用户名: 密码: 验证码:
渤海湾与长江口稀有元素生物地球化学特征与沉积环境演变分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探讨水体和沉积物中稀有元素的生物地球化学行为对评价海洋生态环境和揭示海洋环境演变机制有着重要的科学意义。本学位论文选择我国典型海湾渤海湾及典型河口长江口水体和沉积物中的稀有元素作为主要研究对象,结合对生态环境对应关系的剖析,系统研究了水体和沉积物中稀有元素的地球化学分布特征、迁移机制、影响控制因素、潜在生态风险、来源、沉积环境演变趋势及与环境的关系,获得了一系列新的结果和认识:
     1.渤海湾海水中的溶解态稀有元素的生物地球化学特征和行为表明稀有元素具有明显的“拟营养盐”作用,溶解态稀有元素主要来源于河流输入与大气沉降。
     渤海湾海水中的硒主要以四价和六价两种形式存在,且以四价硒为主,约占总硒的66.7%;锑主要以三价和五价两种形式存在,且以五价锑为主,约占总锑的89%;碲主要以四价和六价碲两种形式存在,且以六价碲为主,约占总碲的71.4%。表层水中的硒、锑、砷和碲浓度均呈现出由湾近岸向湾中央降低的趋势,最高浓度出现在海河河口附近,这种分布模式主要与河流输入、环境条件和生物活动有关;在浮游植物生物量较高的区域,表层水中六价硒、五价锑和六价碲的浓度大于底层水,这与表层水中四价硒、三价锑和四价碲的生物氧化有关,说明生物过程是这些区域海水中硒、锑和碲的主控因素;河流输入对渤海湾硒、锑、砷和碲有重要的贡献,每年通过河流输入的硒、锑、砷和碲通量约为5.67、45.2、33.4和4.89吨/年。而表层水中的锡浓度呈现出由湾近岸向湾中央升高的趋势,其在海河河口附近的浓度也较高,这种分布模式主要与河流输入和大气输入有关;每年通过河流输入和大气沉降的锡通量分别为2和0.85吨/年。渤海湾海水中硒、锑、砷、碲和锡的浓度总体处于痕量水平,对水体生物系统没有明显的危害。硒、锑、砷、碲和锡均参与了生物循环,其与营养盐、叶绿素a浓度和浮游植物生物量有很好的相关性。其中,硒有利于浮游植物的生长;锑和砷通过磷的吸收途径被浮游植物摄取;碲和锡抑制浮游植物的生长,因此这些元素在一定程度上控制浮游植物初级生产的规模。
     2.渤海湾与长江口表层沉积物中稀有元素的分布模式受控于“沉积物类型-迁移过程-来源途径”;基于稀有元素的化学形态、富集因子和地质累积指数的结果显示,渤海湾和长江口表层沉积物中稀有元素的生态风险和污染程度各不相同,这两区域在总体水平上均呈轻度污染。
     渤海湾表层沉积物中稀有元素的含量随沉积物粒径的减小和粘土含量的增加而增加,且与铝、铁、锰氧化物含量呈显著正相关,表明稀有元素的分布受控于沉积类型和沉积模式及其形成的驱动力–物理迁移。稀有元素的化学形态含量随沉积环境条件(酸度、盐度、氧化还原状态)的改变而发生改变,表明化学迁移也是其分布的主控因素。稀有元素的含量随总有机碳含量和叶绿素a浓度的增加而增加,表明生物迁移是其分布的又一控制因素。富集因子显示,Sb、Te和Bi的富集因子>1.5,反映了这些元素的人为输入,而其它稀有元素的富集因子均小于1,说明其以自然输入为主。从稀有元素的化学形态角度评价,Sn、Ga和Tl为无风险;Ge、Sb、In、W和V为低风险;Te、Bi、Mo和U为中度风险;Cd为高风险。基于地质累积指数分析显示,Ga、W、U、Ge、Mo、In、Tl和V为未污染;Cd和Sn为轻度污染;Sb为中度-强度污染;Bi为强度污染;Te为极强度污染。渤海湾表层沉积物中所有稀有元素的平均Igeo值为0.46,说明该区域整体上处于轻度污染水平。
     长江口及邻近海域表层沉积物中的稀有元素含量均呈现出由近岸向外海降低的趋势,最高浓度出现在长江口和杭州湾口附近,这种分布模式主要与沉积物类型、河流输入、大气沉降和环境条件有关。稀有元素的含量高值区出现在高粘土区,说明其含量随着粘土含量的增加而增加。河流输入和大气输入对长江口及邻近海域的稀有元素有重要的贡献,每年通过河流输入的As、Hg、Bi、Se、Sb、Te、Sn和Ge的通量约为4426、37、194、92、383、19、1614、599吨/年;每年通过大气输入的As、Se、Sb、Sn和Ge的通量约为45.0、31.1、10.0、3.5、1.8吨/年。从稀有元素的化学形态角度评价,As、Hg、Sb、Sn和Ge为低风险;Bi和Se为中度风险;Te为高度风险。基于地质累积指数显示,Hg、Sn和Ge呈未污染状态;Se为轻度污染;As、Sb和Te为中度污染;Bi为中度-强度污染。长江口及邻近海域表层沉积物中八个稀有元素的平均Igeo值为0.78,说明该区域为轻度污染。
     3.渤海湾与长江口柱状沉积物中稀有元素不同化学形态之间存在相互转化,稀有元素的含量、富集因子和埋藏通量结果显示,近百年来渤海湾与长江口的沉积环境在时间序列上主要经历了三个明显的不同阶段。
     渤海湾和长江口柱状沉积物中稀有元素的分布模式主要与沉积物类型、来源和成岩作用有关,其含量随粘土和总有机碳含量的增加而增加。稀有元素的不同化学形态之间有很好的负相关性,说明不同化学形态之间发生了相互转化。根据稀有元素的含量、富集因子和埋藏通量的变化趋势,渤海湾和长江口的沉积环境在近百年来主要经历了三个明显的不同阶段。由于自然事件和人文活动发生的时间不同,渤海湾与长江口的环境演变历史也稍有不同。
     渤海湾近百年来的环境演变包括:(1)20世纪初到20世纪70年代较为波动,整体处于较高水平。该段时期入海径流量较高,沉积速率较高,埋藏通量也相应较高,沉积物中稀有元素主要为自然来源;(2)20世纪70年代到90年代呈上升趋势。该一阶段是渤海经济圈迅猛发展的阶段,加上各项治污措施和保护措施不当,这段时期渤海湾的环境恶化,是人类活动影响最为明显的一个阶段;
     (3)从20世纪90年代到21世纪初呈下降趋势。这一阶段是渤海湾环境质量不断改善的一个阶段。
     长江口近百年来环境演变包括:(1)20世纪初到20世纪60年代较为波动,埋藏通量大致在一个比较低的水平,说明在这期间几乎没有大的环境改变且沉积物中的稀有元素主要为自然来源;(2)20世纪60年代到90年代呈上升趋势。该一阶段是东海沿岸工农业迅猛发展的阶段,加上各项治污措施和保护措施不当,这段时期长江口及邻近海域的环境恶化,是人类活动影响最为明显的一个阶段,这种影响在80年代和90年代期间表现得尤为严重;(3)从20世纪90年代到21世纪初呈下降趋势。第三阶段是东海沿岸环境质量不断改善的一个阶段。
The studies on the biogeochemical behaviors of trace rare elements in marine environments are of important scientific and practical significance in evaluating marine eco-environment and studying marine environmental evolution. In this study, the trace rare elements in seawaters and sediments from Bohai Bay and Changjiang Estuary, typical bay and estuary, were analyzed. The systemic study on the geochemical distributions, transport processes, controlling factors, potential ecological risks, sources and sedimentary environmental evolution of trace rare elements and the coupling relationships between trace rare elements and environmental parameters in seawaters and sediments of Bohai Bay and Changjiang Estuary were helpful to develop the researches on the marine biogeochemical processes of trace rare elements. A series of results and viewpoints were presented as follows:
     1. The biogeochemical characteristics and behaviors of dissolved trace rare elements in Bohai Bay seawaters indicated their strong“nutrient-type”behaviors. The main sources for dissolved trace rare elements were the riverine input and atmospheric deposition.
     Se in Bohai Bay seawaters mainly existed as selenite (Se(IV)) and selenate (Se(VI)) and the predominant speciation was Se(VI), accounting for 66.7% of total Se; Sb mainly existed as antimonite (Sb(III)) and antimonate (Sb(V)) and the predominant speciation was Sb(V), accounting for 89% of total Sb; Te mainly existed as tellurite (Te(IV)) and tellurate (Te(VI)) and the predominant speciation was Te(VI), accounting for 71.4% of total Te. The dissolved trace rare element concentrations in the surface seawaters showed decreasing gradients from the coastal waters to the central bay with the higher concentrations near the Haihe Estuary. This distribution pattern was closely related to the riverine inputs, environmental conditions and biological activities. The concentrations of Se(VI), Sb(V) and Te(VI) at the surface waters were higher than those at the bottom waters in the regions with high phytoplankton biomasses, which was attributed to the biological oxidation of Se(IV), Sb(III) and Te(IV) at the surface waters, suggesting that biological process was a key factor controlling the speciation and concentrations of Se, Sb and Te in these regions. Besides, the riverine input was a main contributor to the trace rare elements in Bohai Bay. According to our estimate, about 5.67, 45.2, 33.4 and 4.89 t/yr of Se, Sb, As and Te reached Bohai Bay via rivers. However, the dissolved Sn concentration at the surface waters showed an increasing gradient from the coastal waters to the central bay with the higher concentration near the Haihe Estuary. Besides the riverine inputs, environmental conditions and biological activities, this distribution pattern was closely related to atmospheric input. About 2 and 0.85 t/yr of Sn reached Bohai Bay via rivers and atmosphere.
