用户名: 密码: 验证码:
河北省主要污灌土壤质量及其污染风险评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是人类生存和发展的物质基础,其质量的优劣不仅影响着农作物的产量,而且还决定着农产品的安全品质和农业发展的可持续性。然而,在水资源日益短缺和水污染不断加剧的双重压力下,长期污灌土壤的生态环境污染问题日趋凸显,并严重制约着我国农业的可持续发展。因此,本研究以河北省主要不同区域(衡水、石家庄、沧州和保定)的污灌土壤为研究对象,分析了反映土壤质量的理化性质、酶活性、重金属及其各形态含量水平和农作物的重金属污染水平,评价了污灌土壤的肥力质量、环境质量、综合质量以及农作物的健康风险,指出了污灌土壤现存的主要问题,对于遏制污灌土壤环境质量的下降、调控污灌土壤肥力质量、确保污灌农作物产品安全均具有十分重要意义。所取得的主要研究结果如下:
     (1)河北省主要污灌土壤质地总体上属于壤土,其中衡水、石家庄和保定区域属于中壤土,沧州区域属于重壤土。对于0~20cm污灌土壤pH值而言,石家庄和保定区域50%以上的样本为中性,衡水和沧州区域80%以上的样本为碱性,但是不同区域90%以上的20~40cm污灌土壤样本仍为碱性。
     根据全国第二次土壤肥力状况普查结果和河北省土壤肥力状况的分级标准可知,河北省0~20cm污灌土壤的有机质、全钾和速效钾含量达中等偏上水平,全氮、速效氮、全磷和速效磷含量则处于低等水平,其中石家庄区域的相对等级水平最高。0-20cm污灌土壤脲酶、过氧化氢酶、碱性磷酸酶和转化酶活性与大部分理化性质指标显著相关,石家庄和保定区域污灌土壤酶活性最高,衡水和沧州污灌土壤酶活性最低,且突出表现在土壤脲酶活性上。20~40cm污灌土壤的养分含量和酶活性均明显降低,且不同区域间的差异也显著减小。
     基于模糊数学法的污灌土壤肥力质量评价结果显示,衡水、石家庄、沧州和保定区域0-20cm污灌土壤肥力质量综合指数分别为0.42、0.67、0.40和0.61,分别属于中等、较高、中等和较高的肥力等级水平。
     (2)河北省主要污灌土壤重金属含量的大小顺序为,Fe>Ti>Mn>Zn>V>Cr>Pb >Cu>Ni>Co>As>Sn>Cd>Hg(20~40cm土层的为Cu>Pb),除Fe、Mn和As外,其余重金属元素平均含量的最高值均出现在石家庄区域。与河北省土壤背景值相比,大部分重金属元素的累积现象较明显,突出表现在Hg、Cd、Zn和Pb元素上,且存在不同程度超中国土壤环境质量II级标准、无公害和绿色食品产地标准的样本比例,最高为Cd的44.4%,最低为Pb的8.9%。主成分分析和聚类分析结果一致表明,污灌土壤中的Cd、Cr、Cu、Pb、Sn和Zn主要受人类生产活动的影响,而As、Fe、Mn、Co、Ti和V则主要受自然成土过程的影响。污灌土壤中的大部分重金属元素以残渣态和铁锰氧化态的形式存在,而可交换态(除Cd和Cr)的比例则最低。
     污灌土壤环境质量评价及预警结果显示,较高水平的Hg、Cd、Zn、Pb和Cu累积,在污染土壤环境的同时,也构成了严重的生态危害,其中石家庄污灌土壤的综合潜在生态风险达很强程度,预警级别达中度及重度的相对比例为57.15%;保定和沧州污灌土壤的生态风险达较强程度,预警级别达中度及重度的相对比例分别为25.00%和6.67%;衡水污灌土壤的生态风险达中等水平,94.44%的相对风险概率处于无警级别。
     (3)与中国食品卫生相关标准相比,污灌粮食籽粒(除棉花)主要存在Pb和Hg的超标问题,且小麦超标样本比例(8.5%和16.7%)略高于玉米的(6.0%和10.0%);污灌叶菜类蔬菜(除菜花)主要存在Zn、Ni、Pb、Cd和Hg的超标,其中菠菜Pb和Cd的超标样本比例高达50%以上,而白菜、油菜、香菜和韭菜的超标样本比例主要集中在10%-30%之间;根菜类蔬菜主要存在Zn、Ni、Pb和Cd的超标,除大葱外,其它根菜类的超标比例均较高,其中芥菜和白萝卜的Pb超标比例均达100%,这主要与农作物对重金属的富集能力密切相关。
     污灌农作物健康风险评价结果显示,除芥菜Pb和玉米Ni的单一重金属健康风险指数(HRI)接近1外,其它农作物的HRI均小于1。但是,玉米、芥菜、菠菜、白萝卜、香菜和油菜可食部分所有重金属的综合健康风险指数THQ>1,表明这些污灌作物具有较高的健康风险,尤其是对儿童。
     结合污灌农作物可食部分重金属含量与土壤重金属形态间的相关性和食品卫生标准中重金属含量的最大允许量获得,种植粮食和蔬菜作物的污灌土壤重金属Pb、Zn、Cd、Cr的交换态临界含量分别为4.47 mg kg~(-1)、10.99 mg kg~(-1)、0.27 mg kg~(-1)、42.38 mg kg~(-1)和8.45 mg kg~(-1)、16.38 mg kg~(-1)、0.15 mg kg~(-1)、52.97 mg kg~(-1);种植粮食作物的污灌土壤重金属Pb和Cr的碳酸盐态临界含量分别为1.75 mg kg~(-1)和8.83 mg kg~(-1),种植蔬菜作物的污灌土壤重金属Zn的碳酸盐态临界含量分别为42.37 mg kg~(-1);种植粮食作物的污灌土壤重金属Zn和Cr的铁锰氧化态临界含量分别为67.08 mg kg~(-1)和14.29 mg kg~(-1),种植蔬菜作物的污灌土壤重金属Cr的铁锰氧化态临界含量为31.19 mg kg~(-1)。
     (4)采用Box-Cox转化法对污灌土壤养分化学、酶学和有效态重金属指标进行正态性检验及其转化后,基于主成分分析法(PCA)的污灌土壤质量综合分析评价显示,衡水区域的污灌土壤综合质量最优,石家庄区域的最差,保定和沧州的位列中等,且不同区域间存在显著差异(P<0.05)。
     由此可见,受人类生产活动影响的重金属Cd、Pb、Cr、Cu、Sn和Zn是降低石家庄区域污灌土壤环境质量和综合质量的主要因子,需进行重金属污染土壤的修复或种植低富集的农作物(如棉花、菜花和大葱),提高其环境质量,避免农作物安全品质污染事故的发生;对于其它污灌区域,特别是衡水地区应注重土壤肥力质量的改善措施与良性种植模式的运用,同时建立长期的、动态的污灌土壤质量定位监测机制,减轻对人体健康的危害,逐步实现污灌土壤的可持续发展。
