用户名: 密码: 验证码:
间充质干细胞对内毒素诱导急性肺损伤大鼠肺保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的急性肺损伤(ALI)/急性呼吸窘迫综合征(ARDS)主要是由胃酸吸入、感染、创伤、脂肪栓塞等引起,感染是最常见原因。不论何种原因所致急性肺损伤,炎症反应都在其病理改变中起了主要作用。虽然,大量的研究试图阐明急性肺损伤/急性呼吸窘迫综合症的发病机理,但是,至今仍没发现特别有效的治疗手段。目前,急性肺损伤/急性呼吸窘迫综合征的治疗上主要以支持治疗、药物治疗和辅助通气治疗为主,临床上仍然保持着很高的病死率,大约维持在30%~40%,因此迫切需要深入研究其发病机制,寻找更加有效的治疗方法。间充质干细胞(MSC)不仅具有低免疫原性、多向分化潜能、诱导免疫耐受、还具有免疫抑制的作用。由于MSCs具有独特的免疫学特性及良好的可塑性,并且MSCs的利用不涉及伦理争议,因此,到目前为止MSCs已成为细胞治疗和组织工程的最佳候选细胞材料。但是,其治疗机制仍然没有完全清楚。核转录因子KB(NF-κB)是近年研究较多的一个促炎因子,其在炎症发生及调节中起了非常重要的作用。近几年的文献报道,阻断肺上皮细胞的NF-κB信号通路可以减轻内毒素诱导的急性肺损伤大鼠的粒细胞性肺炎症反应和肺水肿程度,是肺炎症疾病的有效治疗方法之一。亲环素A(CyPA)是白细胞趋化因子,其通过与其受体CD147结合激活MAPK及核因子KB(NF-κB)通路从而调节促炎因子的释放。目前未发现间充质干细胞在内毒素诱导急性肺损伤中对NF-κB与CyPA的影响的文献报道。本研究旨在研究间充质干细胞对内毒素诱导急性肺损伤的生物学作用及对NF-κB与CyPA的影响,以期进一步阐明MSCs治疗ALI的机制,为临床发现更有效的治疗方法提供实验线索。
     目的观察C57BL/6J小鼠骨髓间充质干细胞(mesenchymal stem cells,MSCs)在体外培养时,细胞的鉴定、形态及定向诱导分化为成骨细胞的特点。
     方法1取C57BL/6J小鼠双侧股骨和胫骨骨髓细胞进行体外全骨髓贴壁筛选法原代培养并传代。2.取原代的MSCs培养至第7代细胞,倒置相差显微镜下观察其生长形态及特征。3.提取第1、3代细胞,胰酶消化后计数,以2×103个/孔接种于96孔板,每孔加入10μlCell Counting Kit-8(CCK-8)溶液,37℃,饱和湿度为5%CO2,培养箱孵育2h后,用酶联免疫检测仪于450nm波长下检测吸光度值。然后在检测后第1、2、3、4、5、6、7天同一时间作相同检测。用吸光度值绘制细胞增殖曲线。4.第5代生长状态良好的C57小鼠BMSCs制成单细胞悬液,以2×103/ml浓度接种于6孔板,待细胞达60%融合时,分别加入成骨诱导培养液及成脂诱导剂进行体外分化培养。5.第5代生长状态良好的C57小鼠BMSCs制成单细胞悬液,收集约2×106个细胞上机进行流式细胞检测。
     结果1.原代培养的MSCs在24h后开始贴壁,48h后贴壁的MSCs逐渐伸展为不规则圆形、多角形、梭形、排列不规则。2.成骨诱导后镜下观察钙结节染成橘红色、成脂诱导后脂肪细胞里的脂滴呈红色,其它细胞则不着色。3.MSCs的生长曲线呈S型,其生长周期分别为滞后期,对数期和平台期。4.C57小鼠MSCs分化的流式细胞分析显示:MSCs诱导分化后的细胞表面主要有Sca-1、CD34、CD29和CD44标记分子、缺乏CD117分子。
     结论1.密度离心结合贴壁法可以成功培养、分离出C57BL/6J小鼠骨髓间充质干细胞。2.1×1011L-1的细胞密度是较为理想的原代全骨髓接种密度,2×108L-1是MSCs较为理想的传代密度。待MSCs生长到第3-4天时,细胞生长融合至80%-90%时,培养皿中的细胞是最佳的传代时间。3MSCs能于体外培养大量扩增和存活,在增殖多代后仍然可以保持良好的细胞活性和扩增能力,并于一定条件下可以诱导分化为成骨细胞。4MSCs诱导分化后的细胞表面主要有Sca-1、CD34、CD29、CD44标记分子、缺乏CD117分子。
     目的首先观察间充质干细胞对内毒素诱导急性肺损伤大鼠的保护作用,然后观察其对大鼠氧化应激及炎症反应的影响。
     方法1.90只SD大鼠随机分为5组:A组:正常对照组(n=18)尾静脉注射等量生理盐水;B组:内毒素组(LPS)(n=18):经尾静脉注射LPS5mg/kg;C组:高剂量干细胞组(BMSCH组)(n=18):经尾静脉注射LPS5mg/kg+BMSC2×106/ml0.5ml;D组:低剂量干细胞组(BMSCL组)(n=18):LPS5mg/kg+BMSC1×106/ml0.5ml;干细胞对照组(BMSC组)(n=18):骨髓间充质干细胞2×106/ml0.5ml。分别于造模后6、24、72小时,处死动物收取标本,每个时间点6只(LPS的24小时组因1只死亡固只处死5只)。2.取右肺上叶用于测定肺湿重/干重,取右肺下叶组织(约0.5cm2)放入多聚甲醛中固定,用于组织形态学观察。取其余肺组织于生理盐水中迅速漂洗干净后,立即放入液氮中冷冻,后转入-70℃冰箱中保存备用,腹主动脉采血立即送血气分析。分别测定肺湿重/干重、肺组织MDA、SOD、MP0、TNF-α和IL-1β。3.统计学分析:采用SPSS13.0软件包处理,计量资料以均数±标准差表示,不同处理组间资料均数比较采用析因设计资料的方差分析。各组间同一时间点之间的比较及组内不同时间点间的比较采用完全随机资料的方差分析(one-way ANOVA法),以P<0.05判断差异有显著性。在进行方差分析前,首先进行Levene方差齐性检验。对方差齐性的资料采用LSD法进行多重比较;对方差不齐的资料采用近似F检验的Welch法进行方差分析,并采用Tambane's T2法进行多重比较。
     结果1.病理所见:A、E组肺组织结构清晰,肺泡腔无炎性细胞浸润,肺泡壁薄,间质血管无扩张,支气管粘膜上皮完整。B组肺泡结构受到广泛破坏,肺组织水肿及肺间质明显的增宽,肺泡腔内有浆液性渗出,可见大量红细胞以及中性粒细胞,C组为BMSC高剂量组,大部分肺组织及间质结构较完整,小部分肺泡间隔稍增宽,可见肺间质水肿减轻,有少量红细胞及中性粒细胞浸润。D组为BMSC (?)低剂量组,肺泡结构部分被破坏,肺间质中度的水肿,肺泡腔内有多量渗出的红细胞及炎性细胞浸润。2.W/D:不同处理组间有显著差异(F=57.741,P=0.000),时间因素和分组因素交互效应显著(F=3.129,P=0.004)。B组均明显高于A组;24h和72h两个时间点,C、D组低于B组;Pa02比较:B组明显低于A组,C组三个时间点与B组比较,差异均有统计学意义。3.MDA:不同处理组间有显著差异(F=25.742,P=0.000),时间因素和分组因素无显著交互效应(F=0.690,P=0.699)。三个时间点B组MDA明显高于A组,差异有统计学意义;C、D组明显低于B,差异有统计学意义;A组和E组差异无统计学意义。SOD:不同处理组间有显著差异(F=138.052,P=0.000),时间因素和分组因素无显著交互效应(F=0.910,P=0.513)。三个时间点B组低于A组,差异有统计学意义;C、D组明显高于B,差异有统计学意义;E组和A组差异无统计学意义。MPO:不同处理组间有显著差异(F=52.057,P=0.000),时间因素和分组因素无显著交互效应(F=1.096,P=0.376)。三个时间点B组明显高于A组,差异有统计学意义;C、D组明显低于B,差异有统计学意义;A组和E组差异无统计学意义。TNF-a和IL-1β:IL-1β不同处理组间有显著差异(F=151.807,P=0.000),时间因素和分组因素交互效应显著(F=2.085,P=0.048)。TNF-a不同处理组间有显著差异(F=134.814,P=0.000),时间因素和分组因素无显著交互效应(F=1.394,P=0.213)。TNF-α和IL-1β不同组之间存在显著差异(F=123.507,P<0.001)各组同一时间点的比较:B组较A组显著性升高,P<0.05;C、D组低于B组,差异有统计学意义;E组与A组差异无统计学意义。
     结论1.间充质干细胞移植对内毒素诱导急性肺损伤大鼠具有肺保护作用。2.间充质干细胞移植可以降低急性肺损伤大鼠的氧化应激反应和炎症因子的表达。3.SD大鼠对小鼠的间充质干细胞移植无明显的排异反应,无明显的毒副作用。
     目的1.观察NF-κB在内毒素诱导急性肺损伤大鼠肺组织的活性变化及间充质干细胞对NF-κB活性的影响,探索NF-κB在内毒素诱导急性肺损伤的发病机理及间充质干细胞治疗机理中的作用。2.观察CyPA在内毒素诱导急性肺损伤大鼠肺组织表达的变化及间充质干细胞对CyPA表达的影响,探索CyPA在内毒素诱导急性肺损伤的发病机理及间充质干细胞治疗机理中的作用。
     方法1.间充质干细胞的制备:同第一部分。2.肺组织NF-κB及CyPA的Western blot:a、配制SDS-PSGE电泳胶。b、处理样品:依次取样(上样量为10ug)加入到20ul2×SDS凝胶加样缓冲液中,沸水中煮沸8分钟使蛋白变性,然后10000rpm离心5分钟。c、上样:先将梳子小心的移出,把凝胶固定在电泳装置上,内外槽各加入1×Tris-甘氨酸电泳缓冲液,取样品用加样器向孔内加入样品,加样量通常在1020ul,将电泳装置与电源连接,接通电源凝胶上胶电压为60伏,当染料前沿进入分离胶后(跑平即可),把电压提高到120伏。继续电泳直至溴酚蓝到达分离胶底部上方约0.5cm,然后关闭电源,从电泳装置上卸下玻璃板,用刮勺撬开玻璃板,在凝胶上部一角处切去一角标注加样顺序。d、免疫印迹(Western Blot):(?)将电泳结束后的胶片放入转印缓冲液中,将转印膜也放入转印缓冲液中浸润,进行转膜,膜在正极,胶在负极,分别用滤纸3张/面压住胶和膜。转移时电压100伏,转移时间1小时,电转移时会产热,固应在转移装置的外面加入冰块进行除热,转移结束后,卸下电泳装置,把硝酸纤维素转移膜放入盛有10%脱脂奶粉或10%BSA的封闭液中,封闭2小时或过夜,封闭完毕后用PBST洗膜5次,每次间隔5分钟,加一抗。反应1小时,洗膜5次每次间隔5分钟。(一抗HPS701:200)(一抗HSV11:200),加辣根过氧化物酶标记二抗,按说明书要求的稀释比例加入,反应1小时。洗膜5次每次间隔5分钟。(二抗1:1000),取ECL荧光底物(Pierce公司,货号:37071)A液和B液1各mL,混匀后,将PVDF膜浸泡其中,室温孵育3-5分钟后,用滤纸将PVDF膜表面液体擦干,并将其置于暗室,取医用X光底片覆盖,曝光1分钟后,依次显影、定影即可。3CyPA的RNA提取和Real-PCR:a、抽提RNA。b、反转录:融解反应所需的试剂,上下轻微颠倒混匀,进行短暂离心后放置冰上待用,然后配制RT反应液(所有反应都在冰上进行操作),混匀反应Mix,短暂离心后37-C孵育30小时,反应结束后,85℃灭活处理5min,对所得到的cDNA用灭菌水稀释5倍后做好标记并-20℃保存反转录产物。c、定量PCR实验:通过引物验证预实验确定选取特异性扩增,无引物二聚体、灵敏度高的引物为下游各基因表达量差异分析的使用引物,将All-in-One qPCRMix在室温下融解,轻柔得上下颠倒混匀并进行短暂离心,同时在使用过程中始终保持避光,制备PCR reaction mix(在冰上操作),PCR reaction mix制备后,迅速将稍混匀,并加入96孔板中。4.统计学分析:采用SPSS13.0软件包处理,计量资料以均数±标准差表示,不同处理组间资料均数比较采用析因设计资料的方差分析。各组间同一时间点之间的比较及组内不同时间点间的比较采用完全随机资料的方差分析(one-way ANOVA法),以P<0.05判断差异有显著性。在进行方差分析前,首先进行Levene方差齐性检验。对方差齐性的资料采用LSD法进行多重比较;对方差不齐的资料采用近似F检验的Welch法进行方差分析,并采用Tambane's T2法进行多重比较。
     结果1.本研究通过检测核提取物中NF-κBp65的蛋白表达量来决定NF-κB的活性。不同处理组间有显著差异(F=681.495,P=0.000),时间因素和分组因素交互效应显著(F=8.672,P=0.000)。各组NF-κB方差齐性检验:F=1.769,P=0.150,方差齐性。各组之间多重比较选用LSD法。方差分析(ANOVA)结果:F=185.399P=0.000,组间差异有统计学意义。各组同一时间点的比较:三组NF-κB的核内表达量各个时间点之间均有显著性差异(6小时:F=273.165,P<0.001:24小时:F=179.975,P<0.001;72小时:F=254.031,P<0.001=,以B组最、高C组其次、A组最低,且同一时间点各组之间两两比较也均有显著性差异(P<0.05)。2.肺组织CyPA蛋白表达(Western blot)水平的变化:不同处理组间有显著差异(F=984.853,P=0.000),时间因素和分组因素交互效应显著(F=16.884,P=0.000)。各组CyPA方差齐性检验:F=1.865,P=0.130,方差齐性。各组之间多重比较选用LSD法。方差分析(ANOVA)结果:F=278.073P=0.000,组间差异有统计学意义。各组同一时间点的方差分析:三组CyPA的表达量各个时间点之间均有显著性差异(6小时:F=278.01,P<0.001:24小时:F=436.923,P<0.001;72小时:F=412.712,P<0.001),以B组最、高C组其次、A组最低,且同一时间点各组之间两两比较也均有显著性差异(P<0.05)。3.肺组织CyPA mRNA转录(RT-PCR)水平的变化:不同处理组间有显著差异(F=53.680,P=0.000),时间因素和分组因素无显著交互效应(F=0.015,P=1.000)。各组CyPA方差齐性检验:F=2.199,P=0.046,方差不齐。各组之间多重比较选用Tambane's T2法。方差分析选用近似F检验的Welch法,方差分析结果:F=11.964P=0.000,组间差异有统计学意义。各组同一时间点的两两比较:三组CyPA转录水平各个时间点之间均有显著性差异(6小时:F=18.445,P<0.001:24小时:F=15.117,P<0.001;72小时:F=20.820,P<0.001),以B组最、高C组其次、A组最低,且同一时间点各组之间两两比较也均有显著性差异(P<0.05)。