     The concentrations of trace rare elements (Se, As, Sb, Te and Sn) in Bohai Bay seawaters were present at the level of trace concentrations, which had no obvious harm on marine organisms. All of the trace rare elements had the significant relationships with nutrients, chlorophyll a concentrations and phytoplankton biomass, suggesting that they seemed to be involved in the biological cycling. Among these elements, Se was required for the normal growth and development of phytoplankton; Sb and As were assimilated by phytoplankton via the phosphate uptake pathway; Te and Sn could inhibit the growth of phytoplankton. Thus, these elements played key roles in regulating the phytoplankton productivity.
     2. The horizontal distribution pattern of trace rare elements in the surface sediments of Bohai Bay and Changjiang Estuary was coincident with the sedimentation pattern and controlled by the mode of“sediment type-transport process-sources”. Results of the chemical speciation, enrichment factors and geoaccumulation indexes of trace rare elements suggested that the potential ecological risks and polluted levels were different for each element and these two areas were from unpolluted to moderately polluted level.
     Trace rare element concentrations increased with the sediment particle size decreasing and the clay content increasing. Besides, trace rare element concentrations had the significant positive correlations with Fe, Mn and Al oxide contents, suggesting that the distributions of trace rare elements were controlled by the physical transport and hydrodynamic processes, the dominant driving power affecting the sediment transportation and distribution. The chemical speciation of trace rare element concentrations changed with the change of sedimentary environmental conditions (e.g., pH, salinity, redox condition), suggesting that the distributions of trace rare elements also were controlled by chemical transport process. Besides, trace rare element concentrations increased with the total organic carbon (TOC) content and chlorophyll a concentration increasing, suggesting that biological transport process also influenced the distributions of trace rare elements. The environment factors (EFs) of Sb, Te and Bi were higher than 1.5, suggesting anthropogenic inputs; however, the EFs of other elements were lower than 1.0, revealing the natural inputs. Result of sequential extraction analyses showed that Sn, Ge and Tl were of no risk, Ge, Sb, In, W and V were at low risk, Te, Bi, Mo and U were at medium risk, and Cd was at high risk. The geoaccumulation index (Igeo) suggested that Ga, W, U, Ge, Mo, In, Tl and V could be regarded as unpolluted, Cd and Sn as unpolluted to moderately polluted, Sb as a moderately to strongly contaminated level, Bi as a strongly contaminated level and Te as a extremely contaminated level. The average Igeo (0.46) of all trace rare elements contained in the surface sediments of Bohai Bay reflected that this area was from unpolluted to moderately polluted level.
     Trace rare element concentrations in the surface sediments of Changjiang Estuary presented a decreasing trend from the coastal waters to the central sea with the highest concentrations near the Changjiang River and Hangzhou Bay. This distribution pattern was attributed to the sediment type, riverine input, atmospheric deposition and environmental conditions. The high concentrations of trace rare elements appeared at the high clay region, suggested that trace rare element concentrations increased with the clay content increasing. The riverine and atmospheric inputs were main contributors to trace rare elements in Changjiang Estuary. According to our estimate, about 4426, 37, 194, 92, 383, 19, 1614 and 599 t/yr of As, Hg, Bi, Se, Sb, Te, Sn and Ge reached the Changjiang Estuary via rivers and about 45.0, 31.1, 10.0, 3.5 and 1.8 t/yr of As, Se, Sb, Sn and Ge reached Changjiang Estuary via atmosphere. Result of sequential extraction analyses showed that As, Hg, Sb, Sn and Ge were of no risk, Bi and Se were at medium risk and Te was at high risk. The geoaccumulation indexes suggested that Hg, Sn and Ge contained in the sediments of Changjiang Estuary could be regarded as unpolluted, Se as unpolluted to moderately polluted, As, Sb and Te as a moderately contaminated level and Bi as a moderately to strongly contaminated level. The average Igeo (0.78) of the eight trace rare elements contained in the surface sediments of Changjiang Estuary reflected that this area was from unpolluted to moderately polluted level.
     3. Results of chemical speciation of trace rare elements in core sediments of Bohai Bay and Changjiang Estuary suggested the translation among the different fractions. The concentrations, enrichment factors and burial fluxes of trace rare element in core sediments of Bohai Bay and Changjiang Estuary varied significantly in recent one hundred years, so that the past century was divided into three periods.
     The distribution patterns of trace rare elements in core sediments of Bohai Bay and Changjiang Estuary were closely related to the sediment type, sources and diagenesis. The concentrations of trace rare elements increased with clay and TOC content increasing. There were significant native relationships among the different chemical speciation of trace rare elements, suggesting the translation among the different fractions. Based on the concentration, enrichment factor and burial flux changes of trace rare elements, the environmental evolution of Bohai Bay and Changjiang Estuary was divided into three periods. Due to the different occurring time of natural events and anthropogenic activities, the environmental evolution history between Bohai Bay and Changjiang Estuary was slightly different.
     Environmental evolution of Bohai Bay was divided into three periods, before 1970s, from 1970s to 1990s and after 1990s. These three periods for temporal changes of trace rare elements in Bohai Bay in recent one hundred years were attributed to the natural and anthropogenic activities. In the first period, the concentration, enrichment factor and burial flux changes of trace rare elements displayed an increasing trend with depth. This period was characteristic of relatively high runoff and sedimentation rate, the trace rare elements was mainly from natural sources. The second period was the time when the Bohai Rim Economic Circle developed quickly, as well as the pollution treatment and protection measures were inappropriate. During this time, Bohai Bay had been subjected to various pollutant sources and its environment became worsen. Thus, the influence of this period by anthropogenic activities was significant. The third period was the time when sediment environment had been improved.
     The environmental evolution of the Changjiang Estuary was divided into three periods, before 1960s, from 1960s to 1990s and after 1990s. These three periods for temporal changes of trace rare elements in Bohai Bay in recent one hundred years were attributed to the natural and anthropogenic activities. In the first period, the burial fluxes of trace rare elements had a slight fluctuation with a low level, suggesting that there was no obvious environmental change and the natural input was a main source in this period. The second period was the time when industries and agricultures along the coast of East China Sea developed quickly, as well as the pollution treatment and protection measures were inappropriate. During this time, the Changjiang Estuary and its adjacent areas had been subjected to various pollutant sources and its environment became worsen. Thus, the influence of this period by anthropogenic activities was most significant. The third period was the time when the sediment environment had been improved.
引文
Abdel-Moati, M.A.R., 1998. Speciation of selenium in a Nile Delta lagoon and SE Mediterranean sea mixing zone. Estuarine, Coastal and Shelf Science, 46(5): 621-628.
    Abdullah, M.I., Zhou, S.Y. and Mosgren, K., 1995. Arsenic and selenium species in the oxic and anoxic waters of Oslofjord, Norway. Marine Pollution Bulletin, 31: 116-126.
    Ackermann, F., 1980. A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environmental Technology Letters, 1: 518-527.
    Anderson, R.F., 1982. Concentration, vertical flux, and remineralization of particulate uranium in seawater. Geochimica et Cosmochimica Acta, 46: 1293-1299.
    Anderson, R.F., Fleisher, M.Q. and LeHuray, A.P., 1989a. Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochimica et Cosmochimica Acta, 53(9): 2215-2224.
    Anderson, R.F., Lehuray, A.P., Fleisher, M.Q. and Murray, J.W., 1989b. Uranium deposition in saanich inlet sediments, vancouver island. Geochimica et Cosmochimica Acta, 53(9): 2205-2213.
    Andreae, M.O., 1983. The determination of the chemical species of some of the "hydride elements" (arsenic, antimony, tin and germanium) in seawater: methodology and results. Trace Metals in Sea Water. NATO Advanced Research Institute, Plenum, New York, 1-19 pp.
    Andreae, M.O. and Andreae, T.W., 1989. Dissolved arsenic species in the Shelde estuary and watershed, Belgium. Estuarine, Coastal and Shelf Science, 29: 421-433.
    Andreae, M.O., Byrd, J.T., Froerlich, P.N. and Jr, 1983. Arsenic, antimony, germanium, and tin in the Tejo estuary, Portugal: modeling a polluted estuary. Environmental Science and Technology, 17: 731-737.
    Andreae, M.O. and Froelich, P.N., 1984. Arsenic, antimony and germanium biogeochemistry in the Baltic Sea. Tellus, 36: 101-117.
    Andreae, T., 1979.üer eine eigenschaft lokalfiniter, unendlicher b?me. Journal of Combinatorial Theory, Series B, 27(2): 202-215.
    Aono, T., Nakaguchi, Y. and Hiraki, K., 1991. Vertical profiles of dissolved selenium in the North Pacific. Geochemical Journal, 25(1): 45-55.
    Apte, S.C. and Howard, A.G., 1986. Atsenic, antimony and selenium speciation during a spring phytoplankton bloom in a close experimental ecosystem. Marine Chemistry, 20: 119-130.
    Back, R.C., Gorski, P.R., Cleckner, L.B. and Hurley, J.P., 2003. Mercury content and speciation in the plankton and benthos of Lake Superior. Science of the Total Environment, 304(1-3): 349-354.
    Balistrieri, L.S. and Chao, T.T., 1990. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochimica et Cosmochimica Acta, 34: 739-751.
    Bar-Yosef, B. and Meck, D., 1987. Selenium sorption by kaolonite and montmorillonite. Soil Science, 144: 91.
    Barbeau, K.A., Rue, E.L., Bruland, K.W. and Butler, A., 2001. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature, 413: 409-413.