As is well known, soil is the material foundation of human living and development. Soil quality affects not only crop yields but is also a significant factor governing food safety and agricultural sustainability. Under the double pressures from lack and contamination of water resource, the pollution problem of soil ecological environment deprived from long-term sewage irrigation has been showing seriously and restricting development of sustainable agriculture in China. Therefore, this study was carried out taking sewage-irrigated soil sampled from different area (HS, SJZ, CZ, BD) in low-plain region of Hebei province as research subject. The physicochemical properties, enzyme activities, heavy metal and its fraction in soil and content of heavy metal in crop were determined and analyzed. We assessed the fertility quality, environment quality, comprehensive quality of soil and health risk of crop. The main problems of sewage-irrigated soil in different sampling area of Hebei province were revealed. The results will play an important role in suppressing soil environment quality decrease, improving soil fertility, and ensuring food safety for the sewage-irrigated area of Hebei province. The major findings were summarized as follows:
     (1) The sewage-irrigated soil in Hebei province was loam, including medium loam for HS, SJZ, BD and heavy loam for CZ. As far as pH of 0~20cm soil samples were concerned, the proportion of 6.5~7.5 reached more than 50% in SJZ and BD, whereas more than 80% of soil samples were alkaline(7.5~8.5) in CZ and HS. Additionally, more than 90% of 20~40cm soil samples were still alkaline in the all sewage-irrigated area.
     According to soil fertility standard of the second national soil survey and current situation of soil fertility in Hebei province, the organic matter, total potassium and available potassium contents of 0~20cm sewage-irrigated soil were in the medium-high level. The total nitrogen and phosphorus, available nitrogen and phosphorus content were in low level. Among the four sewage-irrigated area, the organic matter, nitrogen, phosphorus and potassium content in SJZ were the highest. The urease, catalase, alkaline phosphatase and invertase activities were correlated with mostly physicochemical properties in a significant or very significant way. On the whole, enzyme activities of sewage-irrigated soil in BD and SJZ were higher, but the lower soil enzyme activities were recorded in HS and CZ, especially for urease activity. The physicochemical properties and enzyme activities of sewage-irrigated soil were lower in 20~40cm soil layer than in 0~20cm soil layer and decreased in significant difference of four sewage-irrigated areas.
     The present situation of fertility quality of 0~20cm sewage-irrigated soil was evaluated by using fuzzy mathematical method. The results showed that soil fertility quality index(SFQI) for HS, SJZ, CZ and BD was 0.42、0.67、0.40 and 0.61, respectively in moderate, higher, moderate and higher fertility level.
