用户名: 密码: 验证码:
一类新型纤维状蛋白质及其对生物矿化的调控作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双壳纲贝壳韧带是一类由蛋白质和文石纤维组成的天然有机—无机复合生物材料,在生物中主要起连接两个壳瓣并打开贝壳的功能。当闭壳肌收缩使贝壳关闭时,韧带储存有弹性能;当闭壳肌松弛时,韧带中储存的弹性能使贝壳打开。因此,贝壳韧带还是一类天然的弹性生物材料。对其结构、组成和性能等进行深入研究,可为高性能仿生材料的合成提供模板和科学依据。本文以我国北部湾常见的双壳纲大竹蛏和辐射荚蛏韧带为重点研究对象,以尖紫蛤韧带作对比研究。首先采用扫描电子显微镜、粉末X-射线衍射、傅立叶变换红外光谱和氨基酸分析对三种韧带的结构及化学组成进行研究,并运用静力学基本理论对韧带的受力情况进行分析。接着重点对在大竹蛏和辐射荚蛏韧带中新发现的纤维状蛋白质进行了较详细的研究。采用基质辅助激光解吸电离串联飞行时间质谱和液相色谱-电喷雾串联质谱对这种蛋白质进行鉴定,分析其组装机理;以傅立叶变换红外光谱对蛋白质二级结构进行测定并分析结构与功能的关系。然后以辐射荚蛏韧带纤维状蛋白质为模板在体外进行仿生矿化研究,探索韧带文石纤维的矿化机理。最后以荧光显微镜和荧光分光光度计对韧带的天然荧光进行初步探索。
     本文获得以下几方面主要成果:
     (1)建立了韧带新的三层结构模型。发现韧带内层文石纤维(直径100-200nm)是由大量的文石纳米颗粒相互粘结形成,纤维具有两种定向,即靠近背侧部,纤维由两侧向中轴线方向聚集,从前端向后端倾斜生长,并逐渐向腹侧面弯曲,最后垂直于腹侧面。首次发现韧带内层中存在的普遍公认的“生长线”是由断裂的“之”字形文石纤维形成,并认为这种“之”字形结构是韧带受到长期反复自外向内的压应力造成的。
     (2)发现大竹蛏和辐射荚蛏韧带中的纤维状蛋白质Solenin和K58(直径120-150nm)是一类同源于KRT1和KRT9的新型纤维状蛋白质。认为两者都是由同源于KRT9的Ⅰ型蛋白质单体和同源于KRT1的Ⅱ型蛋白质单体以平行排列的方式先形成异质二聚体,再相互交错以反平行排列方式形成四聚体,然后逐步组装成异质多聚体中间丝,最后再自组装成蛋白质纤维。这种纤维是物种为适应快速挖洞的生活习性而进化形成。
     (3) Solenin和K58吸水后可发生膨胀使弹性显著增加。蛋白质链中亲水性氨基酸残基与水分子之间形成的氢键,以及结构中"SGGG"、"SYGSGG"、"GGGGG"和“GGG”重复序列形成的“甘氨酸环”是这种膨胀性和弹性的主要来源。而Solenin和K58的高β-折叠结构含量(分别为41.76%和46.20%),赋予它们良好的抗拉强度和抗化学试剂腐蚀性能。
     (4)在常温常压不添加任何其它物质的情况下,以K58为基底,经由ACC相变途径合成获得了纯度95-100%的由大量纳米棒构成的文石超结构。这种纳米棒与韧带文石纤维形貌十分相似,都是由文石晶体颗粒以相同的结晶学定向相互粘结形成。认为K58表面酸性氨基酸残基的羧基具有与文石晶格相似的短程有序,从而使诱导形成的无定形碳酸钙(ACC)具有类似的短程有序,最终导致ACC择优相变成文石晶体。首次提出辐射荚蛏韧带内层文石纤维的形成是由K58控制的观点。
     (5)提出了一种新的文石纳米棒和超结构形成模式:即ACC先相变形成无序的文石纳米晶体。晶体不断生长融合,在内能和界面自由能的作用下,晶体发生旋转以获得相同的结晶学定向,并相互粘结形成纳米棒。通过布朗运动,胶体状的ACC以二维方式不断粘结在纳米棒四周并逐渐转变成更多的纳米棒,最终纳米棒聚集形成各种文石超结构。这种非传统的结晶模式为结晶学理论提供了重要的补充。
     (6)首次发现韧带内层中存在能产生蓝色、黄色、绿色和红色荧光的物质,并测得其最大激发波长为380nm,最大发射波长约为467nm。认为荧光的产生与内层酸不溶性蛋白质有关,而内层的Ca2+对荧光有增强作用。
Bivalve ligament is a kind of natural organic-inorganic biocomposite materials that comprise of proteins and aragonite fibers. It functions to connect the two valves and serves to open them in living organism. When the abductor muscles of the organism contract and the valves close, elastic energy is stored in the ligament; when the abductor muscles relax, this energy causes the valves open. Therefore, bivalve ligament is also a kind of natural elastic biomaterials. Thoroughly studying on ligament structure, composition, and properties can provide not only scientific data, but also templates for synthesizing of high performance biomimetic materials. This article focus on ligaments of bivalve Solen grandis and Siliqua radiata, as compared with that of bivalve Sanguinolaria acuta, those of which are the common species from Beibu Gulf in South China. Firstly, microstructures and chemical compositions of these ligaments were investigated by scanning electron microscope, powder X-ray diffraction, Fourier transform infrared spectroscopy, and amino acid composition analysis; the forces which act on ligaments were also analyzed using the statics basic axioms. Then, main attentions and detailed studies were paid to the novel fibrous proteins discovered from S. grandis and S. radiata ligaments. The proteins were identified by matrix assisted laser desoiption ionization tandem time of flight mass spectrometry and liquid chromatography electrospray ionization tandem mass spectrometry, and their assembly mechanism were also analyzed. Using Fourier transform infrared spectroscopy, we determined the secondary structures of the proteins and analyzed their structure-function relationships. To investigate the mineralization mechanism of aragonite fibers in ligaments, biomimetic mineralization research was carried out using fibrous protein from S. radiata ligament as a template in vitro. Finally, the natural fluorescence of ligaments was preliminarily studied using fluorescence microscope and fluorescence spectrophotometer.
     Main conclusions of this work are drawn as follows:
     (1) We established a novel three layer structural model of bivalve ligament and found that aragonite fibers (with diameter of100-200nm) in inner layer of ligaments are formed by lots of attached anagonite nanoparticles. These fibers show two different orientations, i.e., fibers at dorsal part arrange from two laterals to central axis and orient posteriorly inclining almost parallel to dorsal surface; then, they turn gradually to ventral part and orient vertical to ventral surface. In addition, we first found that the accepted "growth lines" in inner layer of ligaments are formed by fractured "zigzag" aragonite fibers. These "zigzag" structures, we believe, result from the long-term repeated compressive stress acting on ligaments.