    Barling, J., Arnold, G.L. and Anbar, A.D., 2001. Natural mass dependent variations in the isotopic composition of molybdenum. Earth and Planetary Science Letters, 193: 447-457.
    Barth, T.F.W., 1952. Theoretical petrology. John Wiley & Sons, Inc., New York.
    
    Bertine, K.K. and Lee, D.S., 1983. Antimony content and speciation in the water column and interstitial waters of Saanich Inlet. Trace Metals in Sea Water. NATO Advanced Research Institute, Plenum, New York, 21-38 pp.
    Bjerregaard, P. and Andersen, O., 2007. Chapter 13-Ecotoxicology of Metals-Sources, Transport and Effects in the Ecosystem. Handbook on the Toxicology of Metals (Third Edition) 251-280.
    Boisson, F. and Romeo, M., 1996. Selenium in plankton from the northwestern Mediterranean Sea. Water Research, 30(11): 2593-2600.
    Bowie, G.L. et al., 1996. Assessing selenium cycling and accumulation in aquatic ecosystems. Water, Air, and Soil Pollution, 90(1-2): 93-104.
    Boyle, E.A., Sclater, F. and Edmond, J.M., 1977. The distribution of dissolved copper in the Pacific. Earth and Planetary Science Letter, 37: 38-54.
    Broecker, W.S. and Peng, T.H., 1982. Tracers in the Sea. Eldigio Press, New York, 690 pp.
    Buat-Menard, P. and Chesselet, R., 1979. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42: 398-411.
    Byrd, J.T. and Andreae, M.O., 1982. Tin and methyltin species in seawater: concentrations and fluxes. Science,218(5): 565-569.
    Byrd, J.T. and Andreae, M.O., 1986a. Dissolved and particulate tin in North Atlantic seawater. Marine Chemistry 19: 193-200.
    Byrd, J.T. and Andreae, M.O., 1986b. Geochemistry of tin in rivers and estuaries Geochimica et Cosmochimica Acta, 50(5): 835-845
    Cabon, J.Y. and Cabon, N., 2000. Determination of arsenic species in seawater by flow injection hydride generation in situ collection followed by graphite furnace atomic absorption spectrometry: Stability of As(III). Analytica Chimica Acta, 418(1): 19-31.
    Caccia, V.G., Millero, F.J. and Palanques, A., 2003. The distribution of trace metals in Florida Bay sediments. Marine Pollution Bulletin, 46: 1420-1433.
    Calmano, W., Hong, J. and Forstner, U., 1993. Binding and mobilization of heavy metal on contaminated sediment affected by the pH and redox potential. Water Science and Technology, 28(8-9): 223-235.
    Campbell, P.G.C. and Stokes, P., 1985. Acidification and toxicity of metals to aquatic biota. Canadian Journal of Fisheries and Aquatic Sciences, 42: 2034-2049.
    CEC, 1976. Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community Official Journal L 129, 18/05/1976. Council of the European Communities, 23-29 pp.
    CEU, 1998. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption Official Journal L 330. . Council of the European Union, 32-54 pp.
    Chaillou, G., Anschutz, P., Lavaux, G., Sch?fer, J. and Blanc, G., 2002. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay. Marine Chemistry, 80(1): 41-59.
    Chen, C.T. and Kandasamy, S., 2007. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan. Environmental Geology: 1-14.
    Chen, J.Y., Zhu, H.F., Dong, Y.F. and Sun, J.M., 1985. Development of the Changjiang Estuary and its submerged delta. Continental Shelf Research, 4: 47-56.
    Chen, Y., Wai, O.W.H., Li, Y.S. and Lu, Q., 1999. Three-dimensional numerical modeling of cohesive sediment transport by tidal current in Pearl River Estuary. International Journal of Sediment Research, 14: 107-123.
    Chen, Z.Y., Saito, Y. and Kanaic, Y., 2004. Low concentration of heavy metals in the Yangtze estuarine sediments, China: a diluting setting. Estuarine, Coastal and Shelf Science, 60: 91-100.
    Cho, Y.G., Lee, C.B. and Choi, M.S., 1999. Geochemistry of surface sediments off the southern and western coasts of Korea. Marine Geology, 159: 111-129.
    Choong, T.S.Y., Chuah, T.G., Robiah, Y., Gregory Koay, F.L. and Azni, I., 2007. Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217(1-3): 139-166.
    Cline, J.T. and Upchurch, S.B., 1973. Mode of heavy metal migration in the upper strate of lake sediment. Proc 16 Conf Great Lake Research. International Association for Great Lakes Research 349-356.
    Cochran, J.K., Carey, A.E., Sholkovitz, E.R. and Surprenant, L.D., 1986. The geochemistry of uranium and thorium in coastal marine sediment pore waters. Geochimica et Cosmochimica Acta, 50: 663- 680.
    Colina, M., Gardiner, P.H.E., Rivas, Z. and Troncone, F., 2005. Determination of vanadium species in sediment, mussel and fish muscle tissue samples by liquid chromatography-inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 538(1-2): 107-115.
    Cooney, J.J., 1988. Interactions between microorganism and tin compounds. The Biological Alkylation of Heavy Elements. Royal Society of Chemistry, London, 92-104 pp.
    Corbett, D.R., Vance, D., Letrick, E., Mallinson, D. and Culver, S., 2007. Decadal-scale sediment dynamics and environmental change in the Albemarle Estuarine System, North Carolina. Estuarine, Coastal and Shelf Science, 71(3-4): 717-729.
    Cowgill, U.M. and Burns, C.W., 1975. Differences in chemical composition between two species of Daphnia and some freshwater algea cultured in the laboratory. Limnology and Oceanography, 20: 1005-1011.
    Crusius, J., Calvert, S., Pedersen, T. and Sage, D., 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145: 65-78.
    Cutter, G.A., 1978. Determination of selenium in natural water. Analytica Chimica Acta, 98: 59.
    Cutter, G.A., 1983. Elimination of nitrite interference in the determination of selenium by hydride generation. Analytica Chimica Acta, 149: 391-394.
    Cutter, G.A., 1991. Dissolved arsenic and antimony in the Black Sea. Deep-Sea Research, 38: 825-843.
    Cutter, G.A. and Cutter, L.S., 1995. Behavior of Dissolved Antimony, Arsenic, and Selenium in the Atlantic-Ocean. Marine Chemistry, 49(4): 295-306.
    Cutter, G.A. and Cutter, L.S., 2001. Sources and cycling of selenium in the western and equatorial Atlantic Ocean. Deep-Sea Research Part II-Topical Studies in Oceanography, 48(13): 2917-2931.
    Cutter, G.A. and Cutter, L.S., 2004. Selenium biogeochemistry in the San Francisco Bay estuary: changes in water column behavior. Estuarine, Coastal and Shelf Science, 61(3): 463-476.
    Cutter, G.A., Cutter, L.S., Featherstone, A.M. and Lohrenz, S.E., 2001. Antimony and arsenic biogeochemistry in the western Atlantic Ocean. Deep-Sea Research II, 48: 2895–2915.
    Cutter, G.A. and San Diego-Mcglone, M.L.C., 1990. Temporal variability of selenium fluxes in the San Francisco Bay. Science of the Total Environment, 97: 235-250.
    Dai, J.C. et al., 2007. Environmental changes reflected by sedimentary geochemistry in recent hundred years of Jiaozhou Bay, North China. Environmental Pollution, 145: 656-667.
    Dai, S.G., Zhu, T., Zeng, Y.S., Liao, L.M. and Fu, X.Q., 1987. Study on the characteristics and sources of oceanic suspended matter in Bohai Sea and Yellow Sea by the element composition. Marine Environmental Science, 6(3): 9-13.
    Davidson, C.M. et al., 1994. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta, 291: 277-286.
    Dellwig, O. et al., 2007. Non-conservative behaviour of molybdenum in coastal waters: Coupling geochemical, biological, and sedimentological processes. Geochimica et Cosmochimica Acta, 71(11): 2745-2761.
    Dhillon, K.S. and Dhillon, S.K., 1999. Adsorption-desorption reactions of selenium in some soil of India. Geoderma, 93(1-2): 19-31.
    Doucette, G.J., Price, N.M. and Harrison, P.J., 1987. Effects of selenium deficiency on the morphology and ultrastructure of the coastal marine diatom Thalassiosira pseudonana (Bacillariophyceae). Journal of Phycology, 23: 9-17.
    Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E. and Tack, F.M.G., 2009. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407(13): 3972-3985.
    Duan, L.Q., Song, J.M., Li, X.G. and Yuan, H.M., 2010a. The behaviors and sources of dissolved arsenic and antimony in Bohai Bay. Continental Shelf Research, 30(14): 1522-1534.
    Duan, L.Q., Song, J.M., Li, X.G., Yuan, H.M. and Xu, S.S., 2010b. Distribution of selenium and its relationship to the eco-environment in Bohai Bay seawater. Marine Chemistry, 121(1-4): 87-99.
    Duan, L.Q., Song, J.M., Xu, Y.Y., Li, X.G. and Zhang, Y., 2010c. The distribution, enrichment and source of potential harmful elements in surface sediments of Bohai Bay, North China. Journal of Hazardous Materials, 183: 155-164.
    Duce, R.A. et al., 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles 5: 193-259.
    Dymond, J., Suess, E. and Lyle, M., 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7: 163-182.
    Eadie, B.J. et al., 1994. Records of nutrient-enhanced coastal ocean productivity in sediments from the louisiana continental-shelf. Estuaries, 17(4): 754-765.
    Ellwood, M.J. and Maher, W.A., 2002. Arsenic and antimony species in surface transects and depth profiles across a frontal zone: The Chatham Rise, New Zealand. Deep-Sea Research II, 49: 1971-1981.