     结论1.亲环素A和NF-κB在尾静脉注射内毒素诱导急性肺损伤大鼠的肺组织中表达升高。2.注射内毒素后立即经尾静脉注射小鼠骨髓间充质干细胞显著降低急性肺损伤大鼠的肺组织中的亲环素A和NF-κB的表达。3.亲环素A和NF-κB在内毒素诱导急性肺损伤的发病中起到重要作用,骨髓间充质干细胞可以通过抑制NF-κB的活性和抑制亲环素A的表达而起到治疗作用。
Background and purpose of the research:Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are mainly caused by the gastric acid inhalation, infection, vulnus and fat embolism with infection as the most common reason. And the inflammatory reaction plays an important role in the cute lung injury caused by whatever reason. Although lots of researches aim to expound the pathogeny of the cute lung injury/acute respiratory distress syndrome, especially effective therapy has not been found so far. At present, the therapy of acute lung injury/acute respiratory distress syndrome gives first place to supporting therapy, drug treatment and assisted ventilation therapy, there is still a high case fatality rate in clinic, at about30%-40%, therefore, there are crying needs for the intensive study of the pathogenesis to find out the more effective treatment method. Mesenchymal stem cells (MSC) not only possess the low immunogenicity, multilineage differentiation, immune tolerance of induction but also have the function of immunosuppression. Since the MSCs have the unique immunological characteristics and good plasticity and its application does not relate to the ethical debates, therefore. MSCs has been the best candidate cytologic material of the cell therapy and tissue engineering. However, its treatment mechanism is still not completely clear. The nuclear transcription factorκB(NF-κB)is one proinflammatory factor which receives great many researches and which plays
     an important role in the occurrence and regulation of the inflammation, In the last few years, the NF-κB signalling channel of the blocking-up pulmonary epithelial cells can reduce the degrees of granulocytic pneumonia disease and pulmonary edema of the acute lung injury rat caused by the endotoxin induction, it is one of the effective treatment methods of pneumonia disorder disease. Cyclophilin A (CyPA) is the leukocyte chemotactic factor (LCF). It makes use of the combination between it and its receptor to activate the channel of MAPK and its nuclear factorκB (NF-κB) to regulate the release of proinflammatory factors. Nowadays, the literature reports on the impacts of mesenchymal stem cells on NF-κB and CyPA in endotoxin-induction acute lung injury can not be found. The research aims to study the biological function of mesenchymal stem cells in endotoxin-induction acute lung injury and the impacts on NF-κB and CyPA to further expound the treating mechanism MSCs on ALI and to provide the experimental clues for clinic to find more effective treatment method.
     Objective To observe the features of the cells in the identification, shape and directed differentiation into osteoblast when mesenchymal stem cells of C57BL/6J small mouse are cultured in vitro.
     Methods1.Take bone marrow cells from the bilateral thighbone and shin bone of C57BL/6J small mouse and give primary culture and passage through adherent screening the medulla ossium in vitro.2.Culture the primary MSCs to the7th-generation cell and put them under the phase contrast microscope to observe its growth form and feature.3. Pick up the cells of the1st and3rd generations and count them after trypsinization and then inoculate them into the96-orifice plate at a rate of2×103pieces/orifice and add10ul Cell Counting Kit-8(CCK-8) solution, CO2whose saturated humidity is5%into each orifice and after2-hour incubator incubation at37℃,make use of the thermo labsystems to detect the absorbance value under the450nm wavelength. And then, after this detection, perform the same detection at the same time on the1st,2nd,3rd,4th,5th,6th,7th days. Make use of the absorbance value to draw the cell proliferation curve.4. Take the BMSCs from the5th-generation C57small mouse which is in good condition to make unicellular suspension and inoculate it into the6-orifice plate at the density of2×103/ml and then add the culture solution of bone induction and fat inducer separately for differentiated culture in vitro when the cells fuse by60%.5. Take the BMSCs from the5th C57small mouse which is in good condition to make unicellular suspension and collect about2×106pieces of cells for flow cytometry detection on the device.
     Results1. The MSCs of primary culture begin adherence after24hours and the adherent MSCs gradually spread into irregular round, polygon, fusiformis and irregular arrangement after48hours.2. After the bone induction, calcium nodules become jacinth while the lipid droplet inside the adipocytes become red and the other cells are not colored after fat induction.3. The growth curve of the MSCs presents a form of S and the growth cycle includes lag phase, log phase and plateau phase.4. The analysis of the flow cytometry cells differentiated from the MSCs of C57small mouse shows that:there are mainly Sca-1, CD34, CD29and CD44 labeled molecules on the surface of the MSCs after inducted differentiation, with short of CD117molecules.
     Conclusion1. The method of density centrifugation and adherence can successfully culture and differentiate the mesenchymal stem cells of the C57BL/6J small mouse. The2.1×1011L-1cell density is much more ideal inoculum density of the medulla ossium of primary generation. While2.1×1011L-1cell density is much more ideal passage density. When MSCs grow for3-4days and the cells grow and fuse by80%-90%, the cells in the culture dish are the best generation transfer time.3. MSCs can greatly amplify and survive through culture in vitro and they can keep the good cytoactive and amplification ability after many generations of multiplication, and can differentiate into osteoblast through induction.4. There are mainly Sca-1, CD34, CD29and CD44labeled molecules on the surface of the MSCs after inducted differentiation, with short of CD117molecules.
     Objective Firstly it's to observe the protective function of the mesenchymal stem cells on the endotoxin-induction acute lung injury rat and then it's to observe the influence on the oxidatie stress and inflammatory reaction of the rat.
