用户名: 密码: 验证码:
城市草坪水汽通量与蒸散量的变化特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市草坪面积的增加,草坪的蒸散量已成为维持全球生态系统水平衡重要的因素之一,通过长期的观测、统计和分析大尺度范围的草坪绿地的水汽通量,对城市化及全球气候变化都起到重要的作用。本试验通过涡度相关法和蒸渗仪法,对大小两种尺度及不同灌溉条件下植物的水汽通量、光合指标等进行了对比研究,并结合气象因素进行了相关分析。结果表明:
     (1)水汽通量与热通量的变化趋势都是倒“U”型,即白天为正,夜间为负,这与CO2通量的变化曲线相反;除3月外,其它月份的水汽通量日变化曲线与潜热通量几乎重合,且两者曲线远高于显热通量;全天蒸腾的时数也随日照时数的缩短而减少,基本表现为夏季最大,春秋季次之,冬季最小;全年中间波文比β较小,冬春两季较大;CO2通量和水汽通量的共同影响导致WUE日变化曲线起伏较大,变化较复杂。
     (2)水分条件能显著影响草坪草的蒸散量。蒸散量都遵循“土壤含水量越大蒸散量就越大”的规律,同一时段晴天的远大于阴天的。8月份限制灌溉的草地早熟禾日蒸散量呈双峰型,其它草地早熟禾日蒸散量均呈单峰型,且峰值都出现在当天气温最高值之前;月蒸散量随太阳辐射和气温的减小而逐月减少;草地早熟禾中午即11:00-15:00之间的蒸散量在全天中占的比例较大,约占全天总蒸散量的47%;草坪草的生长速率和地上生物量的积累由大到小几乎都是:F5>F4>F3>F2>F1;各月草地早熟禾净光合速率、蒸腾速率和气孔导度的变化大致是一致的,呈倒“U”型。
     (3)同种气象因子对不同月份的植物水汽通量、光合指标影响程度是不相等的,且同一月份的水汽通量、光合指标对不同气象因子的响应程度也不一样。水汽通量、光合指标对太阳辐射、气温的响应最显著,风速次之;它们与空气相对湿度一直呈极显著负相关关系,风向次之。
     (4)3月~11月的参考作物蒸散量ETo随太阳辐射、气温等气象因子的变化逐月减少;蒸渗仪法测量计算得到的作物系数比涡度相关法的大,且二者总体变化曲线一致;在相同条件下,土壤含水量越大,Ks越大。利用涡度相关法测出的水汽通量推算该试验区草坪草3月~11月的总蒸散量约为560.6mm。
With the area of urban lawn increasing, the lawn ET has become one of the water balance important factor on maintaining the global ecosystem, long-term observations, statistics and analysis the water vapor flux of the turf in large-scale range play an important role on urbanization and global climate change. The test by the eddy covariance method and lysimeter method, comparative studies water vapor flux, photosynthetic indicators of plants in two scales and under different irrigation, and correlation analysis combinated with meteorological factors. The results showed that:
     (1) Water vapor flux and heat flux trends are inverted "U" shape, during the day is positive, night is negative, which is contrary to the CO2flux curve; except for March, other water vapor flux curve and the latent heat flux is almost coincident, and both curves is far higher than the sensible heat flux; hours throughout the day transpiration is reduced with the shorter sunshine hours, the basic performance is the summer maximum, spring and autumn, winter minimum; annual intermediate periods Bowen ratioβ smaller, winter and spring larger; the combined effect of the CO2flux and vapor flux causes WUE day dynamic curve up and down, the change is more complex.
     (2) Moisture conditions can significantly affect grass ET. ET follow "the greater the soil moisture, the ET is greater" the law, the same period sunny than cloudy. The grass ET of restricted irrigation in August was bimodal, other bluegrass ET showed a single peak and the peak before the day the maximum temperature value; ET reduces with the solar radiation and temperature smaller monthly; The grass ET between11:00~15:00takes a large proportion of the day, about47%; the grass growth rate and all of the above ground biomass accumulation from big to small:F5> F4> F3> F2> F1; the changes of grass net photosynthetic rate, transpiration rate and stomatal conductance each month are generally consistent with U-type.
     (3) The influence of the same kind of meteorological factors on different plant water vapor flux, photosynthetic indexes is not equal, and the response of water vapor flux, photosynthetic indexes in the same month to different meteorological factors are not the same. The response of water vapor flux, photosynthetic indexes to solar radiation, temperature is most significant, followed by wind speed; they has shown a highly significant negative correlation with air relative humidity, wind direction followed.
     (4) The ET0in March to November changes with solar radiation, temperature and other meteorological factors reduced monthly; the crop coefficient measured by lysimeter method is larger than the eddy covariance method, under the same conditions, the greater the soil moisture content, the larger the Ks. The water flux using the eddy covariance method can calculate all of the experimental lawn grass evapotranspiration about560.6mm from March to November.
引文
1.陈永金,陈亚宁,薛燕.干旱区植物耗水量的研究与进展[J].干旱区资源与环境,2004,18(6):152-158.