     (2) We discovered that fibrous protein Solenin and K58of S. grandis and S. radiata ligament, respectively, are a new type of fibrous proteins, and both of them are homologous to keratin type Ⅱ cytoskeletal1(KRT1) and type Ⅰ cytoskeletal9(KRT9). The proteins assemble initially by type Ⅰ and type Ⅱ monomers homologous to KRT9and KRT1, respectively, to form heterodimers in parallel manner; then, heterodimers join side by side in a staggered antiparallel manner to form tetramers; after that, heteropolymer intermediate filaments are formed gradually, and finally they self-assemble into protein fibers. We consider that these fibers are evolved to adapt the rapid burrowing life habits of those species.
     (3) Solenin and K58show remarkable expansibility and elasticity after absorbing water. These properties are coming mainly from the hydrogen bonds that formed between water molecules and hydrophilic amino acids in the protein, and from the "Glycine-loops" formed by "SGGG","SYGSGG","GGGGG", and "GGG" repeat sequences. While, the high β-sheet contents of Solenin (41.76%) and K58(46.20%) give the proteins excellent tensile strength and corrosion resistance properties.
     (4) With no additives and using K58as substrate, we obtained almost pure (95-100%) aragonite superstructures with lots of nanorods via transformation of ACC at ambient conditions. These nanorods, which are formed by attached aragonite crystals in the same crystallographic orientation, show morphology strikingly similar to aragonite fibers in ligaments. We believe the carboxyl groups of acidic amino acid residues of K58, which have short-range order similar to aragonite lattice, induce short-range order amorphous calcium carbonate (ACC) formation, resulting in the preferential transformation of ACC into aragonite. Meanwhile, we first propose that the formation of aragonite fibers in S. radiata ligament is controlled by K58.
     (5) We propose a new formation mode of aragonite nanorods and superstructures. Firstly, ACCs transform into disordered aragonite nanocrystals. Then, these crystals grow gradually, fuse with each other, rotate to get the same crystallographic orientation with driving force coming from the decrease of internal energy and removing of surface energy, and attach to form a nanorod. After that, colloidal ACCs attach to the rod in a2D maner by Brownian motion and evolve into more nanorods. Finally, aragonite superstructures with various morphologies are formed by continual aggregating of nanorods. This unconventional crystallization mode provides an important supplement for theory of crystallography.
     (6) We first discover that the inner layer of S. grandis, S. radiata, and S. acuta ligaments contain substances that can emit blue, yellow, green, and red fluorescence. The maximum excitation and emission wavelengths of these substances are380and467nm, respectively. We consider that this fluorescence is closely related to acid insoluble proteins in the inner layers of the ligaments, and it can be highlighted by Ca2+
引文
[1]任淑仙.无脊椎动物学[M].北京:北京大学出版社,2007.182
    [2]Kitagawa, M., Li, P. Physical properties of the inside ligament of the scallop shell [J]. J. Mater. Sci.,2004,39:6855-6856
    [3]Ono, K. Functional gradient structure and properties of a bivalve hinge ligament [J]. MRS. Bulletin.,1995,20:48-49
    [4]Ono, K., Kikuch, Y, Higashi, K., et al. Elastic anisotropy of bivalve hinge-ligament [J]. Biomechanics,1990,23:307-312
    [5]Denny, M., Miller, L. Jet propulsion in the cold:mechanics of swimming in the Antarctic scallop Adamussium colbecki [J]. J. Exp. Biol.,2006,209:4503-4514
    [6]Williams, A. B., Porter, H. J. A ten-year study of meroplankton in North Carolina eatuaries: occurrence of postmetamorphal bivalves [J]. Ches. Sci.,1971,12:26-32
    [7]Trueman, E. R. The ligament of Tellina tenuis [J]. Proc. zool. Soc.Lond.,1949,114: 717-742
    [8]Trueman, E. R. Observations on the ligament of Mytilus edulis [J]. Q. J. Micros Sci.,1950, 91:225-235
    [9]Trueman, E. R. The structure, development, and operation of the hinge ligament of Ostrea edulis [J]. Q. J. Micros. Sci.,1951,92:129-140
    [10]Owen, G., Trueman, E. R., Yonge, C. M. The ligament in the lamellibranchia [J]. Nature, 1953,171:73-75
    [11]Waller, T. R. The evolution of ligament systems in the Bivalvia. In:Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge, Edinburgh,1986 (B. Mortoned.),1990, pp.49-71. Hong Kong University Press, HongKong
    [12]Yonge, C. M., F. R. S. Significance of the ligament in the classifcation of the Bivalvia [J]. Proc. R. Soc. Lond. B.,1978,202:231-248
    [13]Carter, J.G. Evolutionary significance of shell micro structure in the Paleotaxodonta, Pteriomorphia and sofilibranchia (Bivalvia:Mollusca). In:Skeletal biomineralization: patterns, processes, and evolutionary trends (J.G. Carter ed.) [M],1990, pp.135-296. Van Nostrand Reinhold, New York
    [14]Sartori, A. F., Ball, A. D. Morphology and postlarval development of the ligament of Thracia Phaseolina (Bivalvia:Thraciidae), with a discussion of model choice in allometric studies [J]. J. Mollus. Stud.,2009,75:295-304
    [15]Trueman, E. R. General features of Bivalvia. Ligament. In:Treatise on invertebrate paleontology, Part N, Mollusca 6, Bivalvia,1969, Vol.2 (R. C. Moore ed.), pp. N58-N64. Geological Society of America and University of Kansas Press
    [16]Trueman, E. R. The structure of the ligament of Petalion (Perna) [J]. J. Mollus. Stud., 1954,30:160-166
    [17]Thomas, R. D. K., Maini, P. K., Wathen, A. J. A numerical approach to the study of spatial pattern formation in the ligaments of Arcoid bivalves [J]. B. Math. Biol.,2002, 64:501-530.
    [18]Trueman, E. R. The structure of the ligament of the Semelidae [J]. J. Mollus. Stud.,1953, 30:30-36.
