今未能建立合理的理论和计算模型。对于传统的直立形式抗冰结构,海冰发生挤压破坏,产生最危险的冰荷载,其中极值和交变荷载的机理尚未研究清楚。本文提出在直立结构上安装破冰锥体的概念以降低冰力,其原理是将结构水面位置改造成锥体形式,将海冰的挤压破坏模式转化为弯曲破坏,从而达到降低冰力和冰激振动的目的。自上世纪70年代开始,人们主要针对锥体结构极值静冰力进行研究,而动冰力的研究开展较少。针对动力问题显著的渤海冰区锥体导管架结构,大连理工大学曾开展了完备的海冰现场监测,基于实测数据建立了冰力模型,并已广泛应用于同海域结构的冰振响应预测。但上述结论对于其它海域和结构的应用存在着一定的局限性。
     海冰对结构作用的破坏过程非常复杂,无法采用经典力学理论或数值方法进行分析与模拟,实验方法成为研究冰荷载的主要手段。本文通过对直接测量冰力和海冰破坏行为的分析,对锥体结构冰荷载进行理论分析并建立了计算表达式:通过开展不同尺寸的原型结构和室内模型的实验研究,揭示了海冰荷载的周期、大小和时程变化的形成机理,建立了动冰力计算模型;提出了交变冰力的发生判据和宽、窄锥体结构的定义,并论证了结论的适用范围。通过冰荷载和实测结构响应的对比分析,论证了安装破冰锥体降低平台冰振的效果。本文的主要研究工作如下:
     1.针对渤海冰区两座原型结构的现场测量和德国汉堡船模实验室(HSVA)模型实验研究。
     原型结构现场测量能够为冰荷载研究提供最真实的信息,主要包括冰力和海冰破坏行为:利用JZ20-2MUQ平台上的压力盒冰力测量系统能够直接获取冰力时程曲线,通过同步测量的海冰-结构作用过程说明动冰力形成的物理过程;为避免特定结构测量信息和结论的局限性,针对同海域最大锥体导管架结构进行了冰力测量,即通过结构水下光纤应变测量整体冰力。通过现场测量得到了海冰破坏的基本规律和冰荷载的基本结论。
     为进一步分析结构形式(尺寸)对海冰破坏和冰荷载的影响,开展了锥体模型的室内实验。通过模型实验更加详细地分析了与锥体作用时的海冰破坏行为(包括正、倒锥体),进而对现场监测的研究结论进行验证。
     2.基于直接测量的海冰破坏模式分析,统计分析了海冰对锥体结构作用力的周期和幅值,确定了动冰力的形成机制,并建立了相应的计算模型。
     海冰交变冰力形成的物理机制是冰在锥体前的持续断裂过程:冰力周期的实质在于相邻海冰断裂的时间间隔,取决于海冰断裂长度和运动速度;冰力幅值的本质在于裂纹形成和扩展时的能量释放。二者均受到海冰破坏模式的控制。
     结合海冰断裂的形成机理分析,即海冰内部裂纹的形成和扩展机制,确定了原型和室内实验中两种主要的海冰破坏模式:楔梁型和板型弯曲破坏。根据实验研究中的参数范围,提出海冰破坏模式的控制要素,其中对锥体结构尺寸的影响进行了重点讨论,为研究结论的适用性奠定基础。基于海冰破坏行为的分析,利用实测冰力数据建立了冰力周期和幅值的计算模型。
     3.根据海冰与结构作用的物理过程确定了交变冰力的基本形式和发生判据,并给出了宽、窄锥体结构的定义。
     海冰与结构作用的物理过程是海冰荷载时程变化的机理解释。根据压力盒直接测量的冰力时程和同步获取的冰-锥作用过程,提出了交变冰力的基本形式:三角脉冲(加载、卸载)和完全卸载组成的周期性荷载。完全卸载对应破碎冰在结构前的完全清除,能够保证未破碎冰直接作用于锥体,也是海冰持续弯曲破坏和交变冰力的发生条件和判据。若破碎冰能够完全清除,则定义该结构为窄锥体,此时发生交变冰力;若破碎冰不能及时清除而发生冰堆积,完整冰板不能直接作用于锥体,此时定义该结构为宽锥体。在此基础上确定了交变冰力的基本形式及其适用范围,并建立了窄锥结构的动冰力计算模型。该模型通过了多座原型结构实测响应的验证,可用于锥体海洋结构的冰振预测、评价和结构设计。
     4.基于原型结构的现场测量,对安装锥体降低冰振危害的效果进行了分析和评价。
     在直立海洋结构上安装锥体的主要目的是降低冰力和冰振。通过对冰力和结构振动响应的对比分析,说明了加锥减振的可行性和优势。安装锥体后可以从根本上消除直立结构由于海冰挤压破坏而可能引发的频率锁定冰力和恒幅稳态振动现象;通过原型结构的直接冰力测量,证明了锥体结构对冰力具有显著的降低作用,并对加锥降低冰振的效果进行了量化分析,结果表明安装破冰锥体达到了预期的效果。
     本文系统地开展了锥体结构动冰力形成机理、冰荷载计算模型以及安装锥体抗冰效果评价等方面的研究,从理论上研究了海冰与锥体结构相互作用时的破坏机理及冰力模型,对冰区锥体海洋结构的优化设计和安全评估具有很好的应用价值。
Ice force is the dominant enviromental force for offshore structures in cold regions. The progress of ice force research is quite slow maily due to the lack of knowledge on sea ice fracture. The reasonal mechanical explanation and generally accepted function have not been found yet. Sea ice crushing failure occurs on traditional vertical structures and induces the most harmful ice force, resulting in the concept of conical offshore structure, so as to reduce the ice force magnitude. The principal idea of sloping or conical structure is to change the ice failure mode from crushing to bending. Research on peak ice force on conical structures has been carried on since 1970's, whereas there was limited work on dynamic ice force. The team of Dalian University of Technology conducted field measurements on coincal jacket structures, on which distinct dynamic problems under ice action were observed in the Bohai Sea. The ice force models developed by the statistics of full scale test data have been widely used on the offshore structures in this sea area, however limitation still exists when applied to various structure types in other sea areas.