    Ellwood, M.J. and Maher, W.A., 2003. Germanium cycling in the waters across a frontal zone: the Chatham Rise, New Zealand. Marine Chemistry, 80: 145-159.
    Erickson, B.E. and Helz, G.R., 2000. Molybdenum(VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64(7): 1149-1158.
    Esen, N., Topcuo?lu, S., E?illi, E. and Kut, D., 1999. Comparison of trace metal concentrations in sediments and algae samples from the Kü?ük?ekmece Lagoon and Marmara Sea. Journal of Rabioanalytical and Nuclear Chemistry, 240(2): 673-676.
    Falke, A.M. and Weber, J.H., 1993. Variations in concentrations of methyltin compounds and inorganic tin in Spartina alterniflora and porewater in the Great Bay Estuary (NH) during the 1991 growing season. Environmental Technology, 14: 851-859.
    Fang, T.H., Li, J.Y., Feng, H.M. and Chen, H.Y., 2009. Distribution and contamination of trace metals in surface sediments of the East China Sea. Marine Environmental Research, 68(4): 178-187.
    Farís, S. et al., 2007. Total and inorganic arsenic in Antarctic macroalgae. Chemosphere, 69(7): 1017-1024.
    Fdez-Ortiz de Vallejuelo, S., Arana, G., de Diego, A. and Madariaga, J.M., 2010. Risk assessment of trace elements in sediments: The case of the estuary of the Nerbioi-Ibaizabal River(Basque Country). Journal of Hazardous Materials, 181(1-3): 565-573.
    Featherstone, A.M., Boult, P.R., O'Grady, B.V. and Butler, E.C.V., 2000. A shipboard method for arsenic speciation using semi-automated hydride generation atomic fluorescence spectroscopy. Analytica Chimica Acta,409(1-2): 215-226.
    Ferrara, R. and Maserti, B.E., 1992. Mercury concentration in the water, particulate matter, plankton and sediment of the Adriatic Sea. Marine Chemistry, 38(3-4): 237-249.
    Fianko, J.R., Osae, S., Adomako, D., Adotey, D.K. and Serfor-Armah, Y., 2007. Assessment of heavy metal pollution of the iture estuary in the central region of Ghana. Environmental Monitoring and Assessment, 131(1-3): 467-473.
    Filella, M., Belzile, N. and Chen, Y.W., 2002. Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Science Reviews, 57: 125-176.
    Filippelli, G.M., Carnahan, J.W., Derry, L.A. and Kurtz, A., 2000. Terrestrial paleorecords of Ge/Si cycling derived from lake diatoms. Chemical Geology, 168(1-2): 9-26.
    Flegal, A.R. and Wilhelmy, S.S., 1989. Particulate thallium fluxes in the Northeast Pacific. Marine Chemistry, 28(1-3): 61-75.
    Forstner, U. and Wittamann, G.T.W., 1983. Metal pollution on the aquatic environment. Sprinter Verlag, Berling. Galvez-Cloutier, R. and Dubé, J.S., 1998. An evaluation of fresh water sediments contamination: the Lachine Canal sediments case, Montréal, Canada: Part II. Heavy metal particulate speciation study. Water, Air, and Soil Pollution, 102: 281-302.
    Gambrell, R.P., Wiesepape, J.B., Patrick Jr, W.H. and Duff, M.C., 1991. The effects of pH, redox, and salinity on metal release from a contaminated sediment. Water, Air, and Soil Pollution, 57-58: 359-367.
    Gillain, G., 1982. Studies of pretreatments in the determination of Zn, Cd, Pb, Cu, Sb and Bi in suspended particulate matter and plankton by differential-pulse anodic-stripping voltammetry with a hanging mercury drop electrode. Talanta, 29(8): 651-654.
    Gillain, G., Duyckaerts, G. and Distèche, A., 1979. Direct and simultaneous determinations of Zn, Cd, Pb, Cu, Sb and Bi dissolved in sea water by differential pulse anodic stripping voltammetry with a hanging mercury drop electrode. Analytica Chimica Acta, 106: 23-37.
    Giusti, L., 2001. Heavy metal contamination of brown seaweed and sediments from the UK coastline between the Wear river and the Tees river. Environment International, 26: 275-286.
    Goldberg, E.D., 1963. Radioactive Dating. Geochronology with 210Pb. International Atomic Energy Agency, Vienna, 121-131 pp.
    Goldberg, E.D., Broecher, W.S., Gross, M.G. and Turekial, K.K., 1971. Radioactivity in the Marine Environment. Marine chemistry. NSF, 137-272 pp.
    Gordeeva, V.P., Statkus, M.A., Tsysin, G.I. and Zolotow, Y.A., 2003. X-ray fluorescence determination of As, Bi, Co, Cu, Fe, Ni, Pb, Se, V and Zn in natural water and soil extracts after preconcentration of their pyrrolidinedithiocarbamates on cellulose filters. Talanta 61: 315-329.
    Grabemann, I., Uncles, R.J., Krause, G. and Stephens, J.A., 1997. Behaviour of turbidity maxima in the Tamar (U.K.) and Weser (F.R.G.) estuaries. Estuarine, Coastal and Shelf Science, 45.
    Guan, B.X., 1994. Oceanology of China Seas. Patterns and structures of the currents in Bohai, Huanghai and East China Seas, 1. Kluwer Academic Publishers, Boston, 17-26 pp.
    Guan, D.M. and Martin, J.M., 1991. Selenium distribution in the Rhone delta and the Gulf of Lions. Marine Chemistry, 36: 303-316.
    Halas, L.E. and Cooney, J.J., 1981. Tin and tin-resistant microorganisms in Chesapeake Bay. Applied and Environmental Microbiology, 41(2): 446-471.
    Hamaguchi, H. et al., 1964. The geochemistry of tin. Geochimica et Cosmochimica Acta, 28: 1039-1053.
    Hamilton, S.J., 2004. Review of selenium toxicity in the aquatic food chain. Science of the Total Environment, 326(1-3): 1-31.
    Harrison, P.J., Yu, P.W., Thompson, P.A., Price, N.M. and Phillips, D.J., 1988. A survey of selenium requirements for marine phytoplankton. Marine Ecology Progress Series, 47: 89-96.
    Helz, G.R., Zepp, R.G. and Crosby, D.G., 1994. Aquatic and Surface Photochemistry. Lewis publishers, Albany. Herczeg, A.L., Smith, A.K. and Dighton, J.C., 2001. A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia: C.N,δ15N andδ13C in sediments. Applied Geochemistry, 16: 73-84.
    Hernandez, L., Probst, A., Probst, J.L. and Ulrich, E., 2003. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Science of the Total Environment, 312(1-3): 195-219.
    Heyes, A., Miller, C. and Mason, R.P., 2004. Mercury and methylmercury in Hudson River sediment: impact of tidal resuspension on partitioning and methylation. Marine Chemistry, 90(1-4): 75-89.
    Howard, A.G., Comber, S.D.W., Kifle, D., Antai, E.E. and Purdie, D.A., 1995. Arsenic speciation and seasonal changes in nutrient availability and micro-plankton abundance in Southampton water, U.K. Estuarine Coastal and Shelf Science, 40: 435-450.
    Hsu, S.C. et al., 2010. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea.Marine Chemistry, 120(1-4): 116-127.
    Hu, J.F., Zhang, G., Li, K.C., Peng, P.A. and Chivas, A.R., 2008. Increased eutrophication offshore Hong Kong, China during the past 75 years: Evidence from high-resolution sedimentary records. Marine Chemistry, 110(1-2): 7-17.
    Hung, G.A. and Chmura, G.L., 2007. Metal accumulation in surface salt marsh sediments of the bay of Fundy, Canada. Estuaries and Coasts, 30(4): 725-734.
    Hung, J.J. and Shy, C.P., 1995. Speciation of Dissolved Selenium in the Kaoping and Erhjen Rivers and Estuaries, Southwestern Taiwan. Estuaries, 18(1B): 234-240.
    Hunter, K.A. and Boyd, P., 1999. Biogeochemistry of trace metals in the ocean. Marine and Freshwater Chemistry, 50: 739-753.
    Imai, I., Itakura, S., Matsuyama, Y. and amaguchi, M., 1996. Selenium requirement for growth of a novel red tide flagellate Chattonella verruculosa (Raphidophyceae) in culture. Fisheries Science, 62(5): 834-835.
    Ingall, E. and Jahnke, R., 1994. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochimica et Cosmochimica Acta, 58: 2571-2575.
    Ip, C.C.M., Li, X.D., Zhang, G., Wai, O.W.H. and Li, Y.S., 2007. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147(2): 311-323.
    Jacobson, A.R., McBride, M.B., Baveye, P. and Steenhuis, T.S., 2005. Environmental factors determining the trace-level sorption of silver and thallium to soils. Science of the Total Environment, 345: 191-205.
    Jannasch, H.W., Honeyman, B.D., Balistrieri, L.S. and Murray, J.W., 1988. Kinetics of trace element uptake by marine particles. Geochimica et Cosmochimica Acta, 52: 567-577.
    Jiang, W.S., Pohlmann, T., Sündermann, J. and Feng, S.Z., 2000. A modelling study of SPM transport in the Bohai Sea. Journal of Marine Systems, 24: 175-200.
    Kalbitz, K. and Wennrich, R., 1998. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of the Total Environment 209: 27-39.
    Keller, M., Guillard, R.R.L., Provasoli, L. and Pinter, I.J., 1984. Nutrition of some marine ultraplankton clones from the Sargasso Sea. Eos, 65: 898.