     Methods1. Randomly separate the90rats into5groups:Group A:the normal group (n=18):given the equivalent normal saline through tail vein injection; Group B:the lipopolysaccharide group (LPS)(n=18):given5mg/kg LPS through tail vein injection; Group C:the group of high-dose stem cells(BMSCH group)(n=18):given5mg/kg+BMSC2×106/ml0.5ml LPS through tail vein injection; Group D:the group of low-dose stem cells (BMSCL group):LPS5mg/kg+BMSC1×106/ml0.5ml; the control group of stem cells(BMSC group)(n=18):given2×106/ml0.5ml medulla ossium mesenchymal stem cells. When it's6hours,24hours and72hours after molding, collect the sample from the animal which is put to death,6samples at each time(since one of the24-hour group of LPS dies, so only the other five are put to death).2. Take the superior lobe of right lung for detecting the wet weight/dry weight of the lung while take the tissues of the inferior lobe of right lung (about0.5cm2) and put them into the paraformaldehyde to fix, which are used for observing the histomorphology. And add the rest tissues of the lung into the normal saline for rapid rinsing, and then immediately put them into the liquid nitrogen for freezing and then transfer them to-70℃refrigerator to save for spare use. Take abdominal aortic blood and immediately deliver for blood gas analysis. Determine the wet weight/dry weight of the lung and lung tissues like MDA, SOD, MPO, and TNF-α and IL-1β.3. Statistical analysis:To make use of SPSS13.0software to dispose and the measurement data are shown in the form of mean±standard deviation, the comparison between the means of the data of different disposed groups adopts the way of variance of reason analysis design data.the comparison of the data of same time between different group and the comparison of the data of different time within same group adopt the way of variance analysis of completely-random data(one-way ANOVA) and making use of P<0.05to determine the significance of difference. Homogeneity of variance must be tested Before taking variance analysis.The LSD would be adopted if the data meet Homogeneity of variance. If not, The Welch would be adopted to test the variance analysis,and Tambane's T2would be adopted.
     Results1. Pathological findings:the structures of the lung tissues of Group A and Group B are clear, the non-inflammatory cells of pulmonary alveoli chamber infiltrate and the wall of pulmonary alveoli is thin, and the mesenchymal vessels do not expand and the mucous epithelium of bronchus is complete. The structures of pulmonary alveoli of the Group B are destroyed widely and there is lung tissue oedema and obvious broadening of the lung mesenchyme and there is serous fluid exudation from the pulmonary alveoli chamber, a large number of red blood cells and neutrophile granulocytes can be found; Group C is the BMSC high-dose group, and most lung tissues and mesenchymal structures are more complete while the pulmonary alveoli of intervals of small parts slightly broaden, so it can be seen that the lung mesenchyme edema lightens while a few red blood cells and neutrophile granulocyte infiltrate. While Group D is the BMSC high-dose group, whose structures of pulmonary alveoli are partly destroyed and lung mesenchyme suffers moderate edema and there are mickle red blood cells leaking and inflammatory cells infiltrating.2. W/D:The W/D is significantly different between different group(F=57.741, P=0.000), there is significant reciprocation effection between the time factor and group factor (F=3.129, P=0.004). that of Group B is obviously higher than that of Group A; that of Group C and Group D is lower than that of Group B at24h and72h; PaO2comparison:that of Group A is obviously lower than that of Group A, comparing that of Group C at the three points of the time with that of Group B, the differences between them are of statistical meaning.3. MDA:The MDA is significantly different between different group(F=25.742, P=0.000), there isnot significant reciprocation effection between the time factor and group factor (F=0.690, P=0.699).MDA of Group B at the three points of the time is obviously higher than that of Group A and the differences between them are of statistical meaning; that of Group C and Group D is lower than that of Group B and the differences between them are of statistical meaning; the differences between Group A and Group E are not of statistical meaning. SOD:The SOD is significantly different between different group(F=138.052, P=0.000), there isnot significant reciprocation effection between the time factor and group factor (F=0.910, P=0.513).that of Group B at the three points of time is lower than that of Group A and the differences between them are of statistical meaning; that of Group C and Group D is obviously higher than that of Group B and the differences between them are of statistical meaning; the differences between Group E and Group A are not of statistical meaning. MPO:The MPO is significantly different between different group(F=52.057, P=0.000), there isnot significant reciprocation effection between the time factor and group factor (F=1.096, P=0.376). that of Group B at the tree points of time is obviously higher than that of Group A and the differences between them are of statistical meaning; that of Group C and Group D is obviously lower than that of Group B and the differences between them are of statistical meaning; the differences between Group A and Group E are not of statistical meaning. TNF-α and IL-1β:TNF-α is significantly different between different group(F=134.814, P=0.000), there isnot significant reciprocation effection between the time factor and group factor (F=1.394, P=0.213). IL-1β is significantly different between different group(F=151.807, P=0.000), there is significant reciprocation effection between the time factor and group factor (F=2.085, P=0.048).There are significant differences between TNF-α and IL-1β of different groups(F=123.507,P<0.001) by comparing them at the same point of time:compared with Group A, the significance of Group B rises, P<0.05; Group C and Group D are lower than Group B and the differences between them are of statistical meaning; the differences between Group E and Group A are not of statistical meaning.
     Conclusion1. Mesenchymal stem cell transplantation has protective function for the lung of the endotoxin-induction acute lung injury rat.2. Mesenchymal stem cell transplantation can reduce the express of the oxidative stress and inflammatory factors.3. There is no apparent rejection of SD rat for the mesenchymal stem cell transplantation of small mouse and there is no significant side effect.
     Objective1. Observe the activity changes of NF-κB in lung tissues of endotoxin-induction acute lung injury rat and the influence of mesenchymal stem cells on the activity of NF-κB and explore the functin of NF-κB in the pathogenesis of endotoxin-induction acute lung injury and the function of mesenchymal stem cells in the cure mechanism.2. Observe the activity changes of CyPA in lung tissues of endotoxin-induction acute lung injury rat and the influence of mesenchymal stem cells on the activity of CyPA and explore the functin of CyPA in the pathogenesis of endotoxin-induction acute lung injury rat and the function of mesenchymal stem cells in the cure mechanism.
     Methods1. The preparation of mesenchymal stem cells:it is the same as the first part.2. Western blot of the lung tissues NF-κB and CyPA:a.Prepare the SDS-PSGE running gel. b. Sample handling:take samples successively (the loading amount is10ug)and add into20ul2×SDS gel sampling buffer solution and boil for8minutes in the boiling water to make the albuminous degeneration and then perform10000rpm centrifugation for5minutes. c. Loading:firstly move the comb out carefully and fix the gel on the electrophoresis device and add1×Tris-glycine electrophoresis buffer solution into the inside and outside slots, then take samples and make use of sample injector to add the sample into the orifice and the dose of sample is usually at10—20ul; connect the electrophoresis device with the power supply and switch on the power supply gel and the loading voltage is60volts; when the front edge of dye enters into separation gel,raise the voltage to120volts. Continue the electrophoresis until the bromophenol blue reach the position which is about0.5cm away from the bottom of separation gel and then switch off the power supply and demount the glass board from the electrophoresis device, and make use of the spatula to force the glass board open, and then cut off one corner of the top of gel to lable the loading order, d. Western blot:add the film at the end of electrophoresis into the blotting buffer solution and also add the blotting film into the blotting buffer solution for infiltration to transfer the film with the film at the positive pole and the gel at the negative pole, and separately make use of the filter paper whose size is3pieces/side to pin the gel and the film. At the time of transfer, the voltage is100volts and the time of transfer is1hour; at the time of electro-transfer, there will be heat production so it is necessary to add ice to the exterior face of the transfer device to get rid of the heat; after the transfer, dismount the electrophoresis device and put the nitrocellulose transfer film into the10%nonfat dried milk or10%sealing liquid of BSA and seal up for2hours or overnight, and after sealing up, make use of PBST to wash the film for5times at the rate of once every5minutes and add the first antibody. Wash the film for5times at the rate of once every5minutes and in the1-hour reaction.(The first antibody HPS701:200)(The first antibody HSV11:200), and add the horse radish peroxidase and mark it as the second antibody according to the required dilution ratio of the instruction book for1-hour reaction. Wash the film for5times at the rate of once every5minutes.(The second resist1:1000), take lml of ECL fluorogenic substrate (Pierce, article No.37071) A and B separately, and immerse the PVDF film in it after blending and perform room-temperature incubation for3-5minutes, and make use of the filter paper to wipe the liquid on the surface of PVDF film dry and put it in the darkroom and cover it by medical X-ray film and after1minute, development and fixation will be ok in proper order.3. RNA collection of CyPA and Real-PCR:a. Extract RNA. b. Reverse transcription:dissolve the required reagent and blend it by slight up and down perversion and add ice for spare use after short centrifugation and then prepare the RT reaction liquid (all the reaction shall be carried out on the ice); incubate for30hours at37℃after the blending reaction and short centrifugation and perform inactivated processing for5minutes at85℃after the reaction and make use of the sterilization water to dilute the obtained cDNA by5times and mark it and store the reverse transcription products at-20℃. c. Quantitative PCR test:make use of the primer to test and verify the test to be verified and determine the amplification of selecting specificity, non-primer dimer and the primer with high sensitivity and the primer which is used for the variance analysis of gene expression; dissolve the All-in-One qPCR Mix at the room temperature and blend them by slight up and down perversion and perform short centrifugation and at the same time, keep out of the sun during the process of use from beginning to end and prepare PCR reaction mix(operate on the ice) and blend it rapidly after the preparation of PCR reaction mix and add it into the96-orifice plate.4. Statistical analysis:to make use of SPSS13.0software to dispose and the measurement data are shown in the form of mean±standard deviation, the comparison between the means of the data of different disposed groups adopts the way of variance of reason analysis design data.the comparison of the data of same time between different group and the comparison of the data of different time within same group adopt the way of variance analysis of completely-random data(one-way ANOVA) and make use of P <0.05to determine the significance of difference. Homogeneity of variance must be tested Before taking variance analysis.The LSD would be adopted if the data meet Homogeneity of variance. If not, The Welch would be adopted to test the variance analysis,and Tambane's T2would be adopted.