     Because of the complex sea ice failure process when acting on cone, only the real tests could obtain the accurate and comprehensive information. Based on the directly measured ice force and ice failure process, the mechanism and the model of ice force on conical structure are developed. Based on the field and lab test on cones of different sizes, the mechanism of the main factors of dynamic ice force (period, amplitude and time-varing characteristics) were revealed. The criterion of dynamic ice force and the definition of narrow/wide cone were proposed, which indicates the applicable range of the conclusions from tests. The vibration mitigation effect was validated based on the comparison of ice force and structure response obtained from full scale tests.
     1. Full scale tests on two jackets in the Bohai Sea and lab tests in Hamburg Ship Model Basin (HSVA) were conducted.
     Full scale tests could provide the most accurate information, including sea ice failure process and ice force. Ice force directly measured from the load panels installed on JZ20-2MUQ platform contains the time-varing characteristics of ice force. The synchronously observed ice-cone interaction process was the mechanism of dynamic ice force. In order to avoid the limitation that the research is conducted on a specific structure, the full scale tests were conducted on the largest conical jacket structure JZ20-2NW platform, and the global ice forces were measured by the fiber strain sensors installed on underwater structural components. The basic conclusions on sea ice failure and ice force on conical structures were obtained from full scale tests.
     The lab tests on cone model were carried out, in order to investigate the influence of cone parameters to sea ice failure and ice force. In the lab tests the sea ice failure could be measured in more detail, including the upwards and downwards cones, and thus the conclusions from full scale tests could be proved.
     2. Combined with the directly measured sea ice failure mode, the ice force period and amplitude were statistically analyzed, and the calculation model of dynamic ice force of conical structure was developed based on the physical mechanism.
     The mechanism for dynamic ice force is the ice sheet's continual bending failure on cone. Ice force period is the duration of sea ice failure, which was determined by the sea ice broken length and ice speed. Ice force amplitude was determined by the energy release with sea ice internal cracks formation and propagation, which also determine the sea ice failure modes.
     Combined with the mechanical analysis of sea ice fracture, mainly two kinds of ice failure modes are determined:wedge typed and plate typed bending failure. The primary influencing parameters on sea ice failure modes are discussed in the range of various parameters during tests, especially the size of cone. Based on the analysis of sea ice failure, which was the basis when considering the applicable range of the conclusions, the caclulation model for ice force period and amplitude are obtained by statistics of measured data in tests.
     3. The basic form and criterion of dynamic ice force, the definition of narrow and wide conical structures were developed based on the ice-cone interaction process.
     Ice-cone interaction process is the mechanism for time-varying ice force. Combined with the directly measured ice froce from load panels, the basic form of dyanmic ice force was developed:periodical ice force composed of triangle force (loading and unloading) and total unloading. The total unloading corresponds to the broken ice total clearing in front of the cone, which could ensure the subsequent intact ice sheet directly acting on cone. Only in this occasion, the sea ice continual bending failure and dynamic ice force arise. The definition of narrow and wide cone was brought up:if the broken ice could be totally cleared, the cone is called narrow cone; whereas if the broken ice could not cleared but pile up in front of the cone, the intact sea ice could not directly act on cone, the cone is called wide cone. The dynamic ice force calculation model on narrow cone was founded and validated by real measured structure vibrations.
     4. The vibration mitigation effect by adding cone was evaluated based on the full scale measurement.
     The purpose of adding cone on vertical offshore strucuture was to reduce the ice force magnitude and ice induced strong vibration. The feasibility and effect of adding cone were proved by compare of directly measured ice force and structure response on structures with and without cone. The locked-in ice force and steady state vibration caused by ice crushing failure on vertical structures could be avoided basically. The ice force is obviously reduced based on the directly measured ice force from field tests, and the compare results from structure vibration measured before and after adding cone showed the quantitative effect.
     This paper investigates the mechanism and calculation model of dynamic ice force of conical structures, and also the effect of adding cone on vertical offshore structure. The dynamic ice force function was founded based on the sea ice failure when acting on cone. The conclusions are quite helpful for the vibration prediction, safety evaluation and optimized design of offshore structure in cold regions.
引文
[1]段梦兰,方华灿,陈如恒.渤海老二号平台被冰推倒的调查结论[J].石油矿场机械,1994(3):1-4.
    [2]刘圆.抗冰海洋平台动力分析与结构选型研究[D].大连:大连理工大学,2006.
    [3]CROASDALE K R. Ice forces on fixed rigid structures[R]. Report for the working group on ice forces on structures, CRREL Special Report,1980:34-106.
    [4]WESSELS E, KATO K. Ice forces on fixed and floating conical structures[C]. Proceedings of the 9th International IAHR Symposium on Ice, Sapporo, Japan,1988: 666-691.
    [5]TIMCO G. Ice loads on conical-shaped structures [J]. Cold Regions Science and Technology,2009,55:1-2.
    [6]TIMCO G, CROASDALE K Y. How well can we predict ice loads [C]. Proceedings of the 18th IAHR International Symposium on Ice,2006:167-174.
    [7]大连理工大学.平台振动与冰力测量研究报告[R].2001.
    [8]BROWN T G. The Confederation Bridge-early results from ice monitoring program[C]. Proceedings of CSCE Annual Conference, Sherbrooke, Canada,1997(1):177-186.
    [9]ISO 19900. Petroleum and Natural Gas Industries Offshore Structures-Part 1: General Requirements[S]//International Standardization Organization,2002.
    [10]ISO/DIS 19902. Design of Fixed Steel Jackets, DIS Draft [S]//International Standardization Organization,2004.
    [11]LΦSET S, SHKHINEK K, GUDMESTAD 0 T, et al. Comparison of the physical environment of some Arctic seas [J]. Cold Regions Science and Technology,1999,29:201-214.
    [12]TIMCO G W, WEEKS W F. A review of engineering properties of sea ice [J]. Cold Regions Science and Technology,2010,60:107-129.