    [19]Trueman, E. R. The ligament of Pecten [J]. Q. J. Micros. Sci.,1953,94:193-202
    [20]Marsh, M. E., Sass, R. L. Matrix-minerla relationships in the scallop hinge ligament [J]. J. ultrastruc. Res.,1981,76:57-70
    [21]Bevelander G, Nakahara H. An electron microscope study of the formation of the ligament of Mytilus edulis and Pinctada radiate [J]. Calcif. Tiss. Res.,1969,4:101-112
    [22]Kahler, G, A., Sass, R. L., Fisher F M. The fine structure and crystallography of the ligament of Spisula solidissima (Mollusca:Bivalvia:Mactridae) [J]. J. Comp. Physiol., 1976,109:209-220
    [23]Mano, K., Watabe, N. Scanning electron microscope observations on the calcified layers of the ligament of Mercenaria mercenaria (L.) and Brachidontes exustus (L.) (Pelecypoda) [J]. Biomineralization,1979,10:25-32
    [24]Marsh, M. E., Sass, R. L. Aragonite twinning in the molluscan bivalve hinge ligament [J]. Science,1980,208:1262-1263
    [25]张刚生,严俊,丁世磊.贝壳韧带微结构的高分辨扫描电镜研究[J].广西大学学报(自然科学版),2006,1(2):103-107
    [26]张刚生,冯庆玲.青蛤贝壳韧带的结构色及微结构[J].矿物岩石,2006,26(3):1-5
    [27]严俊,张刚生,张伟钢,等.淡水褶纹冠蚌贝壳韧带结构色的研究[J].海南大学学报自然科学版,2007,25(4):393-396
    [28]Ubukata, T. A theoretical morphologic analysis of bivalve ligaments [J]. Paleobiology, 2003,29:369-380
    [29]Kahler, G. A., Fisher, F. M., Sass, R. L. The chemical composition and mechanical properties of the hinge ligament in bivalve mollusks [J]. Bio, Bull.,1976,151:161-181
    [30]Beedham, G. E. Observations on the non-calcareous component of the shell of the lamellibranchia [J]. Q. J. Micros. Sci.,1958,99:341-357
    [31]Hare, P. E. Amino acids in the proteins from aragonite and calcite in the shells of Mytilus californianus [J]. Science,1963,139:216-217
    [32]Marsh, M., Hamilton, G., Sass, R. The crystal sheaths from bivalve hinge ligaments [J]. Calcif. Tiss. Res.,1978,25:45-51
    [33]Kikuchi, Y., Tamiya, N. Nozawa, T., et al. Non-destructive detection of methionine sulfoxide in the resilium of a surf clam by solid-state 13C-NMR spectroscopy [J]. Eur. J. Biochem.,1982,125:575-577
    [34]Kikuchi, Y., Tamiya, N. Infrared spectroscopic studies on the resilium of a surf clam, spisula (pseudocardium) sachalinensis [J]. Bull. Chem. Soc. Jpn.,1984,57:122-124
    [35]Kikuchi, Y., Tsuchikura, O., Hirama, M., et al. Desmosine and isodesmosine as cross-links in the hinge-ligament protein of bivalves 3,3'-methylenebistyrosine as an artifact [J]. Eur. J. Biochem.,1987,164:397-402
    [36]Kikuchi, Y., Tamiya, N. Chemical taxonomy of the hinge-ligament proteins of bivalves according to their amino acidcompositions [J]. Biochem. J.,1987,242:505-510
    [37]Kikuchi, Y., Higashi, K., Tamiya, N. Diastereomers of methionine S-Oxide in the hinge-ligament proteins of molluscan bivalve species [J]. Bull. Chem. Soc. Jpn.,1988, 61:2083-2087
    [38]Kelly, R. E., Rice, R. V. Abductin:a rubber-like protein from the internal triangular hinge ligament of pecten [J]. Science,1967,155:208-210
    [39]Cao, Q., Wang, Y., Bayley, H. Sequence of abductin, the molluscan'rubber' protein [J], Curr. Biol.,1997,7:677-678
    [40]Bochicchio, B., Pepe, A., Tamburro, A. M. Circular dichroism studies on repeating polypeptide sequences of abductin [J]. Chirality,2005,17:364-372
    [41]Bochicchio, B., Oronoz, F. J., Pepe, A., et al. Synthesis of and structural studies on repeating sequences of abductin [J]. Macromol. Biosci.,2005,5:502-511
    [42]Saruwatari, K. et al. Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata [J]. Biomaterials,2009,30:3028-3034
    [43]Stenzel, H. B. Aragonite in the resilum of oysters [J]. Science,1962,136:1121-1122
    [44]Trueman, E. R. Observations on certain mechanical properties of the ligament of Pecten [J]. J. Exp. Biol.,1953,30:453-467
    [45]Alexander, R. M. Rubber-like properties of the inner hinge-ligament of pectinidae [J]. J. Exp. Biol.,1966,44:119-130
    [46]Bowie, M. A., Layes, J. D., Demont, M. E. Short communication damping in the hinge of the scallop Placopecten Magellanicus [J]. J. Exp. Biol.,1993,175:311-315
    [47]张刚生,严俊.一类新型天然结构色宝石材料的初步研究[J].矿产与地质,2006,20(3):323-324
    [48]张刚生.大珠母贝韧带中的光子晶体型结构[J].科学通报,2007,52(2):240-242
    [49]张刚生,李浩璇.双壳纲韧带文石纤维的纳米形貌及光学反射特征[J].矿物岩石,2008,28(3):9-13
    [50]Zhang, G. S., Huang, Z. Q. Two-dimensional amorphous photonic structure in the ligament of bivalve Lutraria maximum [J]. Optics, Express.2010,18:13361-13367
    [51]张伟钢,严俊,汪港,等.一种天然湿敏性二维可调光子带隙材料及其光学性能研究[J].无机材料学报,2009,24(1):57-60
    [52]唐建,张刚生.裂纹格特蛤韧带中的天然生物光子结构[J].材料科学与工程学报,2009,27(6):931-933
    [53]Parker, A. R., McPhedran, R. C., McKenzie, D. R., et al. Aphrodite's iridescence [J]. Nature,2001,409:36-37
    [54]Parker, A. R., Welch, V. L., Driver, D., et al. Structural colour-opal analogue discovered in a weevil [J]. Nature,2003,426:786-787
    [55]Zi, J., Yu, X., Li, Y., et al. Coloration strategies in peacock feathers [J]. PNAS,2003, 100:12576-12578
    [56]Vigneron, J. P., Rassart, M., Vertesy, Z., et al. Optical structure and function of the white filamentary hair covering the edelweiss bracts [J]. Phys. Rev. E.,2005,71:099906
    [57]Vigneron, J. P., Colomer, J. F., Vigneron, N. et al. Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea(Coleoptera) [J]. Phys. Rev. E.,2005,72: 061904.
    [58]李勃,周济,李龙土.等.鲍鱼壳中的一维光子带隙结构[J].科学通报,2005,50(13):1422-1424
    [59]Mann, S. Biomineralization:Principles and concepts in bioinorganic materials chemistry [M], Oxford University Press,2001.6-23
    [60]戴永定等著.生物矿物学[M].北京:石油工业出版社,1994.第一章
    [61]崔福斋等著.生物矿化[M].北京:清华大学出版社,2007.1-75
    [62]欧阳健明著.生物矿化的基质调控及仿生应用[M].北京:化学工业出版社,2006.