     Results1.The research makes use of the protein expression of NF-κB p65in the testing nuclear extractive to determine the activity of NF-κB. NF-κB is significantly different between different group(F=681.495, P=0.000), there is significant reciprocation effection between the time factor and group factor (F=8.672, P=0.000).The test of Homogeneity of variance:F=1.769,P=0.150, Homogeneity of variance was meeted.The multiple comparation adopt LSD.ANOVA result:F=185.399,P=0.000, the difference between the groups is significant. The comparation of the groups at the same time:the expression inside the nuclear of the three groups of NF-κB has a significant difference at the corresponding points of time (6-hour:F=273.165,P<0.001;24-hour:F=179.975, P <0.001;72-hour:F=254.031, P<0.001, with Group B highest followed by Group C and the Group Alowest and the multiple comparison among the groups at the same time also has significant difference, P<0.05).2. The level change of CyPA western blot of lung tissues:CyPA is significantly different between different group(F=984.853, P=0.000), there is significant reciprocation effection between the time factor and group factor (F=16.884, P=0.000).The test of Homogeneity of variance:F=1.865,P=0.130, Homogeneity of variance was meeted.The multiple comparation adopt LSD.ANOVA result:F=278.073,P=0.000, the difference between the groups is significant. the comparison of the groups at the same time: the CyPA expression of the three groups has a significant difference at the points of time (6-hour:F=278.01,P<0.001;24-hour:F=436.923,P<0.001;72-hour: F=412.712,P<0.001), with Group B highest followed by Group C and the Group A lowest and the multiple comparison among the groups at the same time also has significant difference(P<0.05).3. The level change of CyPA mRNA transcription of the lung tissues (RT-PCR):CyPA is significantly different between different group(F=53.680, P=0.000), there isnot significant reciprocation effection between the time factor and group factor (F=0.015, P=1.000).The test of Homogeneity of variance:F=2.199,P=0.046, Homogeneity of variance was not meeted.The multiple comparation adopt Tambane's T2and ANONA adopt Welch. ANOVA result:F=11.964P=0.000, the difference between the groups is significant, the multiple comparison of the groups at the same time:the CyPA transcription levels of the three groups have a significant difference at the same time (6-hour: F=18.445,P<0.001;24-hour:F=15.117, P<0.001;72-hour:F=20.820, P<0.001), with Group B highest followed by Group C and the Group A lowest and the multiple comparison among the groups at the corresponding points of time also has significant difference(P<0.05).
     Conclusion1. The expression of cyclophilin A and NF-κB rise in the lung tissues of endotoxin-induction acute lung injury rat which is injected in caudal vein.2. Aftering injecting the endotoxin, the injected-in-caudal-veine medulla ossium mesenchymal stem cells of the small mouse immediately reduce the expression of Cyclophilin A and NF-κB in the lung tissues of acute lung injury rat.3. Cyclophilin A and NF-κB play an important role in the morbidity of endotoxin-induction acute lung injury and the medulla ossium mesenchymal stem cells can perform the therapeutic effect by the level of Cyclophilin A.
引文
[1]Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet,1967,2:319-323.
    [2]Murray JF, Matthay MA, Luce JM, et al. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis,1988,138:720-723.
    [3]Sheu CC, Gong MN, Zhai R, et al. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest,2010,138:449-467.
    [4]Hu X, Qian S, Xu F, et al.Incidence, management and mortality of acute hypoxemic respiratory failure and acute respiratory distress syndrome from a prospective study of Chinese paediatric intensive care network. Acta Paediatr,2010,99:715-721.
    [5]Ware LB, Koyama T, Billheimer DD, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest,2010, 137:288-296.
    [6]Pittet JF, Mackersie RC, Martin TR, et al. Biological markers of acute lung injury: prognostic and pathogenic significance. Am J Respir Crit Care Med,1997,155:1187-205.
    [7]Zilberberg MD, Epstein SK. Acute lung injury in the medical ICU:comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med,1998; 157:1159-64.
    [8]Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation,1974,17:331-340.
    [9]Pittenger MF,Mackay AM Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells.Science,1999,284:143-7.
    [10]S.S.Iyer,C.CO,M.rojas.Mesenchymal stem cells and inflammaory lung diseases.Panminerva med,2009,51:5-16.
    [11]Muller I, Kordowich S, Holzwarth C, et al. Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy,2006,8:437-444.
    [12]Sensebe L. Clinical grade production of mesenchymal stem cells. Biomed Mater Eng, 2008,18(1 Suppl):S3-S10.
    [13]Ying QY, Nichols J, Evans EP, et al. Changing potency by spontaneous fusion. Nature, 2002,416(6880):545-548.
    [14]Lee RH, Pulin AA, Seo MJ et al. Intravenous HMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell,2009,5:54-63.
    [15]Ortiz LA, Dutreil M, Fattman C et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA,2007,104:11002-11007.
    [16]Nemeth K, Leelahavanichkul A, Yuen PS et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med,2009,15:42-49.
    [17]Hiroshi Yagi, Alejandro Soto-Gutierrez, Nalu Navarro-Alvarez,et al. Reactive Bone Marrow Stromal Cells Attenuate Systemic Inflammation via sTNFR1. Molecular Therapy, 2010,18:1857-64.
    [18]Shu Fang Liu,Asrar B. Malik. NF-κB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol,2006,290:L622-L645.
    [19]Dong-sheng Cheng, Wei Han,Sabrina M. Chen,et al. Airway Epithelium Controls Lung Inflammation and Injury through the NF-κB Pathway. J Immunol,2007,178:6504-6513.
    [20]Ling QIAO, Tie-jun ZHAO, Feng-ze WANG,et al. NF-κB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin,2008,29 (3):333-340.
    [21]Y-Y Du, S-H Zhou, T Zhou,et al. Immuno-inflammatory regulation effect of mesenchymal stem cell transplantation in a rat model of myocardial infarction. Cytotherapy,2008,10 (5):469-478.
    [1]Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res,2000, 61(4):364-370.
    [2]Ying QY, Nichols J, Evans EP, et al. Changing potency by spontaneous fusion. Nature,2002,416(6880):545-548.
    [3]Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science,1997,276(5309):71-74.
    [4]Sanchez RJ, Song S, Cardozo PF, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neulol,2000,164(2):247-256.
    [5]Kopen GC, Proekop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA,1999, 96(19):10711-10716.
    [6]裴雪涛,王常勇,王冬梅等.干细胞生物学.科学出版社,2003,107-203.
    [7]赵春华,艾辉胜,杜智等.干细胞原理、技术与临床.化学工业出版2006,63-82.
    [8]Massagubr J.How cells read TGF-signals. Nat Rev Mol Cell Biol, 2000;1:169-178.
    [9]姜玉峰,李思源,慕晓玲.骨髓基质细胞成骨的研究进展.解剖学研究,2004,26(1):69-71.
    [10]Ocklin RM,Williamson MC,Beresford JN,et al. I In vitro effects of growth factors and dexamethasone on rat marrow stromal cells.Clin Orthop Relat Res,1995;(313):27-35.
    [11]Taira M,Nakao H,Takahashi J,et al.Effects of two vitamins,two growth factors and dexamethasone on the proliferation of rat bone marrow stromal cells and osteoblastic MC3T3-E1 cells. Oral Rehabil,2003,30(7):697-701
    [12]Beresford JN,Graves SE,Smoothy CA.Formation of mineralized nodules by bone derived cells in vitro:A model of bone formation.Am J Med Genet,1993;45(2):163-178.
    [13]Otsuka E,Yamaguchi A,Shigehisa H,et al.Characterizations of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. Am Physiol,1999;277(cell physio 146):C132-C138.
    [14]Naumann A,Dennis J,Staudenmaier R,et al.Mesenchymal stem cells-a new pathway for tissue engineering in reconstructive surgery.Laryngorhinootologie, 2002,81:521-527.
    [15]Diniz P,Shomura K,Soejima K.et al.Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics,2002,23(5):398-405.
    [16]Pereira RF,Halford KW.O'Hara MD et al.Cultural adherent cells from marrow canserve as long-lasting precursor cells for bone,cartilage,and lung in irradiated mice.Proc Natl Acad Sci USA,1995,92,4857-4861.
    [17]Kadiyala S,Young RG,Thiede MA et al.Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro.Cell Transplant,1997,6(2):125-134.
    [18]Bruder SP,Kraus KH,Goldgerg VM et al.The effect of implants loaded with autologus mesenchymal stem cells on the healing of canine segmental bone defects.J Bone Joint Surg Am,1998,80:985-996.
    [19]Robinson PD.Histologic study of articular cartilage repair in the marmoset condyle.J Oral Maxillofac Surg,1993,51(10):1088-1094.
    [20]Caplan AI,Elyaderani M,Mochizuki Y et al.Principles of cartilage repair and regeneration.Clin Orthop,1997,342:254-269.
    [1]Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med,2005,353:1685-1693.
    [2]Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med,20005,353:1685-1693.
    [3]Abel SJC, Finney SJ, Brett SJ, et al. Reduced mortality in association with the acute respiratory distress syndrome (ARDS). Thorax,1998,53:292-294.
    [4]Milberg JA, Davis DR, Steinberg KP,et al. Improve survival of patents with acute respiratory distress syndrome (ARDS):1983-1993. JAMA,1995,273: 306-309.
    [5]The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med, 2000,342:1301-8.
    [6]Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med,2006,354: 2564-75.
    [7]Sheu CC, Gong MN, Zhai R, et al. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest,2010,138:449-467.
    [8]Hu X, Qian S, Xu F, Huang B, et al. Incidence, management and mortality of acute hypoxemic respiratory failure and acute respiratory distress syndrome from a prospective study of Chinese paediatric intensive care network. Acta Paediatr,2010,99:715-721.
    [9]Ware LB, Koyama T, Billheimer DD, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest,2010,137:288-296.
    [10]Eun Sun Kiml, Yun Sil Changl, Soo Jin Choi, et al. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respiratory Research,2011,12:108.
    [11]Cribbs SK, Matthay MA, Martin GS. Stem cells in sepsis and acute lung injury. Crit Care Med,2010,38:2379-2385.
    [12]Lee JW, Gupta N, Serikov V, Matthay MA. Potential application of mesenchymal stem cells in acute lung injury. Expert Opin BIol Ther,2009, 9:1259-1270.
    [13]Matthay MA, Goolaerts A, Howard JP,et al. Mesenchymal stem cells for acute lung injury:preclinical evidence. Crit Care Med,2010,38:S569-573.
    [14]Piantadosi CA, Schwartz DA. The acute respiratory distress syndrome. Ann Intern Med,2004,141(6):460-470.
    [15]El-Agamy DS. Nilotinib ameliorates lipopolysaccharide-induced acute Lung injury in rats. Toxicol Appl Pharmacol,2011,253(2):153-160.
    [16]Ingo Mu Her, Stefania Lymperi,Francesco Dazzi, et al. Mesenchymal stem cell therapy for degenerative inflammatory disorders. Current Opinion in Organ Transplantation,2008,13:639-644
    [17]JAE W. LEE,XIAOHUI FANG, ANNA KRASNODEMBSKAYA,et al. Concise Review:Mesenchymal Stem Cells for Acute Lung Injury:Role of Paracrine Soluble Factors. STEM CELLS,2011;29:913-919.