    [13]ASHBY M F, PALMER A C, THOULESS M, et al. Nonsimultaneous failure and ice loads on Arctic structures[C]. Proceedings of Offshore Technology Conference, Houston TX,1986:399-404.
    [14]KARNA T, JOCHMANN P. Field observations on ice failure modes [C]. Proceedings of 17th International Conference on Port and Ocean Engineering under Arctic Conditions. Trondheim, Norway,2003(2):839-848.
    [15]SANDERSON T. Ice Mechanics:Risks to Offshore Structures [M]. London:Graham & Trotman,1988.
    [16]岳前进,任晓辉,陈巨斌.海冰韧脆转变与机理研究[J].应用基础与工程科学学报,2005,13(1):35-42.
    [17]LΦSET S, SHKHINEK K. Evaluation of existing ice force prediction methods. Validation of low level ice forces on coastal structures [R]. Report No 3 for LOLEIF, 1999.
    [18]BRUUN P K, GUDMESTAD O T. A comparison of ice loads from level ice and ice ridges on sloping offshore structures calculated in accordance with different international and national standards [C]. Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering,2006:1-11.
    [19]YUE Q J, QU Y, BI X J, et al. Ice force spectrum on narrow conical structures [J]. Cold Regions Science and Technology,2007,49:161-169.
    [20]岳前进,毕祥军,于晓,等.锥体结构的冰激振动与冰力函数[J].土木工程学报,2001,36(2):16-19.
    [21]QU Y, YUE Q J, BI X J, et al. A random ice force model for narrow conical structures[J]. Cold Regions Science and Technology,2006,45:148-157.
    [22]屈衍.基于现场实验的海洋结构随机冰荷载分析[D].大连:大连理工大学,2006.
    [23]YUE Q J, BI X J. Ice-induced jacket structure vibrations in Bohai Sea [J]. Journal of Cold Regions Engineering,2000,14(2):81-92.
    [24]SNIADY P. Random vibrations and reliability of structures under various loads [C]. Proceedings of International Conference on Offshore Mechanics and Arctic Engineering,1996,2(6):143-150.
    [25]FABERM H. Reliability analysis of an offshore structure:a case study [C]. Proceedings of International Offshore Mechanics and Arctic Engineering Symposium,1992(2):449-455.
    [26]TOYAMA Y, YASHIMA N. Dynamic response of moored conical structures to a moving ice sheet [C]. Proceedings of 8th International Conference on Port and Ocean Engineering under Arctic Conditions. Narssarssuaq, Greenland,1985(2):677-688.
    [27]MAATTANEN M. Ice force design and measurement of conical structure [C]. Proceedings of 12th International Symposium on Ice,Trondheim, Norway,1994(1):401-410.
    [28]MAATTANEN M, HOIKKANEN A N, AVIS J. Ice failure and ice loads on a conical structure KEMI-I cone full scale ice force measurement data analysis [C]. Proceedings of 19th IAHR Ice Symposium, Beijing, China,1996(1): 8-16.
    [29]TIMCO G, JOHNSTON M. Ice loads on the caisson structures in the Canadian Beaufort Sea[J]. Cold Regions Science and Technology,2004(38):185-209.
    [30]TIMCO G, JOHN STON M. Ice loads on the Molikpaq in the Canadian Beaufort Sea [J]. Cold Regions Science and Technology,2003(37):51-68.
    [31]FREDERKING R, TIMCO G, WRIGHT B. Ice pressure distributions from first-year sea ice features interacting with the Molikpaq in the Beaufort Sea [C]. Proceedings of 9th International Offshore and Polar Engineering Conference, Brest, France, 1999(2):541-548.
    [32]HARDY M D, JEFFERIES M G, ROGERS B T, et al. Molikpaq ice loading experience[R]. PERD/CHC Report,1996.
    [33]JEFFERIES M G, WRIGHT W H. Dynamic response of "Molikpaq" to ice-structure interaction [C]. Proceedings of 7th International Conference on Offshore Mechanics and Arctic Engineering, Houston,1988(4):201-220.
    [34]SUDOM D, FREDERKING R. A preliminary analysis of Molikpaq local ice pressures and ice forces at Amauligak I-65[C]. Proceedings of 18th International Conference on Port and Ocean Engineering under Arctic Conditions,2005(1):365-374.
    [35]WRIGHT B, TIMCO G. A review of ice forces and failure modes on the Molikpaq [C]. Proceedings of 12th International Symposium on Ice, Trondheim, Norway,1994(2): 816-825.
    [36]WRIGHT B. Insights from Molikpaq ice loading data. Validation of Low Level Ice Forces on Coastal Structures[R]. LOLEIF Report No.1. EU Project-Contract MAS3-CT 97-0098,1988.
    [37]BRUCE J R, BROWN T G. Operating an ice force monitoring system on the Confederation Bridge[R]. Ottawa, Canada,2001:299-308.
    [38]MAYNE D C, BROWN T G. Comparison of flexural failure ice-force models[C]. Proceedings of 19th International Conference on Offshore Mechanics and Arctic Engineering, New Orleans, USA,2000.
    [39]XU N, YUE Q J, QU Y, et al. Results of field monitoring on ice actions on conical structures [J]. Journal of Offshore Mechanics and Arctic Engineering.2011,133(4).
    [40]BROWN T G, MAATTANEN M. Comparison of Kemi-I and Confederation Bridge cone ice load measurement results [J]. Cold Regions Science and Technology,2009,55:3-13.
    [41]郭峰玮.基于实验数据分析的直立结构挤压冰荷载研究[D].大连:大连理工大学,2010.
    [42]BJERKAS M. Review of measured full scale ice loads to fixed structures [C]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA,2007:131-140.
    [43]TIMCO G W. Ice forces on structures:Physical Modeling Techniques [C]. Proceedings of IAHR Ice Symposium, Hamburg,1984:117-150.
    [44]HIRAYAMA K, SCHWARZ J, WU H C. Model technique for the investigation of ice forces on structures [C]. Proceedings of 2nd International Conference on Port and Ocean Engineering under Arctic Conditions, Reykjavik, Iceland,1973:332-344.
    [45]李桐魁.辽东湾平台冰力模型实验研究[J].中国海上油气(工程),1994,6(6):15-21.