    Kharkar, D.P., Turekian, K.K. and Bertine, K.K., 1968. Stream supply of dissolved silver, molybdenum, antimony, selenium, chromium, cobalt, rubidium and cesium to the oceans. Geochimica et Cosmochimica Acta, 32: 285-298.
    Kim, E.H., Mason, R.P., Porter, E.T. and Soulen, H.L., 2004. The effect of resuspension on the fate of total mercury and methyl mercury in a shallow estuarine ecosystem: a mesocosm study. Marine Chemistry, 86(3-4): 121-137.
    Kiriyama, T. and Kuroda, R., 1991. Preconcentration and selective determination of traces of tin in natural waters. Mikrochimica Acta, 1: 261-266.
    Klinkhammer, G.P. and Palmer, M.R., 1991. Uranium in the oceans: where it goes and why. Geochimica et Cosmochimica Acta, 55: 1799-1806.
    Kremling, K., Andreae, M.O., Brügmann, L. and Van den Berg, C.M.G., 1999. Methods of Seawater Analysis. Analysis by atomic absorption spectrometry. Wiley-VCH, Weinheim, 263-318 pp.
    Kubota, T., Yamaguchi, T. and Okutani, T., 1998. Determination of arsenic content in natural by graphite furnace atomic absorption spectrometry after collection as molybdoarsenate on activated carbon. Talanta 46: 1311-1319.
    Kut, D., Topcuo?lu, S., Esen, N., Kü?ükcezzar, R. and Güven, K.C., 2000. Trace metals in marine algae and sediment samples from the bosphorus. Water, Air, and Soil Pollution, 118: 27-33.
    Laforte, L., Tessier, A. and Geobeil, C., 2006. Sources and mobility of thallium and indium in Canadian lakes. Chinese Journal of Geochemistry, 25: 4.
    Laforte, L., Tessier, A., Gobeil, C. and Carignan, R., 2005. Thallium diagenesis in lacustrine sediments. Geochimica et Cosmochimica Acta, 69(22): 5295-5306.
    Lamb, A.L., Wilson, G.P. and Leng, M.J., 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using delta C-13 and C/N ratios in organic material. Earth-Science Reviews, 75(1-4): 29-57.
    Langmuir, D., 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42(6, Part 1): 547-569.
    Lantzy, R.J. and Mackenzie, F.T., 1979. Atmospheric trace metals: Global cycles and assessment of man's impact. Geochimica et Cosmochimica Acta, 43: 511-525.
    Lee, D.S. and Edmond, J.M., 1985. Tellurium species in seawater. Nature, 313(28): 782-785.
    Lemly, A.D., 1996a. Assessing the toxic threat of selenium to fish and aquatic birds. Environmental Monitoring and Assessment, 43(1): 19-35.
    Lemly, A.D., 1996b. Evaluation of the Hazard Quotient Method for Risk Assessment of Selenium. Ecotoxicologyand Environmental Safety, 35(2): 156-162.
    Lemly, A.D., 2004. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicology and Environmental Safety, 59(1): 44-56.
    Li, F.Y., Li, X.G. and Song, J.M., 2006a. Sediment flux and source in northern Yellow Sea by 210Pb Technique. Chinese Journal of Oceanology and Limnology, 24(3): 255-263.
    Li, S.X., Zheng, F.Y., Hong, H.S., Deng, N.S. and Zhou, X.Y., 2006b. Photo-oxidation of Sb(III) in the seawater by marine phytoplankton-transition metals-light system. Chemosphere, 65: 1432–1439.
    Lin, S., Hsieh, I.J., Huang, K.M. and Wang, C.H., 2002. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology, 182(2-4): 377-394.
    Lindstr?m, K. and Rodhe, W., 1978. Selenium as a micronutrient for the dinoflagellate Peridinium cinctum fa. westii.Mitt. Internationale Vereinigung für Theoretische and Angewandte Limnologie Verhandlungen, 21: 168-173.
    Liu, H., He, Q., Wang, Z., Weltje, G.J. and Zhang, J., 2010. Dynamics and spatial variability of near-bottom sediment exchange in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science, 86(3): 322-330.
    Liu, J.T. and Lin, H.L., 2004. Sediment dynamics in a submarine canyon: a case of river-sea interaction. Marine Geology, 207(1-4): 55-81.
    Long, E.R., MacDonald, D.D., Smith, S.L. and Calder, F.D., 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19: 81-97.
    Loring, D.H., 1990. Lithium e a new approach for the granulometric normalization of trace metal data. Marine Chemistry, 29: 155-168.
    Lu, X.K., Li, J., Chen, S.Z. and Deng, G.S., 1990. Flow analysis for determination of inorganic arsenic and antimony in seawater with on-line liquid nitrogen trap and hydride generation. Acta Oceanologica Sinica, 9: 255-261.
    Lucea, A., Duarte, C.M., Agust?, S. and S?ndergaard, M., 2003. Nutrient (N, P and Si) and carbon partitioning in the stratified NW Mediterranean. Journal of Sea Research, 49: 157-170.
    Luoma, S.N., 1990. Heavy metals in marine environment. Processes affecting metal concentrations in estuarine and coastal marine sediments. FL: CRC Press, Boca Raton, 51-66 pp.
    Müller, G., 1969. Index of geoaccumulation in sediments of the Rhine River. Geological Journal, 2: 109-118. Maier, K.J. and Knight, A.W., 1994. Ecotoxicology of selenium in freshwater systems. Reviews of Environmental Contamination and Toxicology, 134: 31-48.
    Markert, B., 1994. The biological system of the elements (BSE) for terrestrial plants (glycophytes). Science of the Total Environment, 155: 221-228.
    Martin, J.M., Attrill, R. and Thomes, M., 1995. Heavy metal concentrations in sediment from the Thames estuary, UK. Marine Pollution Bulletin, 30(11): 742-744.
    Mathis, B.J. and Kevern, N.R., 1975. Distribution of mercury, cadmium, lead and thallium in a eutrophic lake. Hydrobiologia, 42(2-3): 133-146.
    Matthews, A.D. and Riley, J.P., 1970. The occurrence of thallium in sea water and marine sediments. Chemical Geology, 6: 149-152.
    May, T.W. et al., 2001. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997-1999. Environmental Monitoring and Assessment, 72(2): 179-206.
    McKay, J.L., Pedersen, T.F. and Mucci, A., 2007. Sedimentary redox conditions in continental margin sediments (N.E. Pacific) -Influence on the accumulation of redox-sensitive trace metals. Chemical Geology, 238(3-4): 180-196.
    Measures, C.I., Grant, B.C., Mangum, B.J. and Edmond, J.M., 1983. The relationship of the distribution of dissolved selenium IV and VI in three oceans to physical and biological processes. In: Wong, C.S., Boyle, E., Bruland, K.W., Burton, J.D., Goldberg, E.D. (Eds.), Trace Metals in Sea Water. Plenum Press, USA.
    Measures, C.J. and Burton, J.D., 1978. Behavior and speciation of dissolved selenium in estuarine waters. Nature, 273: 293-295.
    Measures, C.J. and Burton, J.D., 1980. The vertical distribution and oxidation states of selenium in the northeast Atlantic Ocean and their relationship to biological process. Earth and Planetary Science Letter, 49: 385-396.
    Meng, W., Qin, Y.W., Zheng, B.H. and Zhang, L., 2008. Heavy metal pollution in Tianjin Bohai Bay, China. Journal of Environmental Sciences, 20: 814-819.
    Mertz, M., 1981. The essential trace elements. Science, 213: 1332-1338.
    Messerschmidt, J., Bohlen, A.V., Alt, F. and Klockenk?mper, R., 1997. Determination of arsenic and bismuth in biological materials by total reflection X-ray Fluorescence after separation and collection of theirhydrides. Journal of Analytical Spectrometry, 12: 1251-1254.
    Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5-6): 213-260.
    Middelburg, J.J., Hoede, D., Van Der Sloot, H.A., Van Der Weijden, C.H. and Wijkstra, J., 1988. Arsenic, antimony and vanadium in the North Atlantic Ocean. Geochimica et Cosmochimica Acta, 52: 2871-2878.
    Millward, G.E., Ebdon, L. and Walton, A.P., 1993. Seasonality in estuarine sources of methylated arsenic. Applied Organometallic Chemistry, 7: 499-511.
    Millward, G.E., Kitts, H.J., Comber, S.D.W., Ebdon, L. and Howard, A.G., 1996. Methylated arsenic in the Southern North Sea. Estuarine, Coastal and Shelf Science 43: 1-18.
    Millward, G.E., Kitts, H.J., Ebdon, L., Allen, J.I. and Morris, A.W., 1997. Arsenic in Thames Plume, U.K. Marine Environment Research, 44(1): 51-67.
    Mitrovica, S.M., Amandia, M.F., McKenzieb, L., Fureya, A. and James, K.J., 2004. Effects of selenium, iron and cobalt addition to growth and yessotoxin production of the toxic marine dinoflagellate Protoceratium reticulatum in culture. Journal of Experimental Marine Biology and Ecology, 313 337-351.
    Morford, J.L. and Emerson, S.R., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63: 1735-1750.
    Morford, J.L., Russell, A.D. and Emerson, S., 2001. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanlich Inlet, BC. Marine Geology, 174: 355-369.
    Mortlock, R.A. and Froelich, P.N., 1987. Continental weathering of germanium: Ge/Si in the global discharge. Geochimica et Cosmochimica Acta, 51: 2075-2082.
    Mortlock, R.A. and Froelich, P.N., 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediment Deep-Sea Research II, 36: 1415-1426.