    [63]Rajam, S., Heywood, B. R., Walker, J. B. A., et al. Oriented crystallization of CaCO3 under compressed monolayers. Part Ⅰ. Morphological studies of mature crystals [J]. J. Chem. Soc. Faraday. Trans.,1991,87:727-734
    [64]Mann, S., Heywood, B. R., Rajam, S. Controlled crystallization of CaCO3 under stearic acid monolayers [J]. Nature,1988,334:692-695
    [65]Heywood, B. R., Mann, S. Molecular construction of oriented inorganic materials: controlled nucleation of calcite and aragonite under compressed Langmuir monolayers [J]. Chem. Mater.,1994,6:311-318
    [66]Xu, G., Yao, N., Aksay, I. A., et al. Biomimetic synthesis of macroscopic-scale calcium carbonate thin films. Evidence for a multistep assembly process [J]. J. Am. Chem. Soc. 1998,120:11977-11985
    [67]Xue, Z. H., Hu, B. B., Jia, X. L., et al. Effect of the interaction between bovine serum albumin Langmuir monolayer and calcite on the crystallization of CaCO3 nanoparticles [J]. Mater. Chem. Phys.,2009,114:47-52
    [68]欧阳健明,陈德志.自组装膜调控下生物矿物晶体的生长[J].化学进展,2005,17:203-208
    [69]Kuther, J., Seshadri, R., Knollb, W., et al. Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiols on gold [J]. J. Mater. Chem.1998,8:641-650
    [70]Aizenberg, J., Black, A. J., Whitesides, G. M. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver [J]. J. Am. Chem. Soc.1999,121:4500-4509
    [71]Balz, M., Barriau, E., Istratov, V., et al. Controlled crystallization of CaCO3 on hyperbranched polyglycerol adsorbed to self-assembled monolayers [J]. Langmuir.2005, 21:3987-3991
    [72]王荔军,郭中满,李铁津.生物矿化纳米结构材料与植物硅营养[J].化学进展,1999,11:119-128
    [73]Hosoda, N., Kato, T. Thin-film formation of calcium carbonate crystals:effect of functional groups of matrix polymers [J]. Chem. Mater.2001,13:688-693
    [74]Kotachi, A., Imai, H. Development of ordered calcium carbonate microarrays from polymorph specific planar films [J]. Chem. Lette.2006,35:204-205
    [75]杨林,丁唯嘉,安英格.等.以葡聚糖为模板控制合成文石型碳酸钙[J].高等学校化学学报,2004,25:1403-1406
    [76]Keene, E. C., Evans, J. S., Estroff, L. A. Matrix interactions in biomineralization: aragonite nucleation by an intrinsically disordered nacre polypeptide, nl6N, associated with α β-chitin substrate [J]. Cryst. Growth Des.2010,10:1383-1389
    [77]Lakshminarayanan, R., Valiyaveettil, S., Loy, G. L. Selective nucleation of calcium carbonate polymorphs:role of surface functionalization and poly(vinyl alcohol) additive [J]. Cryst. Growth Des.2003,3:953-958
    [78]Ajikumar, P. K., Lakshminarayanan, R., Valiyaveettil, S. Controlled deposition of thin films of calcium carbonate on aatural and synthetic templates [J]. Cryst. Growth Des. 2004,4:331-335
    [79]Shi, S., Su, Z., Wei, H., et al. Fabrication of aragonite rosette superstructure through the weak interaction between nonionic polymers and Ca2+[J]. J. Appl. Poly. Sci.2010,117: 3308-3314
    [80]戴永定,沈继英.生物矿化作用机理[J].动物学杂志,1995,30:55-58
    [81]Falini, G., Albeck, S., Weiner, S., et al. Control of aragonite or calcite polymorphism-by mollusk shell macromolecules [J]. Science,1996,271:67-69
    [82]Falini, G. Crystallization of calcium carbonates in biologically inspired collagenous matrices [J]. Int. j. Inorg. Mater.2000,2:455-461
    [83]Shena, F. H., Feng, Q. L., Wang, C. M. The modulation of collagen on crystal morphology of calcium carbonate [J]. J. Cryst. Growth.2002,242:239-244
    [84]Mehta, N., Hede, S. Spider silk calcite composite [J]. Hypothesis.2005,3:21-25
    [85]Feng, Q. L., Pu, G., Pei, Y. et al. Polymorph and morphology of calcium carbonate crystals induced by protiens extracted from mollusk shell [J]. J. Cryst. Growth.2000, 216:459-465
    [86]张勇,肖锐,凌立,等.珍珠质水溶性基质蛋白的分离纯化及其对碳酸钙结晶的影响[J].海洋科学,2004,28:33-37
    [87]Lee, S. W., Choi, C. S. High-rate growth of calcium carbonate crystal using soluble protein from diseased oyster shell [J]. Cryst. Growth Des.2007,7:1463-1468
    [88]Yan, Z., Fang, Z., Ma, Z., et al. Biomineralization:functions of calmodulin-like protein in the shell formation of pearl oyster [J]. Biochi. Biophy. Act.2007,1770:1338-1344
    [89]Takeuchi. T., Sarashina. I., Iijima. M. et al. In vitro regulation of CaCO3 crystal polymorphism by the highly acidic molluscan shell protein Aspein [J]. FEBS Letters. 2008,582:591-596
    [90]Qiao, L., Feng, Q., Lu, S. In Vitro growth of nacre-like tablet forming:from amorphous calcium carbonate, nanostacks to hexagonal tablets [J]. Cryst. Growth Des.2008,8: 1509-1514
    [91]马玉菲,高永华,任冬妮,等.淡水文石珍珠可溶性有机质对CaCO3结晶的影响[J].岩石矿物学杂志,2009,28:605-610
    [92]Grassmann, O., Lobmann, P. Biominetic nucleation and growth of CaCO3 in hydrogels incorporating carboxylate groups [J]. Biomaterials.2004,25:277-282
    [93]Pastero, L., Costa, E., Alessandria, B. et al. The competition between (1014) cleavage and (1012) steep rhombohedra in gel grown calcite crystals [J]. J. Cryst. Growth.2003, 247:472-482
    [94]Grassmann, O., Muller, G., Lobmann, P. Organic-inorganic hybrid structure of calcite crystalline assemblies grown in a gelatin hydrogel matrix:relevance to biomineralization [J]. Chem. Mater.2002,14:4530-4535
    [95]Boggavarapu S., Chang J., Calvert P. A test for mineralization inhibition for calcium salts using agarose hydrogels [J]. Mater. Sci. Eng, C 2000,11:47-49.