    2.高凯.北京地区六种草坪草蒸散量和光合作用的研究[D].甘肃:甘肃农业大学,2004:52-66.
    3. 巨关升,刘奉觉,郑世锴,等.稳态气孔计与其它3种方法蒸腾测值的比较研究[J].林业科学研究,2000,13(4):360-365.
    4.康绍忠,刘晓明,熊运章,等.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994:74-79.
    5.柯晓新,杨兴国,张旭东.农田蒸散测算的微气象学方法[J].干旱地区农业研究,1995,13(1):31-40.
    6.李菊.千烟洲人工针叶林水汽通量特征与水分利用效率研究[D].北京:中国农业大学,2006:45-49.
    7.李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应I碳循环的分室模型、碳输入与贮量[J].植物学通报,1998,15(2):38-43.
    8.李燕.三种冷季型草坪草耗水量研究[J].山西林业,2008,(6):37-38.
    9.李敏.浑善达克沙地重叠植被生态需水量分析研究[D].内蒙:内蒙古农业大学,2008:52-57.
    10.李敏霞,牛冬杰.湿地生态系统碳平衡及碳核算方法综述[J].四川环境,2011,30(1):133-138.
    11.李熙波,杨玉盛.城市草坪生态系统碳吸存研究进展[J].草原与草坪,2009,(3):79-85.
    12.罗雨,刘海军,李艳.北京地区参考作物蒸散量变化趋势及其主要影响因素分析[J].干旱地区农业研究,2010,28(1):34-38.
    13.罗茂婵,苏德荣,韩烈保.城市草坪节水灌溉方式的评价方法[J].节水灌溉,2005,(3):15-18.
    14.马安娜,陆健健.湿地生态系统碳通量研究进展[J].湿地科学,2008,6(2):116-123.
    15.屈艳萍,康绍忠,张晓涛,等.植物蒸发蒸腾量测定方法述评[J].水利水电科技进展,2006,26(3):72-77.
    16.申卫军,彭少麟.热脉冲(Heat Pulse)法原理及其应用[J].资源生态环境网络研究动态,2000,11(2):22-27.
    17.司建华,冯起,席海洋,等.极端干旱区柽柳林地蒸散量及能量平衡分析[J].干早区地理,2006,29(4):517-522.
    18.宋霞,刘允芬,徐小锋.箱法和涡度相关法测碳通量的比较研究[J].汀西科学,2003,9(3):206-210.
    19.宋长春,杨文燕,徐小锋,等.沼泽湿地生态系统土壤CO2和CH4排放动态及影响因素[J].环境科学,2004,25(4):1-6.
    20.孙强,韩建国,毛培胜.草地早熟禾与高羊茅蒸散量的研究[J].草业科学,2003,20(1):16-19.
    21.孙伟,David Williams利用稳定性同位素区分河岸C4草地生态系统夜晚碳通量[J].湿地科学,2008,6(2):271-277.
    22.唐其文.不同耕作方式下紫色水稻土农田生态系统甲烷排放的研究[D].重庆:西南大 学,2011:57-68.
    23.田红,伍琼,童应祥.安徽省寿县农田能量平衡评价[J].应用气象学报,2011,22(3):356-361.
    24.王安志,裴铁璠.森林蒸发蒸腾测算方法研究进展与展望[J].应用生态学报,2001,12(6):933-937.
    25.王介民,高峰,刘绍民.流域尺度ET的遥感反演[J].遥感技术与应用,2003,18(5):332-338.
    26.王文杰,祖元刚,王辉民,等.基于涡度协方差法和生理生态法对落叶松林CO2通量的初步研究[J].植物生态学报,2007,31(1):118-128.
    27.工妍,张旭东,彭镇华,等.森林生态系统碳通量研究进展[J].世界林业研究,2006,6(3):12-17.
    28.吴擎龙.田间腾发条件下水热运移数值模拟[D].北京:清华大学,1993:74-78.
    29.伍琼.淮河流域农田近地层湍流通量特征研究[D].安徽:安徽农业大学,2009:76-79.
    30.夏军,丰华丽.生态水文学——概念、框架和体系[J].灌溉排水学报,2003,22(1):4-10
    31.肖磊,刘磊,李尧.生态水文监测在天津地区实施的必要性研究[J].中国纵横科技,2011,(9):253.
    32.谢贤群,左大康,唐登银.农田蒸发-—测定与计算[M].北京:气象出版社,1991:15-36.
    33.辛晓洲,田国良,柳钦火.地表蒸散定量遥感的研究进展[J].遥感学报,2003,7(3):234-239.
    34.邢勇.美国全球变化研究现状[J].气象,1999,25(1):3-8.
    35.徐淑新,张丽华,郭笃发.草地生态系统碳通量研究进展[J].环境科学与管理,2010,35(7):146-149.
    36.姚玉刚,蒋跃林,李俊.农田CO2通量观测的研究进展[J].农业上程科学,2007,(6):626-629.
    37.杨智杰.杉木、木荷人工林碳吸存与碳平衡研究[D].福建:福建农林大学,2007:72-78.