    [46]CORNETT A M, TIMCO G W. Ice loads on an elastic model of Molikpaq [J]. Applied Ocean Research,1998,20:105-118.
    [47]MUHONEN A, KARNA T, ERANTI E, et al. Laboratory indentation test with thick freshwater ice[R]. VTT Research Notes 1370,Espoo,1992(1).
    [48]史庆增,渤海简易平台冰力的模型实验研究报告[R].天津大学,2000.
    [49]黄炎.冰激海洋平台振动的动力模型实验研究[D].天津:天津大学,2004.
    [50]ATKINS C. Icebreaker modeling [J]. Journal of ship Research,1975,19(1):40-43.
    [51]ATKINS C, CADDELL R M. The laws of similitude and crack propagation [J]. International journal of Mechanical Sciences,1974(16):541-548.
    [52]MAATTANEN M. Laboratory tests for dynamic ice structure interaction [J]. Engineering Structures,1981,3(2):111-116.
    [53]PALMER A, DEMPSEY J. Model tests in ice[C]. Proceedings of the 20th International Conference on Port and Ocean Engineering under Arctic Conditions,2009, POAC09-40.
    [54]PALMER A, YUE Q J, GUO F W. Ice-induced vibrations and scaling [J]. Cold regions science and technology,2010,60:189-192.
    [55]MOSLET P 0. Medium scale ice-structure interaction [J]. Cold Regions Science and Technology,2008,54:143-152.
    [56]EDWARDS R Y, CROASDALE K Y. Model experiments to determine ice forces on conical structures[C]. Symposium of Applied Glaciology International Glaciological Society,1976.
    [57]KATO K. Experimental studies of ice forces on conical structures [C]. Proceeding of 8th IAHR Ice symposium,1986.
    [58]HIRAYAMA K, OBARA I. Ice forces on inclined structures[C]. Proceedings of the 5th International Offshore Mechanics and Arctic Engineering, Tokyo, Japan,1986: 515-520.
    [59]LINDHOLM J E, MAKELA K, ZHENG C B. Structure-ice interaction for a Bohai Bay oil production project[C]. Proceedings of the 3rd International Offshore and Polar Engineering Conference, Singapore,1993:538-547.
    [60]史庆增,黄焱,宋安,等.锥体冰力的实验研究[J].海洋工程,2004,22(11):88-92.
    [61]史庆增,刘波,李勇,等.锥体上冰力的试验研究[J].中国海上油气,2005(2):118-123.
    [62]TIMCO G W, NWOGU 0 G, CHRISTENSEN F T. Compliant model tests with the great belt west bridge piers in ice. Part 1:Test methods and key results [J]. Cold Regions Science and Technology,1995,23 (2):149-164.
    [63]CHRISTENSEN F T, TIMCO G W, NWOGU 0 G. Compliant model tests with the great belt west bridge piers in ice. Part 2:analyses of results [J]. Cold Regions Science and Technology,1995,23(2):165-182.
    [64]TIMCO G W, IRANI M B, TSENG J, et al. Model tests of the dynamic ice loading on the Chinese JZ20-2 jacket platform [J]. Canadian Journal of Civil Engineering,1992, 19:819-832.
    [65]TIMCO G W, CORNETT A M, SINGH S K. A study of ice-induced vibrations using a segmented, elastic model of the Molikpaq [C]. Proceedings 16th International Conference on Offshore Mechanics and Arctic Engineering, Yokohama, Japan,1997(4):313-320.
    [66]CORNETT A M, TIMCO G W. Ice-induced vibrations of the Molikpaq [C]. Proceedings 8th International Conference on the Behavior of Offshore Structures,1997(3): 229-243.
    [67]BARKER A, TIMCO G, GRAVESEN H, VΦLUND P. Ice loading on Danish wind turbines Part 1:Dynamic model tests [J].Cold Regions Science and Technology,2005,41:1-23.
    [68]BLENKARN K A. Measurements and analysis of ice forces on Cook Inlet structures [C]. Proceedings of Offshore Technology Conference. Houston, TX,1970.
    [69]JOCHMANN P, SCHWARZ J. The influence of individual parameters on the effective pressure on level ice against lighthouse "Norstromsgrund"[C]. Proceedings of 18th International Conference on Port and Ocean Engineering under Arctic Conditions. Clarkson University, Potsdam, NY, USA,2005(3).
    [70]SAEKI H, HIRAYAMA K I, KAWASAKI T, et al. JOIA project of study of ice load[C]. Proceedings of 13th International Symposium on Ice, Beijing, China,1996 (1):17-27.
    [71]JOCHMANN P, SCHWARZ J. Ice force measurements at Lighthouse Norstromsgrund. Winter 1999[R]. LOLEIF Report No 5. EU Contract MAS-CT-97-0098, Hamburg, Germany,2000.
    [72]JOCHMANN P, SCHWARZ J. Ice force measurements at Lighthouse Norstromsgrund. Winter 2000[R]. LOLEIF Report No 9. EU Contract MAS-CT-97-0098, Hamburg, Germany 2001.
    [73]SCHWARZ J, JOCHMANN P. Ice force measurement within the LOLEIF-project [C]. Proceedings of 16th International Conference on Port and Ocean Engineering under Arctic Conditions, Ottawa, Canada,2001:669-680.
    [74]WRIGHT B. Ice load prediction methods for wide vertically sided structures. Validation of Low Level Ice Forces on Coastal Structures [R]. LOLEIF Report No. 2. EU Project-Contract MAS3-CT 97-0098,1988.
    [75]LAVOIE N Y. Ice effects on structures in the Northumberland Strait crossing [R]. Ice Pressures Against Structures, NRC Technical Memo No.92 (NRC No.985), Ottawa, 1966.
    [76]CROASDALE K R. A method for the calculation of sheet ice loads on sloping structures[C]. Proceedings of IAHR ice symposium,1984:874-885.
    [77]RALSTON T D. Ice force design considerations for conical offshore structures[C]. Proc.4th International Conference on Port and Ocean Engineering under Arctic Conditions, St. John's, New Foundland, Canada,1977(2):741-752.