    [96]陈均,张志成,张千峰.微乳液体系中介孔硫化镉纳米颗粒的制备[J].安徽工业大学学报,2010,27:30-33
    [97]Rautaray, D., Sainkar, S. R., Sastry, M. Thermally evaporated aerosol OT thin films as templates for the room temperature synthesis of aragonite crystals [J]. Chem. Mater. 2003,15:2809-2814
    [98]Zhang, X., Zhang, Z., Yan, Y. A facile surfactant-assisted approach to the synthesis of urchin-shaped aragonite micropatterns [J]. J. Cryst. Growth.2005,274:550-554
    [99]姚松年,缪炜,童华,等W/O、O/W型卵磷脂乳状液对CaCO3晶型的影响[J].无机化学学报,1998,14:222-225
    [100]吴冰,姚松年,童华,等.胆固醇对卵磷脂有序体中生产CaCO3晶型的影响[J].无 机化学学报,1999,15:341-346
    [101]Chen, S. F., Yu, S. H., Jiang, J., et al. Polymorph discrimination of CaCO3 mineral in an ethanol/water solution:formation of complex vaterite superstructures and aragonite rods [J]. Chem. Mater.2006,18:115-122
    [102]王静梅,姚松年.壳聚糖-氨基酸体系中碳酸钙模拟生物矿化的研究[J].无机化学学报,2002,18:249-254
    [103]Tong, H., Ma, W. T., Wang, L. L., et al. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process [J]. Biomaterials.2004,25:3923-3929
    [104]Manoli, F., Dalas, E. Calcium carbonate crystallization in the presence of glutamic acid [J]. J. Cryst. Growth.2001,222:293-297
    [105]Zhou, G. T., Zheng, Y. F. Synthesis of aragonite-type calcium carbonate by overgrowth technique at atmospheric pressure [J]. J. Mater. Sci. Latte.1998,17:905-908
    [106]Zhou, G. T., Yao, Q. Z., Ni, J., et al. Formation of aragonite mesocrystals and implication for biomineralization [J]. Am. Miner.2009,94:293-302
    [107]Liu, R., Xu. X., Cai, Y., et al. Preparation of calcite and aragonite complex layer materials inspired from biomineralization [J]. Cryst. Growth Des.2009,9:3095-3099
    [108]Lin, Y., Hu, Q., Chen J. Formation of metastable CaCO3 polymorphs in the presence of oxides and silicates [J]. Cryst. Growth Des.2009,9:4634-4641
    [109]Hou, W. T., Feng, Q. L. Crystal orientation preference and formation mechanism of nacreous layer in mussel [J]. J. Cryst. Growth.2003,258:402-408
    [110]Hosoda, N., Sugawara, A., Kato, T. Template effect of crystalline poly (vinyl alcohol) for selective formation of aragonite and vaterite CaCO3 thin films [J]. Macromolecules. 2003,36:6449-6452
    [111]Hunter, G. K. Interfacial aspects of biomineralization [J]. Solid. State. Mater. Sci.1996, 1:430-435
    [112]Hey wood, B. R., Mann, S. Oriented crystallization of CaCO3 under compressed monolayers. Part Ⅱ. Morphology, structure and growth of immature crystals [J]. J. Chem. Soc. Faraday. Trans.,1991,87:735-743
    [113]欧阳健明.单分子膜诱导下晶体生长中的晶格匹配[J].人工晶体学报,2005,34:459-465
    [114]Kiither, J., Nelles, G., Seshadri, R., et al. Templated crystallization of calcium and strontium carbonates on centred rectangular self-assembled monolayer substrates. Chem. Eur. J.1998,4:1834-1842
    [115]Lochhead, M. J., Letellier, S. R., Vogel, V. Assessing the Role of interfacial electrostatics in oriented mineral nucleation at charged organic monolayers [J]. J. Phys. Chem. B 1997,101:10821-10827
    [116]邰子厚.生物无机固态化学[J].无机化学学报,1994,10:330-337
    [117]Yang, L., Zhang, X., Liao, Z., et al. I nterfacial molecular recognition between polysaccharides and calcium carbonate during crystallization [J]. J. Inorg. Biochem. 2003,97:377-383
    [118]Voinescu, A. E., Kellermeier, M., Bartel, B., et al. Inorganic self-organized silica aragonite biomorphic composites [J]. Cryst. Growth Des.2008,8:1515-1521
    [119]Checa, A. G., Jimenez-Lopez, C., Rodriguez-Navarro, A., et al, Precipitation of aragonite by calcitic bivalves in Mg-enriched marine waters [J]. Mar. Biol.2007,150: 819-827
    [120]Penn, R. L., Banfield, J. F., Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:Insights from titania [J]. Geochim. Cosmochim. Acta.1999,63:1549-1557
    [121]Chemseddine, A., Moritz, T. Nanostructuring titania:control over nanocrystal structure, size, shape and organization [J]. Eur. J. Inorg. Chem.1999,1999:235-245
    [122]Penn, R. L., Banfield, J. F. Imperfect oriented attachment:dislocation generation in defect-free nanocrystals [J]. Science,1998,281:969-971
    [123]Banfield, J. F., Welch, S. A., Zhang, H. Z., et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J]. Science,2000,289:751-754
    [124]Penn, R. L., Oskam, G., Strathmann, T. J., et al. Epitaxial assembly in aged colloids [J]. J. Phys. Chem. B 2001,105:2177-2182
    [125]Penn, R. L., Stone, A. T., Veblen, D. R. Penn Defectsand disorder:probing the surface chemistry of heterogenite (CoOOH) by dissolution using hydroquinone and iminodiacetic acid [J]. J. Phys. Chem. B 2001,105:4690-4697
    [126]Alivisatos, A. P. Naturally aligned nanocrystals [J]. Science,2000,289:736-737
    [127]Liu, B., Zeng, H. C. Mesoscale organization of CuO nanoribbons:formation of "dandelions" [J]. J. Am. Chem. Soc.2004,126:8124-8125
    [128]He, T., Chen, D., Jiao X. Controlled synthesis of CO3O4 nanoparticles through oriented aggregation [J]. Chem. Mater.2004,16:737-743
    [129]Gehrke, N., Colfen, H., Pinna, N. Superstructures of calcium carbonate crystals by oriented attachment [J]. Cryst. Growth Des.2005,5:1317-1319
    [130]Yang, H. G., Zeng, H. C. Self-construction of hollow SnO(2) octahedra based on two-dimensional aggregation of nanocrystallites [J]. Angew. Chem. Int. Ed.2004,43: 5930-5933
    [131]Gower, L. A., Tirrell, D. A. Calcium carbonate films and helices grown in solutions of poly (aspartate) [J]. J. Cryst. Growth.1998,191:153-160