    Muller, A. and Mathesius, U., 1999. The palaeoenvironments of coastal lagoons in the southern Baltic Sea. I. The application of sedimentary Corg/N ratios as source indicators of organic matter. Palaeogrophy Palaeoclimatology Palaeoecology, 145: 1-16.
    Muscatello, J.R., Belknap, A.M. and Janz, D.M., 2008. Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada. Environmental Pollution, 156: 387-393.
    Muse, J.O., Tudino, M.B., d'Huicque, L., Troccoli, O.E. and Carducci, C.N., 1989. Atomic absorption spectrometric determination of inorganic and organic arsenic in some marine benthic algae of the southern atlantic coasts. Environmental Pollution, 58(4): 303-312.
    Mushrifah, I. and Peterson, P.J., 1991. Toxicity of cadmium and tin to chlorophyll a and protein content of Anabaena flos-aquae. Microbios Letters, 45: 151-160.
    N'Guessan, Y.M., Probst, J.L., Bur, T. and Probst, A., 2009. Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): Where do they come from? Science of the Total Environment, 407(8): 2939-2952.
    Nagiev, K.D., Gambarov, D.G., Mamedov, P.R. and Chyragov, F.M., 2005. Photometric determination of tin in Caspian Sea water. Journal of Analytical Chemistry, 60: 409-411.
    Nameroff, T.J., Balistrieri, L.S. and Murray, J.W., 2002. Suboxic trace metal geochemistry in the Eastern Tropical North Pacific. Geochimica et Cosmochimica Acta, 66(7): 1139-1158.
    Neal, C. and Davies, H., 2003. Water quality fluxes for eastern UK rivers entering the North Sea: a summary of information from the Land Ocean Interaction Study(LOIS). Science of the Total Environment, 314-316: 821-882.
    Nicholls, C.D., 1959. Spectrographic analyses of marine planktyon. Limnology and Oceanography, 4(4): 472-478. Nriagu, J.O., 1979. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature, 279: 409-411.
    Nriagu, J.O. and Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(12): 134-139.
    Ogra, Y., Kobayashi, R., Ishiwata, K. and Suzuki, K.T., 2008. Comparison of distribution and metabolism between tellurium and selenium in rats. Journal of Inorganic Biochemistry, 102(7): 1507-1513.
    Palmer, D.H. and Austral, J., 1980. Behavior and speciation of dissolved selenium in estuarine water. Marine and Freshwater Research, 31(6): 795-802.
    Pawlik-Skowrofiska, B., Kaczorowska, R. and Skowrofiski, T., 1997. The impact of inorganic tin on the planktonic cyanobacterium synechocystis aquatilis: the effect of pH and humic acid. Environmental Pollution, 97(1-2): 65-69.
    Paytan, A., Kastner, M. and Chavez, F.P., 1996. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274: 1355-1357.
    Pedersen, T.F., Water, R.D. and Macdonald, R.W., 1989. On the natural enrichment of cadmium and molybdenum in the sediments of Ucluelet Inlet, British Columbia. Science of the Total Environment, 79: 125-139.
    Pereira, W.E., Hosteller, F.D. and Rapp, J.B., 1996. Distributions and fates of chlorinated pesticides, biomarker and polycyclic aromatic hydrocarbons in sediments along a contaminated gradient from a point-source in San Francisco Bay, California. Marine Environment Research, 41(3): 299-314.
    Perin, G. et al., 1985. Heavy Metals in the Environment. Heavy metal speciation in the sediments of northern Adriatic sea. A new approach for environmental toxicity determination, 2. CEP Consultants, Edinburgh.
    Pettine, M., Mastroianni, D., Camusso, M., Guzzi, L. and Martinotti, W., 1997. Distribution of As, Cr and V species in the Po-Adriatic mixing area, (Italy). Marine Chemistry, 58: 335-349.
    Pizarro, I., Gómez, M., Cámara, C. and Palacios, M.A., 2003. Arsenic speciation in environmental and biological samples-Extraction and stability studies. Analytica Chimica Acta 495: 85-98.
    Price, N.M. and Harrison, P.J.S., 1988. Specific selenium-containing macromolecules in the marine diatom Thalassiosira-pseudonana. Plant Physiol., 86(1): 192-199.
    Price, N.M., Thompson, P.A. and Harrison, P.J., 1987. Selenium-an essential element for growth of the coastal marine diatom Thalassiosira-pseudonana(Bacillariophyceae). Journal of Phycology, 23(1): 1-9.
    Profumo, A., Merli, D. and Pesavento, M., 2005. Voltammetric determination of inorganic As(III) and total inorganic As in natural waters. Analytica Chimica Acta, 539: 245-250.
    Pye, K., 1987. Aeolian Dust and Dust Deposits. Academic Press, London, 334 pp.
    Qin, Y.W. et al., 2005. Distribution features of nitrogen and phosphorus in aquatic environments of Bohai Bay. Acta Oceanologica Sinica, 27(2): 172-176.
    Quentel, F. and Filella, M., 2002. Determination of inorganic antimony species in seawater by differential pulse anodic stripping voltammetry: stability of the trivalent state. Analytica Chimica Acta, 452: 237-244.
    Rahn, K.A., 1976. The chemical composition of the atmospheric aerosol, Graduate School of Oceanography, University of Rhode Island, Kingston, RI.
    Robberecht, H. and Van Griekert, R., 1982. Selenium in environmental waters: determination, speciation and concentration levels. Talanta, 29: 823-844.
    Rognerud, S. and Fjeld, E., 2001. Trace element contamination of Norwegian lake sediments. Ambio, 30(1): 11-19. Rosenfeld, I. and Beath, D., 1964. Selenium. Academic Press, New York, 411 pp.
    Rosenthal, Y., Lam, P., Boyle, E.A. and Thomson, J., 1995. Authigenic cadmium enrichments in suboxic sediments: Precipitation and postdepositional mobility. Earth and Planetary Science Letters, 132: 99-111.
    Rossbach, M., 1993. Tin in biological materials: comparison of different separation and detection modalities. Journal of Radioanalytical and Nuclear Chemistry, 169(1): 239-245.
    Roussiez, V., Aloisi, J.C., Monaco, A. and Ludwig, W., 2005. Early muddy deposits along the Gulf of Lions shoreline: A key for a better understanding of land-to-sea transfer of sediments and associated pollutant fluxes. Marine Geology, 222: 345-358.
    Rubio, B., Nombela, M.A. and Vilas, F., 2000. Elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40(11): 968-980.
    Ryssen, R.V., Alam, M., Goeyens, L. and Baeyens, W., 1998. The use of flux-cover experiments in the determination of heavy metal redistribution in and of Potentialleaching from the sediments. Water Science and Technology, 37(6-7): 283-290.
    Sadiq, M., 1990. Toxic metal chemistry in marine environments. Maecel Dekker, New York, 390 pp.
    Saito, Y. and Yang, Z.S., 1994. Proceedings of International Symposium on Global Fluxes of Carbon and its Related Substances in the Coastal-Ocean-Atmosphere System. Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea. Hokkaido University, Sapporo, 7-12 pp.
    Sanders, J.G., 1985. Arsenic geochemistry in Chespeake Bay, dependence upon anthropogneic inputs and phytoplankton species composition. Marine chemistry, 17: 329-340.
    Sanders, J.G., Riedel, G.F. and Osman, R.W., 1994. Arsenic cycling and impact in estuarine and coastal marine ecosystems. Arsenic in the Environment, Wiley, New York, 289-308 pp.
    Sanders, J.G. and Windom, H.L., 1980. The uptake and reduction of arsenic species by marine algae. Estuarine and Coastal Marine Science, 10(5): 555-567.
    Santos, I.R., Filho, E.V.S., Schaefer, C.E.G.R., Albuquerque-Filho, M.R. and Campos, L.S., 2005. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Marine Pollution Bulletin, 50: 185-194.
    Sawlan, J.J. and Murray, J.W., 1983. Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth and Planetary Science Letters, 64: 213-230.
    Schaule, B.K. and Patterson, C.C., 1981. Lead concentrations in the northeast Pacific: evidence for global anthropogenic perturbations. Earth and Planetary Science Letters, 54 97-116.
    Schaule, B.K. and Patterson, C.C., 1983. Perturbations of the natural lead depth profile in the Sargasso Sea by industrial lead. Trace Metals in Seawater. Plenum, New York, 487-503 pp.
    Schenau, S.J., Reichart, G.J. and De Lange, G.J., 2005. Phosphorus burial as a function of paleoproductivity and redox conditions in Abrabian Sea sediments. Geochimica et Cosmochimica Acta, 69: 919-931.
    Schiff, K.C. and Weisberg, S.B., 1999. Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Marine Environmental Research, 48(2): 161-176.
    Schutz, D.F. and Turekian, K.K., 1965. The investgation of the geographical and vertical distribution of several trace elements in sea water using neutron activation analysis. Geochimica et Cosmochimica Acta, 29: 259-313.
    Shaw, T.J., Gieskes, J.M. and Jahnke, R.A., 1990. Early diagenesis in differing depositional environments: The response of transition metals in pore water. Geochimica et Cosmochimica Acta, 54: 1233-1246.
    Sherrard, J.C., Hunter, K.A. and Boyd, P.W., 2004. Selenium speciation in subantarctic and subtropical waters east of New Zealand: trends and temporal variations. Deep Sea Research Part I: Oceanographic Research Papers, 51(3): 491-506.
    Shimizu, K. and Ogata, N., 1963. Determination of trace of tin in common salt with phenylfluorone. Bunseki Kagaku, 12: 526-531.
    Shimoishi, Y., 1973. Determination of Se in sea water by Gas Chromatigraphy with Election Capture Detection. Analytica Chimica Acta, 64: 465.