     (2) The contents of heavy metals in sewage-irrigated soil sampled from low-plain region of Hebei province followed the order of Fe>Ti>Mn>Zn>V>Cr>Pb> Cu> Ni>Co> As>Sn>Cd>Hg(Cu>Pb in 20~40cm). Except for Fe, Mn and As, the average concentrations of other heavy metals in SJZ were the highest. Compared with the background values of heavy metals in Hebei province, an accumulation level of heavy metals was significant in the sewage-irrigated soils, especially for Hg, Cd, Zn and Pb, which were beyond the permissible limits set by the State Environmental Protection Administration(SEPA) and Ministry of Agriculture(MA) in China. The proportion of soil samples was exceeded by 44.4% for Cd and 8.9% for Pb, respectively. The principal component analysis(PCA) in combination with cluster analysis (CA) revealed that heavy metal contamination had different origination. The primary inputs of Cd, Cr, Cu, Pb, Sn and Zn in sewage-irrigated soils were due to anthropogenic sources, whereas As, Fe, Mn, Co, Ti and V were mainly of pedogenic source. A considerable proportion of the mostly heavy metals resided in residual fractions, whereas Cd and Cr dominated the exchangeable fraction.
     An assessment of soil environmental quality and its warning results revealed that the study area was higher enrichment level with respect to Hg, Cd, Zn, Pb and Cu, which led the contamination of soil and posed severely ecological risk. The degree of comprehensive ecological risk in SJZ was very strong; and moderately to strongly warned with 57.15% relative level. The degree of comprehensive ecological risk in CZ and BD was stronger; and moderately to strongly warned with 25.00% and 6.67% relative level, respectively. The degree of comprehensive ecological risk in HS was moderate; and no warned with 94.44% relative level.
     (3) Concentrations of Pb and Hg in grain seeds(except for cotton seed) selected from the sewage-irrigated soil were beyond the safe limit of pollutants in food of China (GB2762–2005); and the contamination with Pb and Hg was at its higher level in wheat seed(8.5% and 16.7%) than in maize seed(6.0% and 10.0%). Concentrations of Zn, Ni, Pb, Cd and Hg in leafy vegetables (except for cauliflower) selected from the sewage-irrigated soil were beyond the safe limit of pollutants in food of China (GB2762–2005); more than 50% leafy vegetable samples contaminated with Pb and Cd were found in edible parts of spinach; and between 10% to 30% leafy vegetable samples contaminated with Zn, Ni, Pb, Cd and Hg appeared to all edible parts of Chinese cabbage, rape, parsley, and chives. Concentrations of Zn, Ni, Pb and Cd in root vegetables (except for scallion) selected from the sewage-irrigated soil were beyond the safe limit of pollutants in food of China (GB2762–2005); and all the root vegetable samples contaminated with Pb were found in edible parts of mustard and white radish, which were related to higher enrichment factor of heavy metals in root vegetables grown in sewage-irrigated soil.
     The health risk index(HRI) of single heavy metal for crops grown in sewage-irrigated soil suggested that the consumption of mustard and maize posed a higher health risk for Pb and Ni, respectively; but other vegetables were free of health risks. However, the combined total health quotients (THQ) exceeded the safe level(THQ>1) and were not free of risk for maize, mustard, spinach, white radish, parsley and rape. In all crops THQ for children were higher than that for adults.
     The species of crops, available fraction of heavy metal and food health standard were all taken into consideration for establishing available heavy metal fraction thresholds based on soil-plant system in the sewage-irrigated area. The threshold values of exchangeable fraction of Pb、Zn、Cd and Cr were 4.47 mg kg~(-1), 10.99 mg kg~(-1), 0.27 mg kg~(-1) and 42.38 mg kg~(-1) for grain growing soil, 8.45 mg kg~(-1), 16.38 mg kg~(-1), 0.15 mg kg~(-1) and 52.97 mg kg~(-1) for vegetable growing soil, respectively. The threshold values of carbonate fraction of Pb and Cr were 1.75 mg kg~(-1) and 8.83 mg kg~(-1) for grain growing soil; and 42.37 mg kg~(-1) of Zn for vegetable growing soil. The threshold values of iron/manganese oxide fraction of Zn and Cr were 67.08 mg kg~(-1) and 14.29 mg kg~(-1) for grain growing soil; and 31.19 mg kg~(-1) of Cr for vegetable growing soil.
     (4) Principal component analysis (PCA) output using Box-Cox normalization on raw dataset of physicochemical properties, enzyme activities, available heavy metals in 0~20cm sewage-irrigated soil demonstrated that comprehensive soil quality in HS was the best; the worst comprehensive soil quality was found in SJZ; and the moderately comprehensive soil quality was recorded in BD and CZ. The difference in four sewage-irrigated areas was also significant (P<0.05).