    [132]Wohlrab, S., Colfen, H., Antonietti, M. Crystalline, porous microspheres made from amino acids by using polymer induced liquid precursor phases [J]. Angew. Chem. Int. Ed.2005,44:4087-4092
    [133]Patel, V. M., Sheth, P., Kurz, A., et al. in Concentrated Colloidal Dispersions:Theory, Experiments, and Applications, ed. Markovic B. and Somansundaran P. American Chemical Society, Washington DC,2002
    [134]Raven, P.H., Johnson, G.B., Biology [M].6th edition. Mc Graw Hill, New York,2002. pp.905
    [135]张素萍.中国海洋贝类图鉴[M].北京:海洋出版社,2008.339
    [136]徐凤山,张素萍.中国海产双壳类图志[M].北京:科学出版社,2008.203-215
    [137]齐钟彦.中国经济软体动物[M].北京:中国农业出版社,1998.233-246
    [138]蔡英亚,谢绍河.广东的海贝[M].汕头:汕头大学出版社,2006.311-320
    [139]Trueman, E. R. Observations on the ligament of Nucula [J]. J. Mollus. Stud.,1952,29: 201-205
    [140]Trueman, E. R. The cardinal ligament of the Tellinacea [J]. J. Mollus. Stud.,1966,37: 111-117
    [141]张伟钢.双壳纲贝壳韧带和珍珠层的结构色及微结构研究[D].广西:广西大学,2009
    [142]Aluigi, A., Zoccola, M., Vineis, C., et al. Study on the structure and properties of wool keratin regenerated from formic acid [J]. J. Biol. Macromol.,2007,41:266-273
    [143]Movasaghi, Z., Rehman, S., Rehman I.ur. Fourier Transform Infrared (FTIR) spectroscopy of biological tissues [J]. Appl. Spectrosc. Rev.,2008,43:134-179
    [144]Bordenave, S.A., Badou, A., Gaume, B., et al. Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata [J]. J. Struct. Biol.,2010,171:277-290
    [145]陕西师范大学.用超声波处理制备畜禽毛角蛋白的方法[P].中国:200810018317.2,2008.10.08
    [146]贾如琰,何玉凤,王荣民,等.角蛋白的分子构成、提取及应用[J].化学通报,2008,(4):265-271
    [147]中华人民共和国卫生部.中华人民共和国国家标准《食品中氨基酸的测定》(GB/T5009.124-2003),2003,115-119
    [148]Shen, X.R., Kurihara, H., Takahashi, K. Characterization of molecular species of collagen in scallop mantle [J]. Food. Chem.,2007,102:1187-1191
    [149]Rama, S., Chandrakasan, G. Physico-chemical characterisation and molecular organization of the collagen from the skin of an air-breathing fish (Ophiocephalus striatus) [J]. J. Biosci.,1983,5:147-154
    [150]Bdolah, A., Keller, P. J. Isolation of collagen granules from the foot of the sea mussel, Mytilus galloprovincialis [J]. Comp. Biochem. Phys. B 1976,55:171-174
    [151]Mecham, R. P. Methods in elastic tissue biology:Elastin isolation and purification [J]. Methods,2008,45:32-41
    [152]Park, K. J., Jin, H. H., Hyun, C. K. Antigenotoxicity of peptides produced from silk fibroin [J]. Process. Biochem.2002,38:411-418
    [153]Lombardi, E. C., Kaplan, D. L. Preliminary characterization of resilin isolated from the cockroach, Periplaneta Americana [J]. Mater. Res. Soc. Symp. Proc.,1993,292:3-7
    [154]Zengqiong, H., Gangsheng, Z. A new structural model of bivalve ligament from Solen grandis [J]. Micron,2011,42:706-711
    [155]Drew, G. A. The habits and movements of the razor-shell clam Ensis directus [J]. Biolo. Bull,1907,12:127-140
    [156]Trueman, E. R. The dynamics of burrowing in Ensis [J]. Proc. R. Soc. Lond. B.,1967, 166:459-476
    [157]Trueman, E. R. Observations on the mechanism of the opening of the valves of a burrowing Lamellibranch Mya arenaria [J]. J. Exp. Biol.,1954,31:291-305
    [158]Hunter, W. R., Grand, D. C. Mechanics of the ligament in the bivalve Spisula solidissima in relation to mode of life [J]. J. Exp. Biol.,1966,44:119-130
    [159]同济大学航空航天与力学学院基础力学教学研究部.理论力学[M].上海:同济大学出版社,2005.6-21
    [160]Waite, J. H., Qin, X. X., Coyne, K. J. The pecutiar cottagens of mussel byssus [J]. Matrix. Biolo.,1998,17:93-106
    [161]Coyne, K. J., Qin, X. X., Waite, J. H. Extensible collagen in mussel byssus:a natural block copolymer [J]. Science,1997,277:1830-1832
    [162]Harrington, M. J., Waite, J. H. Short-order tendons:liquid crystal mesophases, metal-complexation and protein gradients in the externalized collagens of mussel byssal threads, in:Scheibel, T. Fibrous proteins, Molecular biology intelligence unit [M]. Landes Bioscience press, Austin,2008
    [163]Fratzl, P. Collangen structure and mechanics [M]. Springer Science Business Media, LLC, New York,2008
    [164]Shewry, P. R., Tatham, A. S., Bailey, A. Elastomeric proteins:structures, biomechanical properties, and biological roles [M]. Cambridge University Press, New York,2003
    [165]Scheibel, T. Fibrous proteins, Molecular biology intelligence unit [M]. Landes Bioscience, Austin,2008
    [166]邹丽敏,李博,刘文英.生物质谱技术的发展及在蛋白质结构研究中的应用[J].药学进展,2008,32:49-55
    [167]杨芃原,钱小红,盛龙生.生物质谱技术与方法[M].北京:科学出版社,2003.3-315
    [168]黄凌云,赵和平,丁勤学,等.生物质谱在蛋白质组学研究中的应用[J].现代仪器,2004,(1):7-12
    [169]陈晶,付华,陈益,等.质谱在肽和蛋白质序列分析中的应用[J].有机化学,2002,22:81-90
    [170]常雁,再帕尔·阿不力孜,王慕邹.串联质谱新技术及其在药物代谢研究中的应用进展[J].药学学报,2000,35:73-78
    [171]王涛,钟秀丽,梅旭荣,等.基于电喷雾电离串联质谱技术的植物脂质组学研究进展[J].生物化学与生物物理进展,2010,37:1074-1081
    [172]Cardamone, J. M. Investigating the microstructure of keratin extracted from wool: Peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR) [J]. J. Mol. Struct,2010,969:97-105
    [173]Tatham, A. S., Shewry, P. R. Comparative structures and properties of elastic proteins, in:Shewry, P. R., Tatham, A. S., Bailey, A. Elastomeric proteins:structures, biomechanical properties, and biological roles [M]. Cambridge University Press, New York,2003, pp.338-340