    [78]RALSTON T D. Plastic limit analysis of sheet ice loads structures [C]. IUTAM Symposium on Physics and Mechanics of Ice. Springer-Verlag, New York,1980:289-308.
    [79]FREDERKING R, SCHWARZ J. Model tests of ice forces on fixed and oscillating cones [J]. Cold regions science and technology,1982,6:61-72.
    [80]CLOUGH H F, VINSON T S. Ice forces on fixed conical structures [C]. Proceedings of the 5th International Offshore Mechanics and Arctic Engineering Symposium, Tokyo, Japan,1986:507-514.
    [81]CHAO J C. Comparison of sheet ice load prediction methods and experimental data for conical structures [C]. Proceedings of International Conference on Offshore Mechanics and Arctic Engineering,1992(4):183-193.
    [82]WRIGHT B. Ice loads on the KULLUK in managed ice condition [C]. Proceedings of the 16th International Conference on Port and Ocean Engineering under Arctic Conditions, Ottawa. Ontario. Canada,2001:553-565.
    [83]ENGELBREKTSON A. Dynamic ice loads on a lighthouse structure [C]. Proceedings 4th International Conference on Port and Ocean Engineering, St. John's Newfoundland, Canada,1977(2):654-663.
    [84]ENGELBREKTSON A. Ice force studies in the Bothnia Bay 1985-1988[R]. Summary report. VBB Project M7334,1989.
    [85]ENGELBREKSTON A. Observations of a resonance vibrating lighthouse structure in moving ice [C]. Proceedings of International Conference on Port and Ocean Engineering,1983.
    [86]MAATTANEN M, REDDY D, AROCKIASAMY M, et al. Ice-structure interaction studied on a lighthouse in the Gulf of Bothnia using response spectrum and power spectral density function analyses [C]. Proceedings of 4th International Conference on Port and Ocean Engineering under Arctic Conditions. St. John's, Newfoundland, Canada, 1977:321-334.
    [87]HOIKKANEN J. Measurements and analysis of ice force against a conical offshore structure [C]. Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions,1985(3).
    [88]MAATTANEN M P, MUSTAMAKI E O. Ice forces exerted on a conical structure in the Gulf of Bothnia [C]. Proceedings of Offshore Technology Conference, Houston Texas, 1985:313-320.
    [89]杨国金.渤海抗冰结构设计中的若干问题[J].中国海上油气(工程),1994,6(3):5-10.
    [90]唐立强,白若阳.冰与海洋结构相互作用力的弹塑性分析:冰载荷的塑性极限分析[J].哈尔滨工程大学学报,1998,19(2):21-25.
    [91]于晓.渤海海冰与锥体相互作用荷载研究[D].大连:大连理工大学,2005.
    [92]MAATTANEN M. The effect of ice pile-up on the ice force of a conical structure [C]. IAHR ice Symposium, Espoo, Finland,1990(2):1010-1021.
    [93]MAATTANEN M. Ice sheet failure against an inclined wall, IAHR Ice Symposium, Iowa, 1986:149-158.
    [94]CROASDALE K R, CAMMAERT A B. An improved method for the calculation of ice loads on sloping structures in first year ice [C]. Proceedings of 1st international conference on development of the Russian arctic offshore, St. Petersburg, Russia, 1993:161-168.
    [95]王翎羽,陈星,徐继祖.大尺度圆锥结构的冰堆积计算[J].天津大学学报,1994,27(2):205-210.
    [96]GERMANISCHER LLOYD. Guideline for the construction of fixed offshore installations in ice infested waters[S]//GL, GLO-03-319,2003.
    [97]LAU M, JONES S J, PHILLIPS R, et al. Influence of velocity on ice-cone interaction[C]. IUTAM symposium "scaling laws in Ice Mechanics and Ice Dynamics", 2000.
    [98]MATSKEVITCH D G. Velocity effects on conical structure ice loads [C]. Proceeding of 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway,2002:1-10.
    [99]SHKHINEK K, UVAROVA E. Dynamics of the ice sheet interaction with the sloping structure [C]. Proceedings 16th International Conference on Port and Ocean Engineering under Arctic Conditions. Ottawa, Canada,2001(2):639-648.
    [100]史庆增,彭忠.冰力作用下锥体的合理结构形式及在柱体上设计锥体的合理性讨论[J].中国海上油气,2005,17(5):342-346.
    [101]MAYNE D C, BROWN T G. Rubble pile observations [C]. Proceedings of 10th International Offshore and Polar Engineering Conference, Seattle, USA,2000(1): 596-599.
    [102]曲月霞,李志军,王永学,等.作用于正倒锥结构上冰力物理模拟试验研究[J].大连理工大学学报,2001,41(3):231-236.
    [103]曲月霞,李广伟,李志军,等.正倒锥结构上冰力谱分析实验研究[J].海洋工程.2001,19(3):38-42.
    [104]曲月霞.海冰与近海结构物作用的物理模拟研究[D].大连:大连理工大学,2001.
    [105]张运良.冰载荷的识别及冰激振动的实验与数值模拟[D].大连:大连理工大学,2001.
    [106]SODHI D S. Dynamic analysis of failure modes on ice sheets encountering sloping structures [C]. Proceedings 6th International Conference on Offshore Mechanics and Arctic Engineering. Houston,1987 (4):281-284.
    [107]IZUMIYAMA K, KITAGAWA H, KOYAMA K, et al. On the interaction between a conical structure and ice sheet [C]. Proceedings of the 11th International Conference on Port and Ocean Engineering under Arctic Conditions, St. John's, Canada,1991: 155-166.
    [108]FREDERKING R. Dynamic ice forces on an inclined structure [C]. International Union of Theoretical and applied mechanics, physics and mechanics of ice, Symposium Copenhagen,1979:104-116.
    [109]JAMES C, LIPSETT A W. Dynamic test and analysis of a massive pier subjected to ice force [J]. Canadian Journal of Civil Engineering,1980,7:432-441.
    [110]FREDERKING R, SAYED M, PENNEY G. Measurement of ice forces on light piers in the St. Lawrence Seaway [C]. Proceedings of the 1st International Offshore and Polar Engineering Conference,1991(2):499-504.