    Shiraiwa, Y., Goyal, A. and Tolbert, N.E., 1993. Alkalization of the medium by unicellular green algae during uptake of dissolved inorganic carbon. Plant Cell Physiology, 34(5): 649-657.
    Singer, P.C. (Editor), 1977. Fate of Polletants in the Air and Water Environment. Influence of dissolved organics on the distribution, transportation and fate of heavy metals in aquatic system. Wiley-Interscience, New York.
    Singh, K.P., Mohan, D., Singh, V.K. and Malik, A., 2005. Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges, India. Journal of Hydrology, 312(1-4): 14-27.
    Skowrofiski, T., Szubifiska, S., Pawlik, B. and Jakubowski, M., 1991. The influence ofpH on cadmium toxicity to the green alga Stichococcus bacillaris and the cadmium forms present in the culture medium. Environmental Pollution 72(4): 89-100.
    Slragliadi, W.M., 1991. Chemical time bombs: predicting the unpredictable. Environment, 33: 4-30.
    Smith, J.D. and Burton, J.D., 1972. The occurrence and distribution of tin with particular reference to marine environments. Geochimica et Cosmochimica Acta, 36: 621-629.
    Song J.M., 2009. Biogeochemical Processes of Biogenic Elements in China Marginal Seas. Springer-Verlag GmbH & Zhejiang University Press, 1-662
    Song, Y. and Müller, G., 1999. Sedimente Water Interactions in Anoxic Freshwater Sediment: Mobility of Heavy Metals and Nutrients. Springer, Berlin.
    Srinivasa Reddy, M., Basha, S., Sravan Kumar, V.G., Joshi, H.V. and Ramachandraiah, G., 2004. Distribution, enrichment and accumulation of heavy metals in coastal sediments of Alang-Sosiya ship scrapping yard, India. Marine Pollution Bulletin, 48: 1055-1059.
    Statham, P.J., Burton, J.D. and Maher, W.A., 1987. Dissolved arsenic in waters of the Cape Basin. Deep Sea Research Part A. Oceanographic Research Papers, 34(8): 1353-1359.
    Stephens, D., Waddell, B., DuBois, K. and Peterson, E., 1997. Field screening of water quality, bottom sediment, and biota associated with the Emery and Scofield Project areas, central Utah, 1994. Water-Resources Investigations Report 96-4298.US Geological Survey, Salt Lake City, UT.
    Sugimura, Y., Suzuki, Y. and Miyake, Y., 1976. The content of selenium and its chemical form in sea water. Journal of the Oceanographic Society of Japan, 32: 235-241.
    Sundby, B., Martinez, P. and Gobeil, C., 2004. Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments. Geochimica et Cosmochimica Acta, 68(11): 2485-2493.
    Sutherland, R.A., 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6): 611-627.
    Tack, F.M.G., Singh, S.P. and Verloo, M.G., 1999. Leaching behaviour of Cd,Cu,Pb and Zn in surface soils derived from dredged sediments. Environmental Pollution, 106: 107-114.
    Takayanagi, K., Cossa, D. and Martin, J.M., 1996. Antimony cycling in the western Mediterranean. Marine Chemistry, 54: 303-312.
    Takayanagi, K. and Wong, G.T.F., 1984. Dissolved inorganic and organic selenium in the Orea Basin. Geochimica et Cosmochimica Acta, 49: 539-546.
    Tam, N.F.Y. and Wong, Y.S., 1999. Mangrove soils in removing pollutants from municipal wastewater of different salinities. Journal of Environmental Quality, 28: 556-564.
    Taylor, S. and Mc Lennan, S., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford,312 pp.
    Taylor, S.R., 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28: 1273-1285.
    Tessier, A., Campbell, P.G.C. and Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51: 844-851.
    Tuncer, G., Tuncel, G. and Balkas, T.I., 2001. Evolution of metal pollution in the Golden Horn (Turkey) sediments between 1912 and 1987. Marine Pollution Bulletin, 42(5): 350-360.
    Tuner, D.R., Whitfield, M. and Dickson, A.G., 1981. The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure. Geochimica et Cosmochimica Acta, 45: 855-873.
    Turekian, K.K. and Wedepohl, K.H., 1961. Distribution of the elements in some major units of the earth's crust. Geol. Soc. Am. Bull., 72: 175-192.
    Tyler, G., 2004. Vertical distribution of major, minor, and rare elements in a Haplic Podzol. Geoderma, 119: 277-290.
    Tyson, R.V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman and Hall, London, 1-615 pp.
    URS, 2000. Environmental impact statement and environmental impact report, Volume I-Main text and Volume 2 -Appendices. Report to the US Bureau of Reclamation and San Luis and Delta-Mendota Water Authority, URS, Oakland, CA.
    USDOI, 1998. Guidelines for interpretation of the biological effects of selected constituents in biota, water, and sediment. National Irrigation Water Quality Program Information Report No.3, Denver, CO. US Department of the Interior.
    USEPA, 1979. Water Related Fate of the 129 Priority Pollutants, 1. United States Environmental Protection Agency, Washington, DC, USA, EP-440r4-79-029A.
    Usup, G. and Azanza, R.V., 1998. Physiological Ecology of Harmful Algal Blooms, NATO-ASI Series, vol. 41. Physiology and bloom dynamics of the tropical dinoflagellate Pyrodinium Bahamense (Dinophyceae). Springer Verlag, Heidelberg.
    Valdés, J., Vargas, G., Sifeddine, A., Ortlieb, L. and Guin?z, M., 2005. Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23°S), Northern Chile: Geochemical and statistical approach. Marine Pollution Bulletin, 50: 1558-1568.
    Van der Weijden, C.H. et al., 1990. Profiles of the redox-sensitive trace elements As, Sb, V, Mo and U in the Tyro and Bannock Basins(eastern Mediterranean). Marine Chemistry, 31: 171-186.
    van Geen, A., McCorkle, D.C. and Klinkhammer, G.P., 1995. Sensitivity of the phosphate-cadmium-carbon isotope relation in the ocean to cadmium removal by suboxic sediments. Paleoceanography 10: 159-169.
    Vidal, F.V. and Vidal, V.M.V., 1980. Arsenic metabolism in marine bacteria and yeast. Marine Biology, 60: 1-7. Voelker, B.M., Morel, F.M.M. and Sulzberger, B., 1997. Iron redox cycling in surface waters: effects of humic substances and light. Environmental Science and Technology, 31: 1004-1011.
    Wang, C.Y. and Wang, X.L., 2007. Spatial distribution of dissolved Pb, Hg, Cd, Cu and As in the Bohai Sea. Journal of Environmental Sciences, 19: 1061-1066.
    Wang, D.C., 1985. Selenium. soil sorption, geographical distribution and ecological effect. Institite of Geography, Chinese Academy of Science, Beijing, 73 pp.
    Wang, Y.W., Liang, L.N., Shi, J.B. and Jiang, G.B., 2005. Study on the contamination of heavy metals and their correlations in mollusks collected from coastal sites along the Chinese Bohai Sea. Environment International 31: 1103-1113.
    Waska, H., Kim, S., Kim, G., Kang, M.R. and Kim, G.B., 2008. Distribution patterns of chalcogens (S, Se, Te, and 210Po) in various tissues of a squid, Todarodes pacificus. Science of the Total Environment, 392(2-3): 218-224.
    Whitfield, M. and Turner, D.R. (Editors), 1987. Aquatic Surface Chemistry. The role of particles in regulating the composition of sea water. Wiley-Interscience, New York, 457-493 pp.
    WHO, 1993. Guidelines for Drinking Water Quality. World Health Organisation, 41 pp.
    Willams, T.P., Bubb, J.M. and Lester, J.N., 1994. Metal accumulation within saltmarsh environments: a review. Marine Pollution Bulletin, 28: 277-290.
    Windom, H.L. et al., 1989. Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environmental Science and Technology, 23: 314-320.
    Wong, P.T.S., Maquire, R.J., Chau, Y.K. and Kramar, O., 1984. Uptake and accumulation of inorganic tin by a freshwater alga Ankistrodesmus falcatus. Canadian Journal of Fisheries and Aquatic Sciences, 41(11): 1570-1574.
    Wrench, J., Fowler, S.W. and Unlu, Y., 1979. Arsenic metabolism in a marine food chain. Marine Pollution Bulletin, 10: 18-20.
    Wrench, J.J. and Measures, C., 1982. Temporal variations in dissolved selenium in a coastal ecosystem. Nature, 293: 413-433.
    Wright, P.J. and Weber, J.H., 1991. Biosorption of inorganic tin and methyltin compounds by estuarine macroalgae. Environmental Science and Technology 25(2): 287-294.
    Wu, J.F., Sunda, W., Boyle, E.A. and Karl, D.M., 2000. Phosphate depletion in the western North Atlantic Ocean. Science, 289: 759-762.
    Xu, B. et al., 2009. The trend and extent of heavy metal accumulation over last one hundred years in the Liaodong Bay, China. Chemosphere, 75: 442-446.
    Yang, M. and Sa?udo-Wilhelmy, S.A., 1998. Cadmium and manganese distributions in the Hudson River estuary: interannual and seasonal variability. Earth and Planetary Science Letters, 160(3-4): 403-418.
    Yang, Z.F., Wang, Y., Shen, Z.Y., Niu, J.F. and Tang, Z.W., 2009. Distribution and speciation of heavy metals in sediments from the mainsteam, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of hazardous Materials, 166: 1186-1194.
    Yao, Q.Z. and Zhang, J., 2005. The behavior of dissolved inorganic selenium in the Bohai Sea. Estuarine, Coastal and Shelf Science, 63(1-2): 333-347.