    38.杨建,韩烈保,苏德荣.等.草坪蒸散研究概述[J].草业科学,2005,22(5):95-100.
    39.于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006:52-58.
    40.于海青,丁国安.条件采样法测量大气垂直通量[J].气象科技,2002,30(4):237-240.
    41.张旭东,彭镇华,漆良华,等.生态系统通量研究进展[J].应用生态学报,2005,16(10):1976-1982.
    42.张劲松,孟平,尹昌君.植物蒸发蒸腾耗水量计算方法综述[J].世界林业研究,2001,14(2):23-28.
    43.张耀生,赵新全,赵双喜,等.三江源区温性草原蒸散量与主要影响因子的相关分析[J].中国沙漠,2010,30(2):363-368.
    44.张永强,沈彦俊,刘昌明,等.华北平原典型农田水、热与CO2通量的测定[J].地理学报,2002,57(3):333-342.
    45.张永忠,李宝庆.用水量平衡法计算农田实际蒸发量[G].农田蒸发研究,北京:气象出版社,1991:15-28.
    46.张伟,张宏,泽柏.我国高寒草甸碳循环研究进展[J].山地学报,2006,24(10):266-274.
    47.赵锦梅.祁连山东段不同退化程度高寒草地土壤有机碳储量的研究[D].甘肃:甘肃农业大学,2006:64-72.
    48.赵双喜,张耀生,赵新全,等.祁连山北坡草地蒸散量及其与影响因子的关系[J].西北农林科技大学学报(自然科学版),2008,36(1):109-115.
    49.郑宁.低丘山地人工林显热通量空间代表性和尺度效应的研究[D].安徽:安徽农业大学,2010:72-78.
    50.钟华平,樊江文,于贵瑞,等.草地生态系统碳循环研究进展[J].草地学报,2005,1(13):67-72.
    51.朱治林.用波文比-能量平衡法估算农田蒸发量与Lysimeter的比较[G].农田蒸发研究,北京:气象出版社,1991:71-79.
    52.左大康.我国农田蒸发测定方法和蒸发规律研究的近期进展[G].农田蒸发研究,北京:气象出版社,1991:1-4.
    53. Baker J M,Griffis T J.Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques[J].Agricultural and Forest Meteorology,2005,(26):145-156.
    54. Baldocchi D D,Hicks B B,Meyers T P. Measuring biosphere-atmosphere exchange of biologically related gases with micrometeorological methods[J]. Ecology,1988,(69):1331-1340.
    55. Baldocchi D D,Falge E,Gu L H.el al.Fluxnet:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,water vapor,and energy flux densities[J].Bulletin of the American Meteorological Society,2001,(82):2415-2434.
    56. Baldocchi D D.Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past. present and future[J].Global Change Biology,2003,(9):479-492.
    57. Bausch W C.BERNARD T M.Spatial averaging Bowen-ratio comparisions with lysimeter evapotranspiration[J].Agron J,1997,(89):730-766.
    58. Brix H,Sorrell B K,Lorenzen B.Are Phragmites dominated wetlands a net source or net sink of greenhouse gases [J].Aquat.Bot,2001,(69):313-324.
    59. Canada.National Climate Change Process[J]. National Sinks Tables Foundation,1998,(6):71.
    60. Dennis D,Baldocchi,Christoph A.et al.Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest[J].Agricultural and Forest Meteorology,1997,(83):147-170.
    61. Dixon R K.Carbon pools and flux of global forest ecosystems[J].Science,1994,(5):265-171.
    62. FAO.Global Forest Resources Assessment 2000[R].Main Report,2001,(6):3-20.
    63. Ivan Janssens A,Andrew Kowalski.S:Reinhart Ceulemars.Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model[J].Agricultural and Forest Meteorology,2001, (106):61-69.
    64. Keeling C D.The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J].Geochimica et Cosmochimica Acta,1958,13(4):322-334.
    65. Law B E,Falge E.,Gu L.et al.Environmental controls over carbon dioxide and water vapour exchange of terrestrial vegetation[J].Agricultural and Forest Meteorology,2002,(113):97-120.
    66. Ojima D s,Dirk B O M,Gleovn E P.Owens by C E.Assessment of C budget for grasslands anddrylands of the world [J].Water Air Soil Pollut,1993,(70):95-109.
    67. Ryan M G,Binkley D,Fownes J H,et al.An experimental test of the causes of forest growth decline with stand age[J]. Monograph,2004,(74):393-414.
    68. Schimel D,Melillo J,Tian H Q,et al.Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States[J].Science,2000,287(5460):2004-2006.
    69. Smith M,R G Allen,J L Monteith,et al.Report on the Export Consultation on revision of FAO methodologies for crop water requirement[R].Rome:FAO,1992(12):1-50.
    70. Wassmann R,Neue H U,Lantin R S.Temporal patterns of methane emissions from rice fields treated by differentmodes of N application.Joumalof Geophysical Research,1994,(99):16457-16462.
    71. Woodward F I,Smith T.M.Global photosynthesis and stomatal conductance:modeling the controls by soil and climate[J].Botanical Resources,1994,(20):1-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700