     Therefore, the effective remediation technologies, strict protection measures, stringent guidelines and an integrated system for sewage-irrigated soil are needed to enhance its environmental quality and avoid polluted accidents in the SJZ area, because the lowest environmental quality and comprehensive quality and highest fertility quality of soil were found in SJZ. Additionally, the physicochemical properties, enzyme activities, heavy metals concentrations and so on, which reflect status of soil quality, should be long-term and periodically monitored in the sewage-irrigated soils together with the improvement measures of soil fertility and practice of perfect cropping pattern to minimize possible impacts on human health and get the agricultural sustainability in sewage-irrigated soil.
引文
[1]曹志洪,孟赐福.土壤质量概论[A].曹志洪,周健民.中国土壤质量[C].北京:科学出版社, 2008, 1–9.
    [2]章家恩.土壤生态健康与食物安全[J].云南地理环境研究, 2004,6(4): 1–4.
    [3] Pimentel D, Harvey C, Resosudarmo P, et al. Environmental and economic costs of soil erosion and conservation benefits[J]. Science, 1995,267: 1117–1123.
    [4]于林.沿海经济发达区种植业结构变动对土壤质量的影响——以山东省寿光市为例[D].泰安:山东农业大学, 2006.
    [5] Zhang W L, Tian Z X, Zhang N, et al. Nitrate pollution of groundwater in northern China[J]. Agricult Ecosyst Environ, 1996,59: 223–231.
    [6] Hedlund A, Witter E, An B X. Assessment of N, P and K management by nutrient balances and flows on peri-urban smallholder farms in southern Vietnam[J]. Eur J Agron, 2003,20: 71–87.
    [7] Eswaran H, Almaraz R, van den Berg E, et al. An assessment of the soil resources of Africa in relation to productivity[J]. Geoderma, 1997, 77: 1–18.
    [8] Stocking M A. Tropical soils and food security: The next 50 years[J]. Science, 2003,302: 1356–1359.
    [9] Wienhold B J, Andrews S S, Karlen D L. Soil quality: a review of the science and experiences in the USA[J]. Environmental Geochemistry and Health. 2004,26: 89–95.
    [10] Doran J W, Sarrantonio M, Liebig M. Soil health and sustainability[A]. Sparks D L. Advances in Agronomy[C]. San Diego: Academic Press, 1996b,56: 1–54.
    [11]有关农业高效用水问题的探[J/OL]. http://www.china5e.com/show.php?contentid=190909. 2011-08-24.
    [12]中华人民共和国国家统计局.中国统计年鉴2010[M].北京:中国统计出版社, 2010.
    [13]中华人民共和国水利部. 2008年中国水资源公报[G]. 2011.
    [14]方玉东.我国农田污水灌溉现状、危害及防治对策研究[J].农业环境与发展, 2011,5: 1–6.
    [15]吴迪梅.河北省污水灌溉对农业环境的影响及经济损失评估[D].北京:中国农业大学, 2003.
    [16] Friedel J K, Langer T, Siebe C, et al. Effects of long-term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico[J]. Biol Fertil Soils, 2000,31: 414–421.
    [17] Toze S. Reuse of effluent water– benefits and risks[A]. "New directions for a diverse planet": Proceedings of the 4th International Crop Science Congress[C]. Australia: Brisbane, 2004, 1–11.
    [18]谢建治,刘树庆,王立敏.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报, 2002,25(1): 38–41.
    [19]王树涛.污灌区菜地土壤质量评价及其污染预测模型研究——保定市郊为例[D].保定:河北农业大学, 2005.
    [20]崔邢涛,栾文楼,石少坚,等.石家庄污灌区土壤元素评价[J].中国地质, 2010,37(6): 1753–1759.
    [21] Warkentin B P. The change concept of soil quality[J]. Soil Water Conservation, 1995,50: 226–228.
    [22] Arshad M A, Coen G M. Characterization of soil quality: physical and chemical criteria[J]. American Journal of Alternative Agriculture, 1992,7: 25–31.
    [23] Seybold C A, Mausbach M J, Karlen D L, et al. Quantification of soil quality[A]. Lal R, Kimble J M, Follett R F, Stewart B A, et al. Soil Processes and the Carbon Cycle[C]. Boca Raton, FL: CRC Press LLC, 1998, 387–404.
    [24]刘占锋,傅伯杰,刘国华,等.土壤质量与土壤质量指标及其评价[J].生态学报, 2006,26(3): 901–913.
    [25]郑昭佩,刘作新.土壤质量及其评价[J].应用生态学报, 2003,14(1): 131–134.
    [26] Wander M M, Walter G L, Nissen T M, et al. Soil quality: science and process[J]. Agron J, 2002,94: 23–32.