    Yao, Q.Z., Zhang, J., Qin, X.G., Xiong, H. and Dong, L.X., 2006. The behavior of selenium and arsenic in the Zhujiang(Pearl River) Estuary, South China Sea. Estuarine, Coastal and Shelf Science, 67(1-2): 170-180.
    Yu, F.L. et al., 2010. Bulk organic delta C-13 and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China. Estuarine, Coastal and Shelf Science, 87(4): 618-630.
    Yu, Z.G., Mi, T.Z., Yao, Q.Z., Xie, B.D. and Zhang, J., 2001. Nutrients concentration and changes in decade-scale in the central Bohai Sea. Acta Oceanologica Sinica, 20(1): 65-75.
    Zhang, J., Huang, W.W. and Liu, S.M., 1992. Transport of particulate heavy metals towards the China Sea: a preliminary study and comparison. Marine Geochemistry, 40: 161-178.
    
    Zhang, J., Huang, W.W. and Martin, J.M., 1988. Trace metals distribution in Huanghe(Yellow River) estuarine sediments. Estuarine, Coastal and Shelf Science, 26: 499-516.
    Zhang, J. and Liu, C.L., 2002. Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54(6): 1051-1070.
    Zhang, J. et al., 2004a. Dynamics of inorganic nutrient species in the Bohai seawaters. Journal of Marine Systems, 44(3-4): 189-212.
    Zhang, P. et al., 2007. PCBs and its coupling with eco-environments in Southern Yellow Sea surface sediments. Marine Pollution Bulletin 54: 1105-1115.
    Zhang, P.C. and Sparks, D.L., 1990. Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface. Environmental Science and Technology, 24: 1848-1856.
    Zhang, Q., Minami, H., Inoue, S. and Atsuya, I., 2004b. Differential determination of trace amounts of arsenic(III) and arsenic(V) in seawater by solid sampling atomic absorption spectrometry after preconcentration by coprecipitation with a nickel-pyrrolidine dithiocarbamate complex. Analytica Chimica Acta, 508(1): 99-105.
    Zhang, W. et al., 2009. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environmental Pollution, 157(5): 1533-1543.
    Zheng, Y., Anderson, R.F., van Geen, A. and Fleisher, M.Q., 2002. Preservation of particulate non-lithogenic uranium in marine sediments. Geochimica et Cosmochimica Acta, 66: 3085-3092.
    Zhou, H.Y., Peng, X.T. and Pan, J.M., 2004. Distribution, source and enrichment of some chemical elements in sediments of the Pearl River Estuary, China. Continental Shelf Research, 24: 1857-1875.
    陈绍勇,田正隆,龙爱民和吴云华,2005.南沙群岛海域以钡为指标的古生产力研究.海洋学报,27(4):53-58.
    杜俊民,朱赖民和张远辉,2004.南黄海中部沉积物微量元素的环境记录研究.海洋学报,26(6):49-57.
    段丽琴,宋金明和许思思,2009.海洋沉积物中的钒、钼、铊、镓及其环境指示意义.地质论评,55(3):420-427.
    高会旺,张英娟和张凯,2002.大气污染物向海洋的输入及其生态环境效应.地球科学进展,17(3):326-330.
    郭雪莲,王金鹏,史基安和王琪,2005.青海湖沉积物中微量元素纵向分布反映的古环境意义.兰州大学学报,41(1):19-24.
    郭志刚,杨作升,曲艳慧和范德江,2000.东海陆架泥质区沉积地球化学比较研究.沉积学报,18(2):284-289.
    国家海洋局, 2008 .中国海洋环境质量公报. WWW Page, http://www.soa.gov.cn/hyjww/hygb/hyhjzlgb/A020707index_1.htm.
    国家海洋局北海监测中心,1995.渤海湾环境概况.
    国家环境保护局和国家海洋局,1998.中华人民共和国国家标准UCD 551463.海水水质标准GB3097-1997.中国标准出版社,北京.
    海洋地质研究室,1985.渤海地质.科学出版社,北京.
    胡敦欣和杨作升,2001.东海海洋通量关键过程.海洋出版社,北京,3-24 pp.
    胡明辉,刘道礼和杨逸萍,1988.海洋中硒的双箱模式及地球化学特性.厦门大学学报(自然科学版),27(1):93-97.
    蒋红,崔毅,陈碧娟,陈聚法和宋云利,2005.渤海近20年来营养盐变化趋势研究.海洋水产研究,26(6):61-67.
    蒋廷惠,胡霭堂和秦怀英,1990.土壤锌、铜、铁、锰形态区分方法的选择.环境科学学报,10(3):280-286.
    雷坤,孟伟,郑丙辉,侯小珉和孙贻超,2007.渤海湾西岸入海径流量和输沙量的变化及其环境效应.环境科学学报,27(12):2052-2059.
    雷坤,孟伟,郑丙辉,张雷和秦延文,2006.渤海湾西岸潮间带沉积物粒度分布特征.海洋通报,25(1):54-61.
    李建芬et al.,2003.渤海湾西岸210Pbexc、137Cs测年与现代沉积速率.地质调查与研究,26(2):114-128.
    李明堂,张月和赵晓松,2007.锗在土壤-水稻系统内的迁移和积累规律.农业环境科学学报,26(1):126-129.
    李全生,沈万仁和马锡年,1984.渤海湾砷的研究.东海洋学院学报,14(2):28-40.
    李淑媛,刘国贤和苗丰民,1994.渤海沉积物中重金属分布及环境背景值.中国环境科学,14(5):370-376.
    李鱼,刘亮和董德明,2003.城市河流淤泥中重金属释放规律的研究.水土保持学报,17(1):125-127.
    廖文卓,2000.疏浚物中镉释放的影响条件.台湾海峡,19(2):170-176.
    廖自基,1989.环境中微量重金属元素的污染危害与迁移转化.科学出版社,北京.
    孟翊和刘苍字,1996.长江口区沉积地球化学特征的定量研究.华东师范大学学报(自然科学版),1:73-83.
    孟翊,刘苍字和程江,2003.长江口沉积物重金属元素地球化学特征及其底质环境评价.海洋地质与第四纪地质,23(3):37-43.
    蒲家彬,1990.海洋环境样品中硒的测定.海洋环境科学,3:48-53.
    齐红艳,范德江,琳,徐.和杨作升,2008.长江口及邻近海域表层沉积物pH、Eh分布及制约因素.沉积学报,26(5):820-827.
    齐文启,曹杰和陈亚蕾,1992.铟(In)和铊(Tl)的土壤环境背景值研究.土壤通报,23(1):31-38.
    齐文启,曹杰山和陈亚雷,1991.铋的土壤环境背景值研究.干旱环境监测,5(1):1-4.
    秦蕴珊,赵一阳和陈丽蓉,1987.东海地质.科学出版社,北京.
    裘祖楠,方宇翘和张仲燕,1989.苏州河底泥中汞的形态分布和释放能力的关系研究.环境科学,1:1-8.
    邵孝候,邢光熹和侯文华,1994.连续提取法区分土壤重金属元素形态的研究及其应用.土壤学进展,22(3):40-46.
    沈焕庭,李九发和朱慧芳,1988.长江河口悬沙输移特性,长江河口动力过程和地貌演变.上海科学技术出版社,上海,205-215 pp.
    
    沈金山,朱珍妹和张新琴,1983.长江口南槽拦门沙的成因和演变.海洋与湖沼,14(6):582-590.
    宋金明,1997.中国近海沉积物-海水界面化学.海洋出版社,北京,1-222 pp.
    宋金明,2004.中国近海生物地球化学.山东科技技术出版社,济南.
    宋金明,李凤业,李学刚和李宁,2002.新的痕量同位素示综剂在全球变化研究中的应用.海洋科学进展,20(3):90-95.
    唐全民,杨芳和郑文杰,2003.Te(IV)对钝顶螺旋藻和极大螺旋藻的生物效应.暨南大学学报(自然科学版),24(5):75-79.
    王宝永,1983.东海近岸现代沉积物的动力特征.海洋地质与第四纪地质,3(1):37-46.
    王继刚,2006.渤海典型海域沉积物重金属Cu2+、Pb2+释放的研究,中国海洋大学,青岛.
    王修林和李克强,2006.渤海主要化学污染物海洋环境容量.科学出版社,北京.
    文湘华和Hebert,E.A.,1997.乐安江沉积物酸可挥发硫化物含量及溶解氧对重金属释放特性的影响.环境科学,18(4):32-34.
    姚庆祯和张经,2003.原子荧光光谱法测定天然水体中的Se(IV).海洋科学,27(4):63-67.
    于志刚,米铁柱,谢宝东,姚庆祯和张经,2000.二十年渤海生态环境参数的演化和相互关系.海洋环境科学,19(1):15-19.
    翟建平,徐应成,涂俊和李文清,1998.施粉煤灰农田和作物的钡、锶、镓、锆、铌和钪含量变化及影响评价.电力环境保护,14(3):13-20.
    张洁帆,陶建华,李清雪和赵海萍,2007.渤海湾氮磷营养盐年际变化规律研究.安徽农业科学,35(7):2063-2064,2107.
    张淑香,董淑萍和颜文,1998.草河口地区沉积物和土壤中铊的地球化学行为.农业环境保护,17(1):113-115.
    张正斌,陈镇东,刘莲生和王肇鼎,2004.海洋化学原理和应用-中国近海的海洋化学.海洋出版社,北京.
    赵保仁和曹德明,1998.渤海冬季环流形成机制动力学分析及数值研究.海洋与湖沼,29(1):86-96.
    赵一阳,1983.中国海大陆架沉积物地球化学的若干模式.地质科学,4:307-313.
    赵一阳和鄢明才,1994.中国浅海沉积物地球化学.科学出版社,北京,1-203 pp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700