    [111]FREDERKING R, MASTERSON D, WRIGHT B, et al. Ice load measuring panels-the next generation [C]. Proceedings of the 16th IAHR International Symposium on Ice, Dunedin, New Zealand,2002:450-457.
    [112]盎光洛.海冰对海工结构物作用力的试验研究现状[J].海洋工程,1983,1(3):9-20.
    [113]LAU M, MOLGAARD J, WILLIAMS F M, et al. An analysis of ice breaking pattern and ice piece size around sloping structures [C]. Proceedings of 18th International Conference on Offshore Mechanics and Arctic Engineering, St. John's, Newfoundland, Canada,1999:199-207.
    [114]屈衍,岳前进,Casey Brister.冰与锥体作用破碎周期及破碎长度分析[J].冰川冻土,2003,25(Suppl.2):326-329.
    [115]李锋,于晓,胡玉镜,等.冰排在锥面上的断裂长度[J].海洋工程,2002,20:44-47.
    [116]韩雷,李锋,岳前进.冰-锥相互作用破坏全过程的有限元模拟[J].中国海洋平台,2007,22(2):22-27.
    [117]HUANG Y. Model test study of the nonsimultaneous failure of ice before wide conical structures [J].Cold Regions Science and Technology,2010,63:87-96.
    [118]NEVEL D E. Comparison between theory and measurements for ice sheet forces on conical structures [C], Proceedings of the 1st International Conference on Development of the Russian Arctic Offshore St. Petersburg, Russia,1993:1-10.
    [119]YUE Q J, BI X J. Full-scale test and analysis of dynamic interaction between ice sheet and conical structure [C]. Proceedings of 14th International Association for Hydraulic Research Symposium on Ice. Potsdam, New York, USA,1998(2):939-945.
    [120]大连理工大学.平台冰激振动及疲劳分析研究[R].导管架平台冰激疲劳寿命分析方法研究项目报告,2004.
    [121]董须瑜,刘春厚.关于辽东湾JZ20-2海区海冰设计条件的修改意见[J].中国海上油气(工程),1989,1(1):36-44.
    [122]YUE Q J, BI X J, SUN B, et al. Full scale force measurement on JZ20-2 platform[C]. Proceedings IAHR Ice Symp., Beijing,1996:282-289.
    [123]毕祥军,于雷,王瑞学,等.海冰厚度的现场测量方法[J].冰川冻土,2005,27(4):563-567.
    [124]大连理工大学.海冰管理项目汇报2004-2005年度[R].2005.
    [125]岳前进,季顺迎,于学兵.局地海冰数值预测的冰激平台结构响应计算[J].海洋工程,2003,21(2):32-37.
    [126]季顺迎,岳前进.辽东湾锥体平台结构疲劳冰荷载的蒙特卡洛模拟[J].海洋学报,2003,25(2):114-119.
    [127]DALANE O, XU N, YUE Q J, et al. Numerical simulations of dynamic response of narrow conical structures due to ice actions [C]. Proceedings of 19th International Symposium on Ice, Vancouver, British Columbia, Canada,2008:1353-1366.
    [128]Wang Y L, Xu D, Yue Q J. Application of FBG sensors to monitor the ice-induced vibrations of platform structures[C]. Proceedings of 19th International Conference on Port and Ocean Engineering under Arctic Conditions,2007:162-169.
    [129]大连理工大学.JZ20-2NW平台的监测与评[R].国家863计划:新型抗冰海洋平台关键技术研究,2005.
    [130]大连理工大学.海洋平台冰荷载研究[R].国家863计划:新型抗冰海洋平台关键技术研究,2005.
    [131]YUE Q J, GUO F W, KARNA T. Dynamic ice forces of slender vertical structures due to ice crushing [J]. Cold Regions Science and Technology,2009(56):77-83.
    [132]岳前进,郭峰玮,毕祥军,等.冰致自激振动测量与机理解释[J].大连理工大学学报,2007,47(1):1-5.
    [133]XU N, YUE Q J, QU Y, et al. Time history of dynamic ice force for narrow conical structure [C]. Proceedings of 19th International Symposium on Ice, Vancouver, British Columbia, Canada,2008:1345-1352.
    [134]TUNG C C, HUANG N E. Combined effects of current and waves on fluid forces [J]. 1973 (2):183-193.
    [135]张明元,邵春才,严德成,等.我国海冰物理力学性质的初步研究[J].海洋环境科学.1983,2(1):65-71.
    [136]张明元,孟广琳,隋吉学.辽东湾海冰物理力学特性[J].中国海洋平台.1995,10(2):59-65.
    [137]李志军,王永学.渤海海冰工程设计特征参数[J].海洋工程2000,18(1):61-64.
    [138]LΦSET S, SHKHINEK K N, GUDMESTAD O T, et al. Actions from ice on Arctic offshore and costal structures [M]. St. Petersburg, Russia,2006.
    [139]BJERKAS M. Global design ice loads'dependence of failure mode [C]. Proceedings of International Journal of Offshore and Polar Engineering,2004,14(3):189-195.
    [140]SODHI D. Crushing failure during ice-structure interaction [J]. Engineering Fracture Mechanics,2001(68):1889-1921.
    [141]TIMCO G W. Indentation and penetration of edge-loaded freshwater ice sheets in the brittle range [C]. Proceedings 5th Conference on Offshore Mechanics and Arctic Engineering, Tokyo,1986.
    [142]BLANCHET D, DEFRANCO S J. Global first-year ice loads:Scale effect and non-simultaneous failure [C]. Proceedings 13th IAHR Ice Symposium, Beijing,1996: 203-213.
    [143]BLANCHET D. Ice loads from first-year ice ridges and rubble fields [J]. Canadian Journal of Civil Engineering,1998,25:206-219.
    [144]SHKHINEK K, KARNA T, KAPUSTIANSKY S, et al. Influence of ice speed and thickness on ice pressure and load [C]. Proceedings 16th International Conference on Port and Ocean Engineering under Arctic Conditions, Ottawa, Canada,2001(2):657-668.