    [27]赵其国,孙波,张桃林.土壤质量与持续环境Ⅰ土壤质量的定义及评价方法[J].土壤, 1997,29(3): 113–120.
    [28] Warkentin B P. The changing concept of soil quality[J]. J Soil Water Conserv, 1995,50: 226–228.
    [29]王国庆,洛永明,宋静,等.土壤环境质量指导值与标准研究——国际动态及中国的修订考虑[J].土壤学报, 2005,42(4): 666–673.
    [30]陈立新.落叶松人工林土壤质量变化规律与调控措施的研究[D].北京:中国林业科学院, 2003.
    [31]张甘霖,朱永官,傅伯杰.城市土壤质量演变及其生态环境效应[J].生态学报, 2003,23(3): 539–546.
    [32] Idowu O J, van Es H, Schindelbeck R, et al. The new cornell soil health test: protocols and interpretation. What’s Cropping Up?[R]. 2007,17(1): 6–7.
    [33] Idowu O J, van Es H M, Abawi G S. Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods[J]. Plant Soil, 2008,307: 243–253.
    [34] Doran J W, Parkin T B. Defining and assessing soil quality[A]. Doran J W, Coleman D C, Bezdicek D F, Stewart B A. Defining soil quality for a sustaining environment[C]. Madison: SSSA, 1994, 3–20.
    [35] Doran J W, Zeiss M R. Soil health and sustainability: managing the biotic component of soil quality[J]. Applied Soil Ecology, 2000,15: 3–11.
    [36] Victorian Resources online. Department of Primary Industries, Victoria, Australia[J/OL]. http://vro.dpi.vic.gov.au/dpi/vro/vrosite.nsf/pages/soilhealth_what_is
    [37] Carter M R. Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions[J]. Agron J, 2002,94: 38–47.
    [38] Karlen D L, Mausbach M J, Doran J W, et al. Soil quality: a concept, definition, and framework for evaluation[J]. Soil Sci Soc Am J, 1997,61: 4–10.
    [39] Wienhold B J, Andrews S S, Karlen D L. Soil quality: a review of the science and experiences in the USA[J]. Environ Geochem Health, 2004,26: 89–95.
    [40]邱莉萍.黄土高原植被恢复生态系统土壤质量及调控措施[D].杨凌:西北农林科技大学, 2007.
    [41] TurnerM G. Landscape ecology: the effect of pattern on process[J]. Annual Revue of Ecology and Systematics, 1989,20: 171–197.
    [42] Crist P J, Thomas W K, John O L. Assessing land-use impacts on biodiversity using an expert system tool [J]. Landscape Ecology, 2000,15: 47–62.
    [43]李新宇,唐海萍,赵云龙,等.怀来盆地不同土地利用方式对土壤质量的影响分析[J].水土保持学报, 2004,18(6): 103–107.
    [44]邱莉萍,张兴昌.子午岭不同土地利用方式对土壤性质的影响[J].自然资源学报, 2006,21(6): 965–976.
    [45] Fu B J, Ma K M, Zhou H F, et al. The effect of land use structure on the distribution of soil nutrients in the hilly area of the Loess Plateau, China[J]. Chinese Science Bulletin, 1999,44(8): 732–736.
    [46] Burel F, Baudry J , L efeuvre J C. Landscape structure and the control of water runoff [A]. Bunce R G H, Ryszkowsk I L, Paoletti M G. Landscape ecology and agroeco systems[C]. Lewis: Boca Raton FL, 1993, 41–47.
    [47] Fu B J, Gulinck H, M asum M Z. Loess erosion in relation to land-use changes in Ganspoel catchment, central Belgium [J ]. Land Degradation & Rehabilitation, 1994,5 (4): 261–270.
    [48] Bushchbacher R, Uhl C, Serrao E A S. A bandoned pastures in eastern Amazonia. II. Nutrient stocks in the soil and vegetation [J]. Journal of Ecology, 1988,76: 682–699.
    [49]李阳兵,高明,魏朝富,等.土地利用对岩溶山地土壤质量性状的影响[J].山地学报, 2003,21(1): 41–47.
    [50] Shuklal M K, Lall R, Owens L B, et al. Land use and management impacts on structure and infiltration characteristics of soils in the north appalachian region of Ohio[J]. Soil Science, 2003,168(3): 167–177.
    [51] Lal R, Mokma D, Lowery B. Relation between soil quality and erosion [A]. Rattan L. Soil quality and soil erosion[C], Washtington D C: CRC Press, 1999, 237–258.
    [52] Warkentin B P. The changing concept of soil quality[J]. J Soil Water Cons, 1995,50: 226–228.
    [53] Fu B J , Chen L D, Ma K M, et al. The relationship between land use and soil conditions in the hilly area of Loess Plateau in northern Shanxi, China [J]. Catena, 2000,39: 69–78.