    [174]Szeverenyi, I., Cassidy, A. J., Chung, C.W., et al. The human intermediate filament database [J]. Hum. Mutat.2008,29:351-360 http://www.interfil.org
    [175]http://www.ncbi.nlm.nih.gov/protein/119395750
    [176]http://www.ncbi.nlm.nih.gov/protein/55956899
    [177]Morris, R. L., Hoffman, M. P., Obar, R.A., et al. Analysis of cytoskeletal and motility proteins in the sea urchin genome assembly [J]. Dev. Biol.,2006,300:219-237
    [178]董乃平,李洪东,梁逸曾.基于串级质谱信息进行蛋白质数据库搜索的结果可靠性分析[J].分析化学,2009,37:1473-1478
    [179]Geisler, N., Schunemann, J., Weber, K., et al. Assembly and architecture of invertebrate cytoplasmic intermediate filaments reconcile features of vertebrate cytoplasmic and nuclear lamin-type intermediate filaments [J]. J. Mol. Biol.1998,282:601-617
    [180]Aebi, U., Hnner, M., Troncoso, J., et al. Unifying principles in intermediate filament (IF) structure and assembly [J]. Protoplasma,1988,145:73-81
    [181]Coulombe, P. A., Fuchs, E. Elucidating the early stages of keratin filament assembly [J]. J. Cell. Biol.,1990,111:153-169
    [182]Steinert, P. M. The two-chain coiled-coil molecule of native epidermal keratin intermediate filaments is a type Ⅰ-type Ⅱ heterodimer [J]. J. Biol. Chem.,1990,265: 8766-8774
    [183]Herrmann, H., Aebi, U. Intermediate filaments and their associates:multi-talented structural elements specifying cytoarchitecture and cytodynamics [J]. Curr. Opin. Cell. Biol.,2000,12:79-90
    [184]Coyne, K. J., Waite, J. H. In search of molecular dovetails in mussel byssus:from the threads to the stem [J]. J. Exp. Biol.,2000,203:1425-1431
    [185]崔福斋,冯庆玲.生物材料学[M].北京:清华大学出版社,2004.33-41
    [186]Bellingham, C. M., Keeley, F. W. Elastin as a self-assembling biomaterial, in:Shewry, P. R., Tatham, A. S., Bailey, A. Elastomeric proteins:structures, biomechanical properties, and biological roles [J]. Cambridge University Press, New York,2003
    [187]Urry, D. W., Hugel, T., Seitz, M., et al. Ideal protein elasticity:the elastin models, in: Shewry, P. R., Tatham, A. S., Bailey, A. Elastomeric proteins:structures, biomechanical properties, and biological roles [M]. Cambridge University Press, New York,2003
    [188]朱厚础,聂世芳.蛋白质物理学概论[M].北京:化学工业出版社,2008.58-109
    [189]Hino, T., Tanimoto, M., Shimabayashi, S. Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere [J]. J. Colloid. Interf. Sci.,2003,266:68-73
    [190]孙向东,刘拥军,黄保续,等.蛋白质结构预测—支持向量机的应用[M].北京:科学出版社,2008.1-3
    [191]林亚静,刘志杰,龚为民.蛋白质结构研究[J].生命科学,2007,19:289-293
    [192]邹国林,周祥,郑忠亮.蛋白质结构研究技术的发展[J].信阳农业高等专科学校学报,2003,13:1-3
    [193]邓益斌,胡炳文,周平.类蜘蛛丝聚合物结构及分子运动的固体核磁共振研究[J].物理化学学报,2009,25:1427-1433
    [194]王渭,李崇慈,赵南生,等.BSRF圆二色谱研究进展[J].光谱学与光谱分析,1996,16:25-28
    [195]宋占军,姜厚理,公衍道,等.牛胰多肤(BPP)二级结构的红外光谱和圆二色谱分析[J].生物化学杂志,1995,11:717-720
    [196]杨序纲,吴琪琳.拉曼光谱的分析与应用[M].北京:国防工业出版社,2008.267-273
    [197]许以明.拉曼光谱及其在结构生物学中的应用[M].北京:化学工业出版社,2005.1-13
    [198]谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J].高等学校化学学报,2003,24:226-231
    [199]王建华,卫亚丽,文宗河,等.BSRF蛋白质结构的FT-IR研究进展[J].化学通报,2004,(7):482-486
    [200]Petsko, G. A., Ringe, D. Protein structure and function:from sequence to consequence [M]. New Science Press Ltd, London,2007
    [201]葛晓春.蛋白质结构与功能入门[M].北京:科学出版社,2009.4-16
    [202]Shen, X., Belcher, A. M., Hansma, P. K., et al. Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens [J]. J. Biol. Chem.,1997,272:32472-32481
    [203]Steinert, P. M., Mack, J. W., Korge, B. P., et al. Glycine loops in proteins:their occurence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins [J]. Int. J. Biol. Macromol.,1991,13:130-139
    [204]Barth, A. Infrared spectroscopy of proteins [J]. BBA-Bioenergetics.,2007,1767: 1073-1101
    [205]Kong, J., Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures [J]. Acta. Bioch. Bioph. Sin.,2007,39:549-559
    [206]Dong, A., Huang, P., Caughey, W. S. Protein secondary structures in water from second-derivative amide I infrared spectra [J]. Biochemistry.,1990,29:3303-3308
    [207]Dong, A., Huang, P., Caughey, W. S. Redox-dependent changes in β-extended chain and turn structures of cytochrome c in water solution determined by second derivative amide I infrared spectra [J]. Biochemistry.,1992,31:182-189
    [208]Haris, P. I., Severcan, F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media [J]. J. Mol. Catal. B-Enzym.,1999,7:207-221
    [209]Wojciechowska, E., Wlochowicz, A., Birczynska, A. W. Application of Fourier-transform infrared and Raman spectroscopy to study degradation of the wool fiber keratin [J]. J. Mol. Struct.,1999,511-512:307-318
    [210]Pelton, J. T., McLean, L. R. Spectroscopic methods for analysis of protein secondary structure [J]. Anal. Biochem.,2000,277:167-176
    [211]Sehnal, F., Sutherland, T. Silks produced by insect labial glands, in:Scheibel, T. Fibrous proteins, Molecular biology intelligence unit [J]. Landes Bioscience, Austin, 2008
    [212]Romer, L., Scheibel, T. The elaborate structure of spider silk:structure and function of a natural high performance fiber, in:Scheibel, T. Fibrous proteins, Molecular biology intelligence unit [M]. Landes Bioscience, Austin,2008
    [213]Meyers, M. A., Chen, P. Y., Lin, A.Y.M., et al. Biological materials:structure and mechanical properties [J]. Prog. Mater., Sci.2008,53:112
    [214]魏群.蛋白质结构与功能[M].北京:科学出版社,2008.80-87
    [215]Nassif, N., Gehrke, N., Pinna, N., et al. Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway [J]. Angew. Chem. Int. Ed.,2005,44:2-6