    [18]王光权,王龙.血必净注射液对大鼠急性肺损伤的作用[J].现代预防医学,2011,38(5):996-998.
    [19]Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells:isolation, in vitro expansion and characterization[J].Handb Exp Pharmacol,2006, (174):249-282.
    [20]王世宏.自体骨髓间充质干细胞移植治疗心绞痛临床研究.中华实用诊断与治疗杂志,2011,25(6):530-532.
    [21]刘筱,许铁.骨髓间充质干细胞免疫学特性及其移植治疗脊髓损伤.中国组织工程研究与临床康复,2011,15(14):2641-2644.
    [22]王红梅,杨晓凤,张轶斌,等.骨髓间充质干细胞移植治疗Becker型肌营养不良症58例临床分析.中国临床医学,2010,12(1):11-14.
    [23]李洪秋,王哲,阿良.骨髓间充质干细胞移植对大鼠脊髓损伤后氧化应激的影响.脊柱外科杂志,2010,8(3):157-160.
    [24]丁国永,郭丽,杜忠君,等.骨髓间充质干细胞对肾缺血再灌注损伤后肾功能及氧化应激水平的改善作用.吉林大学学报(医学版),2009,35(4):587-590.
    [25]Matthay MA, Wiener-Kronish JP (1990) Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis 142:1250-1257.
    [26]Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patientswith acute lung injury and the acute respiratory distress syndrome.AmJ Respir Crit Care Med 163:1376-1383.
    [27]Gamble JR, Drew J, Trezise L et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res,2000,87:603-607.
    [28]Thurston G, Suri C, Smith K et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science,1999,286:2511-2514.
    [29]Birukova AA, Alekseeva E, Mikaelyan A et al. HGF attenuates thrombin-induced endothelial permeability by Tiaml-mediated activation of the Rac pathway and by Tiaml/Rac-dependent inhibition of the Rho pathway. FASEB J,2007,21:2776-2786.
    [30]Singleton PA, Salgia R, Moreno-Vinasco L et al. CD44 regulates hepatocyte growth factor-mediated vascular integrity. Role of c-met, Tiaml/Racl, dynamin 2, and cortactin. J Biol Chem,2007,282:30643-30657.
    [31]Jae W. Leea,Xiaohui Fangb, Naveen Guptac,et al. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung.
    [32]Rojas M, Xu J, Woods CR et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol, 2005,33(2):145-152.
    [33]Kotton DN, Fabian AJ, Mulligan RC. Failure of bone marrow to reconstitute lung epithelium. Am J Respir Cell Mol Biol,2005,33(4):328-334.
    [34]Ware LB,Matthay MA.The acute respiratory distress syndrome.N Eng J Med, 2000,342:1334-1349.
    [35]Ware LB, Koyama T, Billheimer DD, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest,2010,137:288-296.
    [36]Mauricio Rojas, Jianguo Xu, Charles R. Woods, et al. Bone Marrow-Derived Mesenchymal Stem Cells in Repair of the Injured Lung. Am J Respir Cell Mol Biol.,2005,33(2):145-152.
    [37]蔡存良,李海红,文仲光,等.骨髓间充质干细胞移植对急性肺损伤大鼠血浆TNF-a、IL-6水平的影响.感染、炎症、修复,2006,7(2):98-101.
    [38]Battiwalla M, Hematti P. Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy,2009,11 (5):503-515.
    [39]Krauee DS, Theise ND, Collector MI, et al. Multiorgan, multilineage engraftment by a single bone marrow—derived stem cell. Cell,2001,105(3): 369-377.
    [40]陈楠楠.黄世林.间质干细胞与免疫调节.中国组织工程研究与临床康复,2007,11(33):6670-6675.
    [41]Zappia E, Casazza S, Pedemonte E, et al. Mesenehymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing Tcell anergy. Blood, 2005,106(5):1755-1761.
    [42]Klyu8hnenkova E, Mosca JD. Zemetkina V, et al. T cell respon ses to allogeneic human mesenehymal stem cells:immunogenicity, tolerance, and suppression. J Biomed Sci,2005,12(1):47-57.
    [43]Majumdar MK, Keane—Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sei,2003,10(2):228-241.
    [44]Auron PE, Webb AC, Rosenwasser LJ,et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc. Natl Acad Sci USA,1984, 81:7907-7911.
    [45]March CJ, Mosley B, Larsen A, Cerretti DP, et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature,1985,315:641-647.
    [46]Sims JE, March CJ, Cosman D, et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science,1988,241: 585-589.
    [47]Arend WP, Joslin FG, Massoni RJ. effects of immune complexes on production by human monocytes of interleukin 1 or an interleukin 1 inhibitor. J. Immunol, 1985,134:3868-3875(1985).
    [48]Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol,1992,10:411-452.
    [49]Vandenabeele P, Declercq W, Beyaert R,et al. Two tumour necrosis factor receptors:structure and function. Trends Cell Biol,1995,5:392-399.
    [50]Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis:what have we learned? Annu Rev Immunol,2001,19:163-196。
    [51]Hiroshi Yagi, Alejandro Soto-Gutierrez, Nalu Navarro-Alvarez,et al. Reactive Bone Marrow Stromal Cells Attenuate Systemic Inflammation via sTNFRl. Molecular Therapy,2010,18(10):1857-1864.
    [52]Ortiz LA, Dutreil M, Fattman C et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA,2007,104:11002-11007.
    [1]Thanos D and Maniatis T. NF-kappa B:a lesson in family values. Cell,1995,80: 529-532.
    [2]Karin M and Ben-Neriah Y. Phosphorylation meets ubiquitination:the control of NF-kappa B activity. Annu Rev Immunol,2000,18:621-663.
    [3]Baeuerle PA and Baichwal VR. NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol, 1997,65:111-137.
    [4]Dong-sheng Cheng, Wei Han,Sabrina M. Chen,et al. Airway Epithelium Controls Lung Inflammation and Injury through the NF-κB Pathway. J Immunol,2007,178:6504-6513.
    [5]Ingo Mu Her, Stefania Lymperi,Francesco Dazzi, et al. Mesenchymal stem cell therapy for degenerative inflammatory disorders. Current Opinion in Organ Transplantation,2008,13:639-644
    [6]JAE W. LEE,XIAOHUI FANG, ANNA KRASNODEMBSKAYA,et al. Concise Review:Mesenchymal Stem Cells for Acute Lung Injury:Role of Paracrine Soluble Factors. STEM CELLS,2011;29:913-919.
    [7]Deitch E A. Rodent models of intra-abdominal infection. Shock. 2005,24(Suppl):19-23.
    [8]赵玉金.骨髓间充质干细胞对急性肺损伤大鼠的治疗作用[D].重庆:第三军医大学,2011
    [9]李琦,钱桂生,张青.全身炎症反应综合征-肺损伤大鼠肺组织IL-10mRNA表达及AP-1活性变化的研究[J].中国病理生理杂志,2002,18:918-922.
    [10]Dutta J, Fan Y Gupta N, et al. Current insights into the regulation of programmed cell death by NF-kappaB[J]. Oncogene,2006,25(51): 6800-6816.
    [11]Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences [J]. Cell,1986,46(5):705-716.
    [12]Vallabhapurapu S, Karin M. Regulation and function of NF-kappaBtranscription factors in the immune system[J]. mnnu Revlmmunol, 2009,27(4):693-733.
    [13]Wang cY,M ayo MW, Komeluk RG et al. NF-kappaB antiapoptosis:induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation [J] Science,1998,281(5383):1680-1683.
    [14]Kupfner J G Arcaroli J J, Yum H K, et al. Role of NF-kappaB in endotoxemia-induced alterations of lung neutrophil apoptosis[J]. J Immun01.2001, 167(12):7044-7051.
    [15]M atute-Bello G lilesWC, Steinberg KP et al. Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury(ARDS)[S]. J Immunol,1999,163(4):2217-2225.
    [16]Serrao KL, Fo rtenberry JD, OwensML et al. Neutrophils induce apoptosis of lung epithelial cells via release of soluble Fas ligand[J]. Am J Physiol Lung Cell Mol Physiol,2001,280(2):298-305.
    [17]郭振辉,洪新,毛宝龄等.核因子一kB活化在脓毒症急性肺损伤发病中的作用[J].中国危重病急救医学,2000,12(6):334.
    [18]BlackweII TS,HoIden EP,BIackweII TR,et al. Cytokine-induced neutrophiI chemoattractant mediates neutrophiIic aIveolitis in rats:association with nuclear factor kappa b activation [J].Am J Respir Cell Mol Biol,1994,11: 464.
    [19]Walley KR, McDonald TE, Higashimoto Y, et al. Modulation of proinflammatory cytokines by nitric oxide in murine acute lung injury [J]. Am J Respir Crit Care Med,1999,160:698.
    [20]Tulzo YL, Shenkar R, Kaneko D, et al. Hemorrhage increasescy tokine expression in lung mononuclear cells in mice:involvement of catecholamines in nuclear factor-kappa b regulation and cytokine expression [J]. CIin Invest. 1997,99:1516.
    [21]Mac Callum NS. Evans Tw. Epidemiology of acute lung injury. Currpin Crit Care.2005.11143-49.
    [22]Jansen BJ, Gilissen C. Roelofs H. et al. Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem Cells Dev.2010.191481-490.
    [23]马呜.刘伟.单保恩.间充质干细胞免疫调节活性的研究进展[J].河北医科大学学报.2008.29 z923-927.
    [24]林群,雷立华,曾邦雄等.骨髓间充质干细胞介导大鼠肺内基因转移的可行性[J].中华麻醉学杂志.2006,26。230-233.
    [25]张伟.葛薇.李长虹等.骨髓问充质千细胞通过上调CD8-+CD28~一T细胞抑制T细胞的增殖[J].中国实验血液学杂志.2004.12:666--669.
    [26]Zohar R.Sodek J. MeCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood,1997,90 (1):3471-3481.
    [27]Pittenger MF。Mackay AM. Beck SC。et al. Muhilineage potential of adult human mesenchymal stem cells. Science,1999,284:143-147.
    [28]孙继萍,陈良安.间充质干细胞与肺损伤[J].中华医学杂志2008.881355-357.
    [29]Reinecke H, Zhang M, Bartosek T. et al. Survival, integration, and differentiation of cardiomyocyte graftsl a study in normal and injured rat hearts. Circulation.1999.100 (11):93-202.