    [54]傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响[J].地理学报, 1999,54(3) : 241–246.
    [55]章明奎,徐建民.利用方式和土壤类型对土壤肥力质量指标的影响[J].浙江大学学报,2002,28(3): 277–282.
    [56]李忠佩,李德成,张桃林.土地退化对全球粮食安全的威胁及防治对策[J].水土保持通报, 2001,21(4): 65–69.
    [57] Carter M R, Sanderson J B. Influence of conservation tillage and rotation length on potato productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada [J]. Soil & tillage research, 2001,63(1–2): 1–13.
    [58]贾树龙,孟春香,任图生,等.耕作及残茬管理对作物产量及土壤性状的影响[J].河北农业科学, 2004,8(4): 38–43.
    [59]王小彬,蔡典雄,张镜清,等.旱地玉米秸秆还田对土壤肥力的影响[J].中国农业科学, 2000,33(4): 54–61.
    [60]郭旭东,傅伯杰,陈利顶,等.低山丘陵区土地利用方式对土壤质量的影响——以河北省遵化市为例[J].地理学报, 2001,56(4): 447–455.
    [61] Saxena D, Stotzky G. Bacillus thuringiensis(Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil[J]. Soil Biology and Biochemistry, 2001,33(9): 1225–1230.
    [62]刘文秀,刘文宝.有机肥料对改良土壤的作用[J].吉林农业, 2003,9: 24–25.
    [63]唐亚,谢嘉穗,陈克明,等.等高固氮植物篱技术在坡耕地可持续耕作中的应用[J].水土保持研究, 2001,8(1): 104–109.
    [64]张从.中国农村面源污染的环境影响及其控制对策[J].环境科学动态, 2001,4: 10–13.
    [65]刘光德,赵中金,李其林.三峡库区农业面源污染现状及其防治对策[J].中国生态农业学报, 2004,12(2): 172–175.
    [66]郑粉莉,李靖,刘国彬.国外农业非点源(面源污染)研究动态[J].水土保持研究, 2004,11(4): 64–66.
    [67]任秀媛.施用化肥应注意的三个问题[J].河北农业, 2003,4: 19.
    [68]黄国勤,王兴祥,钱海燕,等.施用化肥对农业生态环境的负面影响及对策[J].生态环境, 2004,13(4): 656–660.
    [69]王东胜,陈凯麒,鲁光四,等.农药对地下水环境影响评价研究[J].水资源保护, 2004,2: 13–15. [184]
    [70]张辉,刘广民,姜桂兰,等.农药在土壤环境中迁移转化规律研究的现状与展望[J].世界地质, 2000,19(2): 199–205.
    [71]刘维屏,邵颖,王琪全.新农药环境化学行为研究[J].环境科学学报, 1998,18(3): 290–295.
    [72] Agarwal H C. Fate of parachion in soil under sub-tropical field conditions[J]. J Environ Sci Health, 1994,B29(1): 189–194.
    [73] Custanedu A R. Groundwater contamination by rice field pesticide and some influencing factors[J]. J Environ Sci Health A, 1996,31(1): 83–99.
    [74]赵玲,马永军.有机氯农药残留对土壤环境的影响[J].土壤, 2001,6: 309–311.
    [75]安琼,董元华,王辉,等.苏南农田土壤有机氯农药残留规律[J].土壤学报,2003,48(3): 414–419.
    [76] Van Rooijen D J, Biggs T W, Pay Drechsel I S. Urban growth, wastewater production and use in irrigated agriculture: a comparative study of Accra, Addis Ababa and Hyderabad[J]. Irrig Drainage Syst, 2010,24: 53–64.
    [77] Doran J W, Zeiss M R. Soil health and sustainability: managing the biotic component of soil quality[J]. Applied Soil Ecology, 2000,15: 3–11.
    [78]熊东红,贺秀斌,周红艺.土壤质量评价研究进展[J].世界科技研究与发展, 2005,27(1): 71–75.
    [79] Lindert P. The bad earth: China’s soils and agricultural soils and development since the 1930s[J]. Economic Development and Cultural Change, 1999,47(4): 701–736.
    [80]汤建东.耕作改制对土壤肥力的影响[J].土壤与环境, 2000,9(3): 257–260.
    [81]王光复,李亦兵.长春耕地质量评估[J].农业区划, 1991,2: 13–15.
    [82]杨金,马振江,张增旺.复混肥对秋白菜产量及土壤肥力的影响[J].土壤通报, 1996,27(5): 236–238.
    [83]吕晓男,陆允甫,王人朝.土壤肥力综合评价初步研究[J].浙江大学学报(农业与生命科学版), 1999,25(4): 378–382.
    [84]刘荣乐,李书田,王秀斌,等.我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J].农业环境科学学报, 2005,24(2): 392–397.