    [216]Pouget, E. M., Bomans, P. H. H., Goos, J. A. C. M., et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM [J]. Science,2009,323: 1455-1458
    [217]Kim, Y. Y., Hetherington, N. B. J., Noel, E. H., et al. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate [J]. Angew. Chem. Int. Ed.,2011, 50:12572-12577
    [218]Wang, Y. W., Kim, Y. Y., Stephens, C. J., et al. In situ study of the precipitation and crystallization of amorphous calcium carbonate (ACC) [J]. Cryst. Growth Des.,2012, 12:1212-1217
    [219]Compere, E. L., Bates, J. M. Determination of calcite:aragonite ratios in mollusc shells by infrared spectra [J]. Limnol. Oceanogr.,1973,18:326-331
    [220]Addadi, L., Raz, S., Weiner, S. Taking advantage of disorder:amorphous calcium carbonate and its roles in biomineralization [J]. Adv. Mater.,2003,15:959-970
    [221]Weiss, I. M., Tuross, N., Addadi, L., et al. Mollusc larval shell formation:amorphous calcium carbonate is a precursor phase for aragonite [J]. J. Exp. Zool.2002,293: 478-491
    [222]Politi, Y., Kalisman, Y. L., Raz, S., et al. Structural characterization of the transient amorphous calcium carbonate precursor phase in sea urchin embryos [J]. Adv. Funct. Mater.,2006,16:1289-1298
    [223]Politi, Y, Metzler, R. A., Abrecht, M., et al. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule [J]. Proc. Natl. Acad. Sci. U.S.A.2008,105:17362-17366
    [224]Nassif, N., Pinna, N., Gehrke, N., et al. Amorphous layer around aragonite platelets in nacre [J]. Proc. Natl. Acad. Sci. U.S.A.2005,102:12653-12655
    [225]Xiang, J., Cao, H., Warner, J. H., et al. Crystallization and self-assembly of calcium carbonate architectures [J]. Cryst. Growth Des.2008,8:4583-4588
    [226]Addadi, L., Weiner, S. Control and design principles in biological mineralization [J]. Angew. Chem. Int. Ed. Engl.,1992,31:153-169
    [227]Meenakshi, V. R., Martin, A. W., Wilbur, K. M. Shell repair in Nautilus macromphalus [J]. Mar. Biol.,1974,27:27-35
    [228]胡哲,尹继刚,姜宁,等.化学和生物发光的原理及其在生命科学研究中的应用[J].中国兽医学报,2008,28:732-742
    [229]刘阳子,倪士银,倪士峰,等.生物发光研究及其应用进展[J].西北药学杂志,2009,24:238-240
    [230]Hopkins, T. A., Seliger, H. H., White, E. H., et al. The chemiluminescence of firefly luciferin. A model for the bioluminescent reaction and identification of the product excited state [J]. J. Am. Chem. Soc.,1967,89:7148-7150
    [231]Wannlund, J., DeLuca, M., Stempel, K., et al. Use of 14C-carboxyl-luciferin in determining the mechanism of the firefly luciferase catalyzed reactions [J]. Biochem. Biophys. Res. Commun.,1978,81:987-992
    [232]Shimomura, O., Johnson, F. H. Peroxidized coelenterazine the active group in the photoprotein aequorin [J]. Proc. Natl. Acad. Sci. USA.1978,75:2611-2615
    [233]Shimomura, O. Luminescence of aequorin is triggered by the binding of two calcium ions [J]. Biochem. Biophys. Res. Commun.,1995,211:359-363
    [234]Shimomura, O., Johnson, F. H., Saiga, Y. Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea [J]. J. Cell. Comp. Physiol.,1962,59:223-239
    [235]Shimomura, O., Johnson, F. H., Morise, H. Mechanism of the luminescent intramolecular reaction of aequorin [J]. Biochemistry,1974,13:3278-3286
    [236]Prasher, D., McCann, R. O., Cormier, M. J. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein [J]. Biochem. Biophys. Res. Commun.,1985,126:1259-1268
    [237]Prasher, D. C, Eckenrode, V. K., Ward, W. W., et al. Primary structure of the Aequorea victoria green-fluorescent protein [J]. Gene,1992,111:229-233
    [238]Heim. R., Prasher, D. C., Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein [J]. Proc. Natl. Acad. Sci. USA.1994,91: 12501-12504
    [239]Heim, R., Cubitt, A., Tsien, R. Y. Improved green fluorescene [J]. Nature,1995,373: 663-664
    [240]王晓丽,邵卫星,单虎.绿色荧光蛋白研究进展[J].动物医学进展,2008,29:56-59
    [241]杨杰,张智红,骆清铭.荧光蛋白研究进展[J].生物物理学报,2010,26:1025-1035
    [242]邓超,黄大昉,宋福平.绿色荧光蛋白及其应用[J].中国生物工程杂志,2011,31:96-102
    [243]Wiedenmann, J., Oswald, F., Nienhaus, G. U. Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges [J]. IUBMB Life.,2009,61:1029-1042
    [244]Chudakov, D. M., Matz, M. V., Lukyanov, S., et al. Fluorescent proteins and their applications in imaging living cells and tissues [J]. Physiol. Rev.,2010,90:1103-1163
    [245]吴沛桥,巴晓革,胡海,等.绿色荧光蛋白GFP的研究进展及应用[J].生物医学工程研究,2009,28:83-86
    [246]Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem.1998,67:509-544
    [247]Lzkowicz, J. R. Principles of fluorescence spectroscopy [J]. Springer-Verlag, Berlin Heidelberg,2006
    [248]Gotte, T., Richter, D. K. Quantitative aspects of Mn-activated cathodoluminescence of natural and synthetic aragonite [J]. Sedimentology,2009,56:483-492
    [249]Kim, H. J., Kim, S., Jeon, H., et al. Fluorescence amplification using colloidal photonic crystal platform in sensing dye-labeled deoxyribonucleic acids [J]. Sensors. Actuat. B 2007,124:147-152
    [250]Li, H., Wang, J., Liu, F., et al. Fluorescence enhancement by heterostructure colloidal photonic crystals with dual [J]. J. Colloid. Interf. Sci.,2011,356:63-68
    [251]Shen, W., Li, M., Xu, L., et al. Highly effective protein detection for avidin-biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay [J]. Biosens. Bioelectron,2011,26:2165-2170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700