    [1]Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet,1967,2:319-323.
    [2]Murray JF, Matthay MA, Luce JM, et al. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis,1988,138:720-723.
    [3]Sheu CC, Gong MN, Zhai R, et al. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest,2010,138:449-467.
    [4]Hu X, Qian S, Xu F, et al.Incidence, management and mortality of acute hypoxemic respiratory failure and acute respiratory distress syndrome from a prospective study of Chinese paediatric intensive care network. Acta Paediatr,2010,99:715-721.
    [5]Ware LB, Koyama T, Billheimer DD, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest,2010,137:288-296.
    [6]Handschumacher R E, Harding M W, Rice J, et al. Cyclophilin:a specific cytosolic binding protein for cyclosporin A.[J]. Science,1984,226(4674): 544-547.
    [7]Ke H M, Zydowsky L D, Liu J, et al. Crystal structure of recombinant Human T-cell cyclophilin A at 2.5 A resolution. [J]. Proc Natl Acad Sci U S A,1991, 88(21):9483-9487.
    [8]Thali M, Bukovsky A, Kondo E, et al. Functional association of cyclophilin A with HIV-1 virions.[J]. Nature,1994,372(6504):363-365.
    [9]Galat A. Peptidylprolyl cis/trans isomerases (immunophilins):biological diversity-targets-functions.[J]. Curr Top Med Chem,2003,3(12):1315-1347.
    [10]Fei Song, Xin Zhang, Xiao-Bai Ren,et al. Cyclophilin A (CyPA) Induces Chemotaxis Independent of Its Peptidylprolyl Cis-Trans Isomerase Activity. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL,2011,10(286): 8197-8203.
    [11]Sherry B, Yarlett N, Strupp A, et al. Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad SciUSA,1992,89:3511-5.
    [12]Kim SH, Lessner SM, Sakurai Y, et al. Cyclophilin. A as a novel biphasic mediator of endothelial activation and dysfunction. Am J Pathol, 2004,164(5):1567-74.
    [13]Suzuki J, Jin ZG, Meoli DF, et al. Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circ Res,2006,98(6):
    [14]Tegeder I, Schumacher A, John S, et al. Elevated serum Cyclophilin levels in patients with severe sepsis. J Clin Immunol,1997,17(5):380-6.
    [15]Billich A, Winkler G, Aschauer H, et al. Presence of Cyclophilin A in synovial fluids of patients with rheumatioid arthritis. J Exp Med,1997,185(5):975-80.
    [16]Arora K, Gwinn WM, Bower MA, et al. Extracellular cyclophilins contribute to the regulation of inflammatory responses. J Immunol,2005,175:517-22.
    [17]N.Gupta,X.Su,B.Popov,et al.Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. Journal of Immunology,2007,3(179):1855-1863.
    [18]J. Xu, C. R. Woods, A. L.Mora et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stemcells inmice. American Journal of Physiology—Lung Cellular and Molecular Physiology,2007,1(293): L131-L141.
    [19]Jae W.Lee,Xiaohui Fang,Naveen Gupta,et al. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. PNAS,2009,38(106):16357-16362.
    [20]G. R. Bernard, A. Artigas, K. L. Brigham,et al., "The AmericanEuropean Consensus Conference on ARDS:definitions,mechanisms, relevant outcomes, and clinical trial coordination,"American Journal of Respiratory and Critical Care Medicine,1994,31(149):818-824.
    [21]A. Artigas, G. R. Bernard, J. Carlet,et al. "The American European consensus conference on ARDS, part 2:ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling,' American Journal of Respiratory and Critical Care Medicine,1998,4 1(157):1332-1347.
    [22]Tomashefsk, J.F. Pulmonary pathology of the adult respiratory distress syndrome. Clin. Chest Med,1990,11(4):593-619.
    [23]Pratt PC,Vollmer RT,Shelburne JD,et al. Pulmonary morphology in a multihospital collaborative extracorporeal membrane oxygenation project.Am Jpathol,1979,95:191-208.
    [24]50. Heflin AC Jr, Brigham KL. Prevention by granulocyte depletion of increased vascular permeability of sheep lung following endotoxemia. J Clin Invest,1981,68:1253-1260.
    [25]Deitch, E.A. Multiple organ failure:pathogenesis and potential future therapy. Ann Surg,1992,216(2):117-134.
    [26]Naveen Gupta,Xiao Su, Boris Popov,et al. Intrapulmonary Delivery of Bone Marrow-Derived Mesenchymal Stem Cells Improves Survival and Attenuates Endotoxin-Induced Acute Lung Injury in Mice. The Journal of Immunology, 2007,179:1855-1863.
    [27]Crouser, E.D., Dorinsky, P.M. Gastrointestinal tracdysfunction in critical illness:pathophysiology and interaction with acute lung injury in adult respiratory distress syndrome/multiple organ dysfunction syndrome. N. Horiz, 1994,2(4):476-487.
    [28]Matuschak, G.M. Liver-lung interactions in critical illness. N. Horiz, 1994,2(2):488-504.
    [29]Yuan W, Ge H, He B. Pro-inflammatory activities induced by CyPA-EMMPRIN interaction in monocytes. Atherosclerosis,2010,213(2): 415-21.
    [30]Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M. Cyclophilin-CD147 interactions:A new target for anti-inflammatory therapeutics. Clin Exp Immunol,2010,160(3):305-17.
    [31]Klebanoff SJ.Myeloperoxidase:friend and foe. J Leukoc Biol,2005,77(5):598-625.
    [32]Pittet JF, Mackersie RC, Martin TR, et al. Biological markers of acute lung injury:prognostic and pathogenic significance. Am J Respir Crit Care Med,1997,155:1187-205.
    [33]Zilberberg MD, Epstein SK. Acute lung injury in the medical ICU:comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med,1998;157:1159-64.
    [34]L. A. Ortiz, F. Gambelli, C.McBride et al.Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceedings of the National Academy of Sciences of the United States of America,2003,14, (100):8407-8411.
    [35]M. Rojas, J. Xu, C. R. Woods et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. American Journal of Respiratory Cell and Molecular Biology 2005,2(33):145-152.
    [36]Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large,full-thickness defects of articular cartilage. J Bone Joint Surg Am, 1994,76:579-592.
    [37]LIANG Zhi-xin, SUN Ji-ping, WANG Ping, TIAN Qing, YANG Zhen and CHEN Liang-an. Bone marrow-derived mesenchymal stem cells protect rats from endotoxin-induced acute lung injury. Chinese Medical Journal, 2011,124(17):2715-2722.
    [38]Rojas M, Xu J, Woods CR et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol,2005,33(2):145-152.
    [39]Kotton DN, Fabian AJ, Mulligan RC. Failure of bone marrow to reconstitute lung epithelium. Am J Respir Cell Mol Biol,2005,33(4):328-334.
    [40]Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood,2002,99:3838-3843.
    [41]Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol,2002,30:42-48.
    [42]Groh ME, Maitra B, Szekely E, et al. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp. Hematol,2005,33:928-34.
    [43]Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, et al. Human mesenchymal stem cells modulate B-cell functions. Blood,2006,107:367-72
    [44]KramperaM,Cosmi L, Angeli R, Pasini A, Liotta F, et al. Role for interferon-γin th ulatory activity of human bone marrow mesenchymal stem cells. Stem Cells,2006,24:386-98.
    [45]Djouad F, Charbonnier L-M, Bouffi C, et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells,2007,25:2025-2032.
    [46]Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood,2005,105:4120-4126.
    [47]Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stemcells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation,2003,76:1208-13.
    [48]Lee RH, Pulin AA, Seo MJ et al. Intravenous HMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell,2009,5:54-63.
    [49]Ortiz LA, Dutreil M, Fattman C et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA,2007,104:11002-11007.
    [50]Nemeth K, Leelahavanichkul A, Yuen PS et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009,15:42-49.
    [51]Hiroshi Yagi, Alejandro Soto-Gutierrez, Nalu Navarro-Alvarez,et al. Reactive Bone Marrow Stromal Cells Attenuate Systemic Inflammation via sTNFRl. Molecular Therapy,2010,18:1857-64.
    [52]Kim J, Hematti P. Mesenchymal stem cell-educated macrophages:A novel type of alternatively activated macrophages. Exp Hematol,2009,37:1445-1453.
    [53]Nemeth K, Leelahavanichkul A, Yuen PS et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med,2009,15: 42-49.
    [54]66. Gamble JR., Drew J, Trezise L et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res,2000,87:603-607.
    [55]Thurston G, Suri C, Smith K et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science,1999,286:2511-2514.
    [56]Birukova AA, Alekseeva E, Mikaelyan A et al. HGF attenuates thrombin-induced endothelial permeability by Tiaml-mediated activation of the Rac pathway and by Tiaml/Rac-dependent inhibition of the Rho pathway. FASEB J,2007,21:2776-2786.
    [57]Singleton PA, Salgia R, Moreno-Vinasco L et al. CD44 regulates hepatocyte growth factor-mediated vascular integrity. Role of c-met, Tiam1/Rac 1, dynamin 2, and cortactin. J Biol Chem,2007,282:30643-30657.
    [58]Jianguo Xu,Charles R. Woods,Ana L. Mora,et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol,2007,293: L131-L141.
    [59]Fei Song, Xin Zhang, Xiao-Bai Ren,et al. Cyclophilin A (CyPA) Induces Chemotaxis Independent of Its Peptidylprolyl Cis-Trans Isomerase Activity. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL,2011,10(286): 8197-8203。
    [60]Kofron, J. L., Kuzmic, P., Kishore, V., et al. Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay.Biochemistry,1991,30:6127-6134
    [1]Nathan C.points of control in inflammation Nature 2002;420:846-52.
    [2]李玉林.病理学[M].第6版.北京:人民卫生出版社,2004,70.
    [3]McCulloch EA, Till JE. Perspectives on the properties of stem cells. Nat Med 2005; 11:1026-8.
    [4]Christoforou N, Gearhart JD. Stem cells and their potential in cell-based cardiac therapies. Prog Cardiovasc Dis 2007;49:396-413.
    [5]McCulloch EA, Till JE. Perspectives on the properties of stem cells. Nat Med 2005;11:1026-8.
    [6]Seydoux G, Braun RE. Pathway to totipotency:lessons from germ cells. Cell 2006;127:891-904.
    [7]Sanchez PL, Villa A, Sanz R, et al. Present and future of stem cells for cardiovascular therapy. Ann Med 2007;39:412-27.
    [8]Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008;451:937-42.
    [9]Ingo Muller, Stefania Lymperi, and Francesco Dazzi. Mesenchymal stem cell therapy for degenerative inflammatory disorders. Current Opinion in Organ Transplantation 2008; 13:639-644.