    [85]吴燕玉,陈涛,张学询.沈阳张士灌区镉污染生态的研究[J].生态学报, 1989,9(1): 21–26.
    [86]谢建治,刘树庆,刘玉柱,高如泰.保定市郊土壤重金属污染对蔬菜营养品质的影响[J].农业环境保护, 2002,21(4): 325–327.
    [87]谢正苗,李静,徐建明,等.杭州市郊蔬菜基地土壤和蔬菜中Pb、Zn和Cu含量的环境质量评价[J].环境科学, 2006,27(4): 742–747.
    [88]陈芳,蓝元华,安琼,等.长期肥料定位试验条件下土坡中重金属的含量变化[J].土壤, 2005,37(3): 308–311.
    [89]史海娃,宋卫国,赵志辉.我国农业土壤污染现状及其成因[J].上海农业学报, 2008,24(2): 38–42.
    [90]陈美军,段增强,林先贵.中国土壤质量标准研究现状及展望[J].土壤学报, 2011,48(5): 1059–1071.
    [91] Andrews S S, Mitchell J P, Mancinelli Roberto, et al. On-farm assessment of soil quality in California’s central valley[J]. Agronomy Journal, 2002,94: 12–23.
    [92] Sparling G P, Schipper L A. Soil quality monitoring in New Zealand: trends and issues arising from a broad-scale survey[J]. Agriculture Ecosystems Environment, 2004,104: 545–552.
    [93] Govaerts B, Sayre K D, Deckers J. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico[J]. Soil and Tillage Research, 2006,87(2): 163–174.
    [94]徐建明,张甘霖,谢正苗,等.土壤质量指标和评价咨询系统[A].曹志洪,周健民.中国土壤质量[C].北京:科学出版社, 2008, 39–89.
    [95]徐建明,汪海珍,谢正苗.中国重要土壤的土壤质量标准建议方案[A].徐建明,张甘霖,谢正苗,等.土壤质量指标与评价[C].北京:科学出版社, 2010, 170–200.
    [96] Ditzler C A, Tugel A J. Soil quality field tools: experiences of USDA-NRCS soil quality institute [J]. Agronomy Journal, 2002,94(1): 33–38.
    [97]黄勇,杨忠芳.土壤质量评价国外研究进展[J].地质通报, 2009,28(1): 130–136.
    [98]岳西杰,葛玺祖,王旭东.土壤质量评价方法的应用与进展[J].中国农业科技报, 2010,12(6): 56–61.
    [99]王效举,龚子同.红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析[J].地理科学,1997,17(2): 141–148.
    [100]王恒俊,张淑光.黄土高原地区土壤资源及其合理利用[M].北京:中国科学技术出版社, 1991, 160–173.
    [101]刘世梁,傅伯杰,陈利顶,等.两种土壤质量变化的定量评价方法比较[J].长江流域资源与环境, 2003,12(5): 422–426.
    [102]胡曰利,吴晓芙.土壤微生物生物量作为土壤质量生物指标的研究[J].中南林学院学报, 2002,22(3): 51–53.
    [103]张俊华.渭北黄土高原植被恢复过程土壤肥力质量研究[D].杨陵:西北农林科技大学, 2004.
    [104]翟瑞常,张之一.耕作对土壤生物碳动态变化的影响[J].土壤学报, 1996,33(2): 201–210.
    [105]张庆利,潘贤章,王洪杰,等.中等尺度上土壤肥力质量的空间分布研究及定量评价[J].土壤通报, 2003,34(6): 493–497.
    [106]谭万能,李志安,邹碧,等.地统计学方法在土壤学中的应用[J].热带地理, 2005,25(4): 307–311.
    [107] Keltinga D L, Burgera J A, Patterson S C, et al. Soil quality assessment in domesticated forests—a southern pine example[J]. Forest Ecology and Management, 1999,122: 167–185.
    [108] Smith J L, Halvorson J J, Papendick R I. Using multiple—variable indicators Kriging for evaluating soil quality[J]. Soil Sci Soe Am J, 1993,57: 743–749.
    [109] Wang X J, Gong Z T. Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China[J]. Geoderma, 1998,81: 339–355.
    [110]王效举,龚子同.亚热带小区域水平上土壤质量时空变化的定量化评价[J].土壤与环境, 1996,5(4): 229–231.
    [111]卢铁光,杨广林,王立坤.基于相对土壤质量指数法的土壤质量变化评价与分析[J].东北农业大学学报, 2003,34(1): 56–59.
    [112]王建国,杨林章,单艳红,等.模糊数学在土壤质量评价中的应用研究[J].土壤学报, 2001,38(2): 176–183.
    [113]茹淑华,张宝悦,王凌,等.河北平原土壤质量的模糊数学方法综合评价[J].河北农业大学学报, 2005,9(3): 44–49.