    [145]DEMPSEY J P, FOX C, PALMER A C. Ice-slope interaction:transitions in failure mode[C]. Proceedings of Offshore Mechanics and Arctic Engineering Conference, St. John's, Newfoundland,1999:225-230.
    [146]FREDERKING R. Quantitative analysis of ice sheet failure against an inclined plane[C]. Proceedings of 4th Offshore Mechanics and Arctic Engineering Conference, 1985(2):160-169.
    [147]FREDERKING R. Dynamic Ice force on an inclined structure [C]. Proceedings of IUTAM Symposium on the Physics and Mechanics of lace, Copenhagen,1980:104-116.
    [148]IZUMIYAMA K, KITAGAWA H, KOYAMA K, et al. A numerical simulation of ice-cone interaction [C]. Proceedings of IAHR Ice Symposium,1992:188-199.
    [149]KONUK I, GURTNER A, YU S. A cohesive element framework for the analysis of ice-structure interaction problems:Part Ⅰ-review and formulation [C]. Proceedings 28th International Conference on Offshore Mechanics and Arctic Engineering, Honolulu, Hawaii,2009, OMAE2009-79262.
    [150]KONUK I, GURTNER A, YU S. A cohesive element framework for the analysis of ice-structure interaction problems:Part Ⅱ-implementation [C]. Proceedings 28th International Conference on Offshore Mechanics and Arctic Engineering, Honolulu, Hawaii,2009, OMAE2009-80250.
    [151]KONUK I, YU S. A cohesive element framework for dynamic ice-structure interaction problems-PART Ⅲ:Case studies [C]. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China,2010, OMAE2010-20577.
    [152]DEMPSEY J. Research trends in ice mechanics [J]. International Journal of Solids and Structures,2000,37,131-153.
    [153]SCHULSON E M. Brittle failure of ice [J]. Engineering Fracture Mechanics,2001,68: 1839-1887.
    [154]程靳,赵树山.断裂力学[M].北京:科学出版社,2006.
    [155]HERWIJNEN A, JAMIESON B. Fracture character in compression tests [J]. Cold Regions Science and Technology,2007,47,60-68.
    [156]ZOU B, XIAO J, JORDAAN I J. Ice fracture and spalling in ice-structure interaction[J]. Cold Regions Science and Technology,1996,24:213-220.
    [157]PARSONS B L, SNELLEN J B, HILL B. Physical modeling and the fracture toughness of sea ice [C]. Proceedings 5th International Conference on Offshore Mechanics and Arctic Engineering,1986:358-364.
    [158]DEMPSEY J P, NIGAM D, COLE D M. The flexural and fracture of macroystalline S1 type freshwater ice [C]. Proceedings 7th International Conference on Offshore Mechanics and Arctic Engineering,1988:39-46.
    [159]DEMPSEY J P. The fracture toughness of ice [C]. IUTAM IAHR Symposium Ice-Structure Interaction, St Johns,1989:109-145.
    [160]SCHWARZ J, FREDERKING R, GAVRILLO V, et al. Standardized testing methods for measuring mechanical properties of ice [J]. Cold Regions Science and Technology, 1981,4:245-253.
    [161]KAMIO Z, MATSUSHITA H, STRNADEL B. Statistical analysis of ice fracture characteristics [J]. Engineering Fracture Mechanics,2003,70:2075-2088.
    [162]Urabe N, Iwasaki T, Yoshitake A. Fracture toughness of sea ice [J]. Cold Regions Science and Technology,1980,3:29-37.
    [163]岳前进,李洪升.渤海海冰力学行为[R].国家自然科学基金重点项目,大连理工大学,1997.
    [164]BROWN W F, STRAWLEY J E. Plane strain crack toughness of high strength metallic materials [R]. ASTM Special Technical Publication No.410,1966.
    [165]PALMER A C, GOODMAN D J, ASHBY M F, et al. Fracture and its role in determining ice forces on offshore structures [J]. Annals of Glaciology,1983(4):216-221.
    [166]EVANS A G, PALMER A C, GOODMAN D J, et al. Indentation spalling of edge-loaded ice sheets [C]. Proceedings of International Association for Hydraulic Research Ice Symposium, Hamburg,1984(1):113-121.
    [167]WIERZBICKI T. Spalling and buckling of ice sheets [C]. Proceedings of Civil Engineering in the Arctic Offshore,1985:953-961.
    [168]PFISTER S, WILLIAMS F M, PHILLIPS R. Interaction of level ice with upward breaking conical structures at two scales [C]. Proceedings of the 16th IAHR International Symposium on Ice, Dunedin, New Zealand,2002:416-425.
    [169]MAYNE D C, BROWN T G. Comparison of flexural failure ice-force models [C]. Proceedings of 19th International Conference on Offshore Mechanics and Arctic Engineering, New Orleans, USA,2000, P&A1009.
    [170]李锋,于晓,胡玉镜,等.冰排在锥面上的断裂长度[J].海洋工程.2002,20:44-47.
    [171]LI F, YUE Q J, SHKHINEK K, et al. A qualitative analysis of breaking length of sheet ice against conical structure [C]. Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions, Trondheim, Norway,2003:293-304.
    [172]李锋,岳前进.不同破坏模式下锥体结构冰力定性分析[J].大连理工大学学报,2005,45(6):785-789.
    [173]孟令运.渤海锥体结构动冰荷载研究[D].大连:大连理工大学,2005.
    [174]WESSELS E, JOCHMANN P. Model-full scale correlation of ice forces on a jacket platform in Bohai Bay [C]. Proceedings of 9th International Conference on Port and Ocean Engineering under Arctic Conditions, St. John's,1991.
    [175]李志军,丁德文,隋吉学,等.辽东湾多层重叠冰单层厚度的理论分析[J].海洋环境科学,1997,16(4):21-25.
    [176]李波,杨庆山,黄韬颖.中、美、澳和在规范关于脉动风特征的规定[J].建筑科学与工程学报,2008,25(3):22-25.
    [177]吴家鸣,郁苗,朱良生.桁架式近海结构物整体波浪荷载分析[J].华南理工大学学报(自然科学版),2009(11):1-5.