    [10]Haider KH, Ashraf M. Strategies to promote donor cell survival:combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 45: 554-566,2008.
    [11]Muller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 34:107-116,2002.
    [12]Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93-98,2002.
    [13]Zhao-jun Wang, Fu-min Zhang, Lian-sheng Wang,et al. Lipopolysaccharides can protect mesenchymal stem cells (MSCs) from oxidative stress-induced apoptosis and enhance proliferation of MSCs via Toll-like receptor(TLR)-4 and PI3K/Akt. Cell Biology International 33:665-674,2009.
    [14]Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 2005;24(44):6719-28.
    [15]Lin CC, Chiang LL, Lin CH, Shih CH, Liao YT, Hsu MJ, et al. Transforming growth factor-betal stimulates heme oxygenase-1 expression via the PI3K/Akt and NF-kappaB pathways in human lung epithelial cells. Eur J Pharmacol 2007;560(2e3):101-9.
    [16]Wolfgang Bocker, Denitsa Docheva,Wolf Christian Prall et al. IKK-2 is required for TNF-a-induced invasion and proliferation of human mesenchymal stem cells. J Mol Med (2008) 86:1183-1192.
    [17]Muhammad R. Afzal, Husnain Kh. Haider, Niagara Muhammad Idris et al.Preconditioning Promotes Survival and Angiomyogenic Potential of Mesenchymal Stem Cells in the Infarcted Heart via NF-kB Signaling. ANTIOXIDANTS & REDOX SIGNALING Volume 12, Number 6,2010, 693-702
    [18]Sitcheran R, Cogswell PC, Baldwin AS, Jr.NF-kappaB mediates inhibition of mesenchymal cell differentiation through a posttranscriptional gene silencing mechanism. Genes Dev 2003;17:2368-73.
    [19]Guttridge DC, Mayo MW, Madrid LV, et al. NF-kappaB-induced loss of MyoD messenger RNA:possible role inmuscle decay and cachexia. Science 2000;289: 2363-6.
    [20]HYUN HWA CHO, KEUN KOO SHIN,YEON JEONG KIM,et al. NF-kB Activation Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells Derived from Human Adipose Tissue by Increasing TAZ Expression. J. Cell. Physiol.2010;223:168-177.
    [21]Hess K, Ushmorov A, Fiedler J, et al. TNF alpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone 2009;45:367-376.
    [22]Katrin Hess, Alexey Ushmorov, Jorg Fiedler et al. TNF-α promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-κB signaling pathway. Bone 2009;45:367-376.
    [23]Li B, ShiM, Li J,et al. Elevated tumor necrosis factor-alpha suppresses Taz expression and impairs osteogenic potential of Flk+ mesenchymal stem cells in patients with multiple myeloma. Stem Cells Dev 2007; 16:921-930.
    [24]N. Wehling,G. D. Palmer,C. Pilapil,et al. Interleukin-1(3 and Tumor Necrosis Factor-alnhibit Chondrogenesis by Human Mesenchymal Stem Cells Through NF-KB-Dependent Pathways. ARTHRITIS & RHEUMATISM March 2009; 60 (3):801-812
    [25]Meng E, Guo Z, Wang H. et al. High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway. Stem Cells Dev 2008;17:805-13.
    [26]Haider H, Ashraf M. Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol 2005; 288:H2557-H2567.
    [27]Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 2006;98:1414-1421.
    [28]Crisostomo PR, Markel TA, Wang M, et al. In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery 2007; 142:215-221.
    [29]Wang M, Tsai BM, Crisostomo PR, et al. Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia. Shock 2006;25:454-459.
    [30]Patel KM, Crisostomo P, Lahm T, et al. Mesenchymal stem cells attenuate hypoxic pulmonary vasoconstriction by a paracrine mechanism. J Surg Res 2007;143:281-285.
    [31]Paul R. Crisostomo,Yue Wang,Troy A. Markel,et al. Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia.produce growth factors by an NF_B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 2008;294:C675-C682.
    [32]Nathan M. Novotny, Troy A. Markel, Paul R. Crisostomo,et al. Differential IL-6 and VEGF secretion in adult and neonatal mesenchymal stem cells:Role of NFkB. Cytokine 43 (2008) 215-219.
    [33]Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large,full-thickness defects of articular cartilage. J Bone Joint Surg Am 1994;76:579-592.
    [34]Rojas M, Xu J, Woods CR et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005;33(2):145-152.
    [35]Kotton DN, Fabian AJ, Mulligan RC. Failure of bone marrow to reconstitute lung epithelium. Am J Respir Cell Mol Biol 2005;33(4):328-334.
    [36]Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99:3838-3843.
    [37]Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30:42-48.
    [38]Groh ME, Maitra B, Szekely E, et al. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp. Hematol. 2005;33:928-34.
    [39]Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, et al. Human mesenchymal stem cells modulate B-cell functions. Blood,2006,107:367-72
    [40]KramperaM,Cosmi L, Angeli R, Pasini A, Liotta F, et al. Role for interferon-yin th ulatory activity of human bone marrow mesenchymal stem cells. Stem Cells,2006,24:386-98
    [41]Djouad F, Charbonnier L-M, Bouffi C, et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells,2007,25:2025-2032.
    [42]Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105:4120-4126.
    [43]Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stemcells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003;76:1208-13.
    [44]Le Blanc K, Frassoni F, Ball LM, et al. Mesenchymal stem cells for treatment of severe acute graft-versus-host disease. Blood 2006; 108:753.
    [45]Patt HM, Maloney MA (1972). Bone formation and resorption as a requirement for marrow development. Proc Soc Exp Biol Med 140:205-207.
    [46]MaloneyMA, Patt HM(1975). On the origin of hematopoietic stem cells after local marrow extirpation. Proc Soc Exp Biol Med 149:94-97.
    [47]LIANG Zhi-xin, SUN Ji-ping, WANG Ping, TIAN Qing, YANG Zhen and CHEN Liang-an. Bone marrow-derived mesenchymal stem cells protect rats from endotoxin-induced acute lung injury. Chinese Medical Journal 2011;124(17):2715-2722.
    [48]Sueblinvong V, Loi R, Eisenhauer PL et al. Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med 2008;177:701-711.
    [49]Kim CF, Jackson EL, Woolfenden AE et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121:823-835.
    [50]Lee RH, Pulin AA, Seo MJ et al. Intravenous HMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009;5:54-63.
    [51]Ortiz LA, Dutreil M, Fattman C et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 2007; 104:11002-11007.
    [52]Nemeth K, Leelahavanichkul A, Yuen PS et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15:42-49.
    [53]Hiroshi Yagi, Alejandro Soto-Gutierrez, Nalu Navarro-Alvarez,et al. Reactive Bone Marrow Stromal Cells Attenuate Systemic Inflammation via sTNFR1. Molecular Therapy 2010; 18:1857-64.
    [54]Ajuebor MN, Das AM, Virag L et al. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation:Evidence for an inhibitory loop involving endogenous IL-10. J Immunol 1999;162:1685-1691.
    [55]16 Stagg J. Immune regulation by mesenchymal stem cells:Two sides to the coin. Tissue Antigens 2007;69:1-9.
    [56]14 Chan JL, Tang KC, Patel AP et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 2006; 107:4817-4824.
    [57]Stagg J, Pommey S, Eliopoulos N et al. Interferon-gamma-stimulated marrow stromal cells:A new type of nonhematopoietic antigen-presenting cell. Blood 2006;107:2570-2577.
    [58]Raffaghello L, Bianchi G, Bertolotto M et al. Human mesenchymal stem cells inhibit neutrophil apoptosis:A model for neutrophil preservation in the bone marrow niche. Stem Cells 2008;26:151-162.
    [59]Eun Sun Kiml, Yun Sil Chang, Soo Jin Choi,et al. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respiratory Research 2011; 12:108-119.
    [60]Kim J, Hematti P. Mesenchymal stem cell-educated macrophages:A novel type of alternatively activated macrophages. Exp Hematol 2009;37:1445-1453.
    [61]Krasnodembskaya A, Song Y, Fang X et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010;28:2229-2238.
    [62]GREGORY J. BLOCK,SHINYA OHKOUCHI,FRANCE FUNG, et al. Multipotent Stromal Cells Are Activated to Reduce Apoptosis in Part by Upregulation and Secretion of Stanniocalcin-1. STEM CELLS 2009;27:670-681.
    [63]Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002;82:569-600.
    [64]Wang Y, Folkesson HG, Jayr C et al. Alveolar epithelial fluid transport can be simultaneously upregulated by both KGF and beta-agonist therapy. J Appl Physiol 1999;87:1852-1860.
    [65]Guery BP, Mason CM, Dobard EP et al. Keratinocyte growth factor increases transalveolar sodium reabsorption in normal and injured rat lungs. Am J Respir Crit Care Med 1997;155:1777-1784.
    [66]Gamble JR, Drew J, Trezise L et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 2000;87:603-607.
    [67]Thurston G, Suri C, Smith K et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999;286:2511-2514.
    [68]Birukova AA, Alekseeva E, Mikaelyan A et al. HGF attenuates thrombin-induced endothelial permeability by Tiaml-mediated activation of the Rac pathway and by Tiaml/Rac-dependent inhibition of the Rho pathway. FASEB J 2007;21:2776-2786.
    [69]Singleton PA, Salgia R, Moreno-Vinasco L et al. CD44 regulates hepatocyte growth factor-mediated vascular integrity. Role of c-met, Tiam1/Rac1, dynamin 2, and cortactin. J Biol Chem 2007;282:30643-30657.
    [70]Viget NB, Guery BP, Ader F et al. Keratinocyte growth factor protects against Pseudomonas aeruginosa-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2000;279:L1199-L1209.
    [1]Saito K, Ishikura H, Kishimoto T, et al. Interleukin-6 produced by pancreatic carcinoma cells enhances humoral immune responses against tumor cells:a possible event in tumor regression.[J]. Int J Cancer,1998,75(2):284-289.
    [2]Stefani A L, Basso D, Panozzo M P, et al. Cytokines modulate MIA PaCa2 and CAPAN-1 adhesion to extracellular matrix proteins.[J]. Pancreas,1999,19(4): 362-369.
    [3]Waugh D J, Wilson C. The interleukin-8 pathway in cancer. [J]. Clin Cancer Res,2008,14(21):6735-6741.
    [4]Korc M. Role of growth factors in pancreatic cancer.[J]. SurgOncolClin N Am, 1998,7(1):25-41.