    [178]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社,2000.
    [179]季顺迎,岳前进,毕祥军.辽东湾JZ20-2海域海冰参数的概率分布[J].海洋工程,2002,20(3):39-43.
    [180]于永海,岳前进.冰对锥体结构作用力的预测模型分析.海洋学报,2000,22(3):74-85.
    [181]BROWN T G. Four years of ice force observations on the Confederation Bridge [C], Proceedings of 14th International Conference on Port and Ocean Engineering under Arctic Conditions, Ottawa, Canada,2001:285-299.
    [182]佟建峰,宋安,史庆增.冰激振动及冰荷载动力特性的试验研究[J].海洋工程,2001,19(4):34-39.
    [183]BROWN T G. Analysis of ice event loads derived from structural response [J]. Cold Regions Science and Technology,2007,47:224-232.
    [184]Proceedings of 18th IAHR Ice Symposium, Trondheim, Norway,1994:401-410.
    [185]MONTGOMERY C J, LIPSETT A W. Dynamic tests and analysis of a massive pier subjected to ice forces [J]. Canadian Journal of Civil Engineering,1980,7:432-441.
    [186]李勇,史庆增,李明.海洋锥体结构冰力的研究与进展[J].中国海洋平台,2005,20(2):1-5.
    [187]MAATTANEN M. Ice force design and measurement of a conical structure [C]. Proceeding of 12th International Symposium on Ice, Trondheim, Norway,1997 (1): 401-410.
    [188]FREDERKING R, SAYED M, PENNEY G. Measurement of ice forces on light piers in the St. Lawrence Seaway [C]. Proceedings of the 1st International Offshore and Polar Engineering Conference,1991(2):499-504.
    [189]XU N, YUE Q J. Dynamic ice forces analysis of conical structure based on direct measurement[C]. Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China,2010:771-776.
    [190]TIMCO G. Model tests of ice forces on a wide inclined structure [C], Proceedings of IAHR Ice Symposium, Hamburg,1984:87-96.
    [191]LIFEROV P, BONNEMAIRE B. Ice rubble behavior and strength:Part I. Review of testing and interpretation of results [J]. Cold Regions Science and Technology, 2005,41:135-151.
    [192]CROASDALE K R. Ice forces on fixed, rigid structures [C]. Proceedings of IAHR Ice Symposium,1980:64-66.
    [193]PEYTON H R. Sea ice forces:Ice pressures against structures[C]. Technical Memorandum 92, Ottawa, Canada,1968:117-123.
    [194]BLENKARN K A. Measurement and analysis of ice forces on Cook Inlet structures [C]. Proceedings of 2nd Offshore Technology Conference, Houston, USA,1970:365-378.
    [195]张大勇,岳前进,李刚,等.冰振下海洋平台上部天然气管线振动分析[J].天然气工业,2006,26(12):139-141.
    [196]YUE Q J, BI X J. Ice induced jacket structure vibration [J]. Cold Regions Engineering,2000,14(2):81-92.
    [197]中华人民共和国标准.钢结构设计规范GBJ17-88[S]//中国计划出版社,1989.
    [198]程耀东,李陪玉.机械振动学[M].杭州:浙江大学出版社,2005.
    [199]岳前进,许宁,崔航,等.导管架平台安装锥体降低冰振效果研究[J].海洋工程,2011,29(2):18-24.
    [200]张力.导管架海洋平台冰激振动控制的实验研究[D].大连:大连理工大学,2008.
    [201]李德权.抗冰平台冰激振动抑制策略研究[D].大连:大连理工大学,2009.
    [202]LEE H H. Stochastic analysis for offshore structures with added mechanical dampers[J]. Ocean Engineering,1997,24(9):115-122.
    [203]欧进萍,肖仪清,段忠东,等.设置粘弹性耗能器的JZ20-2MUQ平台结构冰振控制[J].海洋工程,2000,18(3):9-14.
    [204]欧进萍,龙旭,肖仪清,等.导管架式海洋平台结构阻尼隔振体系及其减振效果分析[J].地震工程与工程振动,2002,22(3):115-122.
    [205]王翎羽.利用深液TLD装置减小结构振动的研究[J].海洋工程,1996,14(4):76-82.
    [206]张力,张文首,岳前进.海洋平台冰激振动吸振减振的实验研究[J].中国海洋平台,2007,22(5):33-37.
    [207]大连理工大学.抗冰振平台的振动控制研究[R].国家863计划:新型抗冰海洋平台关键技术研究,2005.
    [208]ENGELBREKTSON A, JANSON E. Field observations of ice action on concrete structures in the Baltic Sea [J]. Concrete International,1985:48-52.
    [209]KARNA T, TURUNEN R. A straightforward technique for analysing structural response to dynamic ice action [C]. Proceedings 9th on Offshore Mechanics and Arctic Engineering, Houston, USA,1990:135-142.
    [210]岳前进,杜小振,毕祥军,等.冰与柔性结构作用挤压破坏形成的动荷载[J].工程力学,2004,21(1):202-208.
    [211]大连理工大学力学系.JZ20-2中南平台及管线冰振监测与分析[R].2000.
    [212]丁德文.工程海冰学概论[M].北京:海洋出版社,1999.
    [213]张大勇.基于性能的抗冰导管架结构风险设计研究[D].大连:大连理工大学,2007.
    [214]方华灿,许发彦,陈国明.冰区海上平台管结点疲劳寿命计算的新方法[J].中国海洋平台,1997,12(6):259-264.
    [215]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析[M].北京:人民交通出版社,1996.
    [216]大连理工大学工业装备结构分析国家重点实验室.JZ20-2平台冰激振动测量与分析,海冰监测与预报[R].1999-2000年海冰管理报告,2000.
    [217]大连理工大学工业装备结构分析国家重点实验室.JZ9-3WHPB平台冰振分析、评价与风险防范[R].2010.
    [218]NEVEL D E. Ice forces on cones from floes [C]. Proceedings of 11th IAHR Ice symposium, Banff, Alberta,1992(3):1391-1404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700