    [5]Handschumacher R E, Harding M W, Rice J, et al. Cyclophilin:a specific cytosolic binding protein for cyclosporin A.[J]. Science,1984,226(4674): 544-547.
    [6]Ke H M, Zydowsky L D, Liu J, et al. Crystal structure of recombinant Human T-cell cyclophilin A at 2.5 A resolution. [J]. ProcNatlAcadSci U S A,1991, 88(21):9483-9487.
    [7]Thali M, Bukovsky A, Kondo E, et al. Functional association of cyclophilin A with HIV-1 virions.[J]. Nature,1994,372(6504):363-365.
    [8]Galat A. Peptidylprolylcis/trans isomerases (immunophilins):biological diversity-targets-functions.[J]. Curr Top Med Chem,2003,3(12):1315-1347.
    [9]Kieffer L J, Thalhammer T, Handschumacher R E. Isolation and characterization of a 40-kDa cyclophilin-related protein.[J]. J BiolChem,1992, 267(8):5503-5507.
    [10]Waldmeier P C, Zimmermann K, Qian T, et al. Cyclophilin D as a drug target.[J]. Curr Med Chem,2003,10(16):1485-1506.
    [11]Schinzel A C, Takeuchi O, Huang Z, et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia.[J]. ProcNatlAcadSci U S A,2005,102(34): 12005-12010.
    [12]Schneider H, Charara N, Schmitz R, et al. Human cyclophilin C:primary structure, tissue distribution, and determination of binding specificity for cyclosporins.[J]. Biochemistry,1994,33(27):8218-8224.
    [13]Price E R, Zydowsky L D, Jin M J, et al. Human cyclophilin B:a second cyclophilin gene encodes a peptidyl-prolylisomerase with a signal sequence.[J]. ProcNatlAcadSci U S A,1991,88(5):1903-1907.
    [14]Bergsma D J, Eder C, Gross M, et al. The cyclophilinmultigene family of peptidyl-prolylisomerases. Characterization of three separate human isoforms.[J]. J BiolChem,1991,266(34):23204-23214.
    [15]Mikol V, Kallen J, Pflugl G, et al. X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2.1 A resolution.[J]. J MolBiol,1993, 234(4):1119-1130.
    [16]Yao Q, Li M, Yang H, et al. Roles of cyclophilins in cancers and other organ ystems.[J]. World J Surg,2005,29(3):276-280.
    [17]Handschumacher R E, Harding M W, Rice J, et al. Cyclophilin:a specific cytosolic binding protein for cyclosporin A.[J]. Science,1984,226(4674): 544-547.
    [18]Marks A R. Cellular functions of immunophilins.[J]. Physiol Rev,1996,76(3): 631-649.
    [19]Braaten D, Wellington S, Warburton D, et al. Assignment of cyclophilin A (PPIA) to human chromosome band 7p13by in situ hybridization. [J]. Cytogenet Cell Genet,1996,74(4):262.
    [20]Galat A, Metcalfe S M. Peptidylprolinecis/trans isomerases.[J]. ProgBiophysMolBiol,1995,63(1):67-118.
    [21]Ryffel B, Woerly G, Greiner B, et al. Distribution of the cyclosporine binding protein cyclophilin in human tissues.[J]. Immunology,1991,72(3):399-404.
    [22]Cui Y, Mirkia K, Florence F Y, et al. Interaction of the retinoblastoma gene product, RB, with cyclophilin A negatively affects cyclosporin-inhibited NFAT signaling.[J]. J Cell Biochem,2002,86(4):630-641.
    [23]Jin Z G, Melaragno M G, Liao D F, et al. Cyclophilin A is a secreted growth factor induced by oxidative stress.[J]. Circ Res,2000,87(9):789-796.
    [24]Sherry B, Yarlett N, Strupp A, et al. Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages.[J]. ProcNatlAcadSci U S A,1992,89(8):3511-3515.
    [25]Suzuki J, Jin Z G, Meoli D F, et al. Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells.[J]. Circ Res,2006,98(6):811-817.
    [26]Ke H. Similarities and differences between human cyclophilin A and other beta-barrel structures. Structural refinement at 1.63 A resolution.[J]. J MolBiol, 1992,228(2):539-550.
    [27]Mikol V, Kallen J, Pflugl G, et al. X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2.1 A resolution.[J]. J MolBiol,1993, 234(4):1119-1130.
    [28]Kallen J, Spitzfaden C, Zurini M G, et al. Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy.[J]. Nature,1991,353(6341):276-279.
    [29]Koch C, Staffler G, Huttinger R, et al. T cell actication-associated epitopes of CD 147 in regulation of the T cell response, and their definition by antibody affinity and antigen density. Intlmmunol,1999, 11(5):777-786.
    [30]Cho JY, Fox DA, Horejsi V, et al. The functional interactions between CD98, β1-integrins, and CD 147 in the induction of U937 homotypic aggregation. Blood,2001,98(2):374-382.
    [31]Staffler G, Szekeres A, Schutz GJ, et al. Selective inhibition of T cell activation via CD 147 through novel modulation of lipid rafts. J Immunol,2003, 171(4):1707-1714.
    [32]Papoutsi M, Kurz H, Schachtele, et al. Induction of the blood-brain barrier marker neurothelin/HT7 in endothelial cell by a variety of tumors in chick embryos. Histochem Cell Biol,2000,113(2):105-113.
    [33]Schlegel A L M. Caveolae and their coat proteins, the caveolins:from electron microscopic novelty to biological launching pad.[Z].2001:186,329-337.
    [34]Murata M, Peranen J, Schreiner R, et al. VIP21/caveolin is a cholesterol-binding protein. [J]. ProcNatlAcadSci U S A,1995,92(22): 10339-10343.
    [35]Smart E J, Ying Y, Donzell W C, et al. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane.[J]. J BiolChem, 1996,271(46):29427-29435.
    [36]Uittenbogaard A, Smart E J. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae.[J]. J BiolChem,2000,275(33):25595-25599.
    [37]Fruman D A, Burakoff S J, Bierer B E. Immunophilins in protein folding and immunosuppression.[J]. FASEB J,1994,8(6):391-400.
    [38]Fischer G, Schmid F X. The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell.[J]. Biochemistry,1990,29(9):2205-2212.
    [39]Parsell D A, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins.[J]. Annu Rev Genet,1993,27:437-496.
    [40]Matthay MA, Zimmerman GA, Esmon C, et al. Future research directions in acute lung injury:summary of a national heart, lung, and blood institute working group[J]. Am J RespirCrit Care Med,2003,167(7):1027-1035
    [41]张明TH1/TH2平衡与内毒素休克肺损伤的研究进展[J].现代医药卫生,2002,18(6):461-462
    [42]Baumhofer JM, Beinhauer BG, Wang JE, et al. Gene transfer with IL-4 and IL-13 improves survival in lethal endotoxemia in the mouse and ameliorates peritoneal macrophages immune competence[J]. Eur J Immunol,1998,28(2): 610-615
    [43]钱桂生.急性肺损伤和急性呼吸窘迫综合征研究进展[J].重庆医学,2002,31(9):769-771
    [44]Thranos D, Maniatis T. NF-Kappa B:a lesson in family values[J]. Cell,1995,80(4):529-532
    [45]Bone RC. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome:what we do and do not know about cytokine regulation[J]. Crit Care Med,1996,24(1):163-172
    [46]官健,金大地,金丽娟.多发伤合并休克大鼠肺脏中细胞凋亡的实验研究[J].中国危急重病急救医学,1998,10(10):479-483
    [47]Ortiz LA, Moroz K, Liu J Y, et al. Alveolar macrophage apoptosis and TNF-alpha, but not p53, expression correlate with mruine response to bleomycin[J]. Am J Pathol,1998,275(6Pt1):1208-1218
    [48]Matute Bello G, Liles WC, Radella F, et al. Modulation of neutrophil apoptosis by granulocyte colony-stimulating factor and granulocyte/macrophage colonystimulatingfactor during the course of acute respiratory distress syndrome[J]. Crit Care Med,2000,28(1):1-7
    [49]Hengarther MO. The biochemistry of apoptosis[J]. Nature,2000,407(6805): 770-776.
    [50]Tesfaigzi J, Wood MB, Johnson NF, et al. Apoptosis is a pathway responsible for the resolution of edotoxin-induced alveolar type Ⅱ cell hyperplasia in the rat[J]. Int J Exp Pathol,1998,79(5):303-311
    [51]Ricardo H, Susu X, Robert. Apoptosis is a major pathway responsible for the resolution of type Ⅱ pneumocytes in acute lung injury[J]. Am J Pathol,1996,149(3):845-852.
    [52]Yount GL, Gall CM, White JD. Limbic seizures increase cyclophilin mRNA levels in rat hippocampus. Brain Res Mol Brain Res.1992; 14(1-2):139-142.
    [53]Carboni L, Piubelli C, Pozzato C, et al. Proteomic analysis of rat hippocampus after repeated psychosocial stress. Neuroscience.2006; 137(4):1237-1246.
    [54]Lee JP, Palfrey HC, bindokas VP, et al. The role of immunphilins in mutant superoxide dismutase-1 linked familial amyotrophic lateral sclerosis. ProcNatlAcadSci USA.1999; 96(6):3251-3256.
    [55]Meloni BP, Van Dyk D, Cole R, et al. Proteome analysis of cortical neuronal cultures following cycloheximide, heat stress and MK801 preconditioning. Proteomics.2005; 5(18):4743-4753.
    [56]Usatyuk PV, Natarajan V. Regulation of reactive oxygen species-induced endothelial cell-celland cell-matrix contacts by focal adhesion kinase and adherence junction proteins. Am J PhysiolLung Cell MolPhysiol,2005,289: L999-L1010.
    [57]Scheel-ToellnerD,Wang K, Assi L K, et al. Clustering of death receptors in lipid raftsinitiatesneutrophil spontaneous apoptosis.BiochemSoc Trans,2004, 32 (Pt 5):679-681.
    [58]Sakai Y, Masamune A, Satoh A, et al. Macrophage migration inhibitory factor is acriticalmediator of severe acute pancreatitis [J] Gastroenterology,2003,124 (3):725-736
    [59]Froidevaux C, Roger T, Martin C, et al. Macrophage migration inhibitory factor and innateimmune responses to bacterial infections [J] Crit Care Medic, 2001,29(7):13-15.
    [60]Roger T, GlauserMP, Calandra Tl Macrophagemigration inhibitory factor (MIF) modulatesinnate immune responses induced by endotoxin and Gram-negative bacteria [J] J Endotoxin Res,2001,7 (6):456-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700