    [114]段永惠.模糊综合评价在土壤环境质量评价中的应用研究[J].农业系统科学与综合研究, 2004,20(4): 303–305.
    [115]孙波,赵其国,张桃林.土壤质量与持续环境Ⅱ——土壤质量评价的碳氮指标[J].土壤, 1997,29(4): 169–175.
    [116]孙波,赵其国,张桃林等.土壤质量与持续环境Ⅲ——土壤质量评价的生物学指标[J].土壤, 1997,29(5): 225–234.
    [118]陈杰,檀满枝,陈晶中,等.严重威胁可持续发展的土壤退化问题[J].地球科学进展, 2002,17(5): 720–728.
    [119]刘昌明,陈志恺.中国水资源现状评价和供需发展趋势分析[M].北京:中国水利水电出版社, 2001, 3–98.
    [120] Dère C, Lamy I, Jaulin A, et al. Long-term fate of exogenous metals in a sandy Luvisol subjected to intensive irrigation with raw wastewater[J]. Environmental Pollution, 2007,145: 31–40.
    [121] Qishlaqi A, Moore F, Forghani G. Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran[J]. Environmental Monitoring and Assessment, 2008,141: 257–273.
    [122] Kiziloglu F M, Turan M, Sahin U, et al. Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcareous soil in Turkey[J]. Agricultural Water Management, 2008,95: 716–724.
    [123] Barbagallo S, Cirelli G L, Indelicato S. Wastewater reuse in Italy[J]. Water Science and Technology, 2001,43: 43–50.
    [124] Rattan R K, Datta S P, Chhonkar P K, et al. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study[J]. Agriculture Ecosystems and Environment, 2005,109: 310–322.
    [125] Salgot M, Huertas E, Weber S, et al. Wastewater reuse and risk: definition of key objectives[J]. Desalination, 2006,187: 29–40.
    [126]李贵宝,杜霞.污水资源化及其农业利用(污灌)的对策[J].中国农村水利水电, 2001,11: 9–12.
    [127]王贵玲,蔺文静.污水灌溉对土壤的污染及整治[J].农业环境科学学报, 2003,22(2): 163–166.
    [128]吴迪梅.污水灌溉对环境影响的经济损失研究[J],南京理工大学学报, 2007,31(5): 659–662.
    [129]杨志新,郑大玮,冯圣东.京郊农田污水灌溉的环境影响损失分析[J].华北农学报, 2007,22(增刊): 121–126.
    [130]吴迪梅,张从,孟凡乔.河北省污水灌溉农业环境污染经济损失评估[J].中国生态农业学报, 2004,12(2): 176–179.
    [131] Mathan K K. Studies on the influence of long-term municipal sewage-effluent irrigation onsoil physical properties[J]. Bioresour Technol, 1994,48: 275–276.
    [132] Abd Elnaim E M, Omran M S, Waly T M, et al. Effect of prolonged sewage irrigation on some physical properties of sandy soil[J]. Biol Wastes, 1987,22: 269–274.
    [133] Masto R E, Chhonkar P K, Singh D, et al. Changes in soil quality indicators under long-term sewage irrigation in a sub-tropical environment[J]. Environ Geol, 2009,56: 1237–1243.
    [134] Sur H S, Sidhu A S, Singh R, et al. Long term effect of green manuring on soil physical properties and production potential in green manure–maize–wheat sequence[J]. Ann Agric Res, 1993,14: 125–131.
    [135] Diez T H. Increasing organic matter of soils by sewage sludge application[A]. The influence of sewage sludge application on physical and biological properties of soils[C]. Dordrecht: D. Reidel Publ. Co., 1981, 2–10.
    [136] Agassi M, Tarchitzky J, Keren R, et al. Effects of prolonged irrigation with treated municipal effluent on runoff rate[J]. J Environ Qual, 2003,32: 1053–1057.
    [137] Biggs T W, Jiang B B. Soil salinity and exchangeable cations in a wastewater irrigated area, India[J]. J Environ Qual, 2009,38: 887–896.
    [138] Wallach R, Ben-Arie O, Graber E R. Soil water repellency induced by long-term irrigation with treated sewage effluent[J]. Journal of Environmental Quality, 2005,34: 1910–1920.
    [139] Vogeler I. Effect of long-term wastewater application on physical soil properties[J]. Water Air Soil Pollut, 2009,196: 385–392.
    [140]孟春香,郭建华,韩宝文.污水灌溉对作物产量及土壤质量的影响[J].河北农业科学, 1999,3(2): 15–17.
    [141]黄治平,徐斌.猪场废水灌溉区农田土壤养分的空间变异[J].灌溉排水学报, 2008,27(4): 61–63.
    [142]王明璐,徐志红.造纸废水灌溉对湿地土壤中有机质含量的影响[J]. 2009,22(1): 15–16.
    [143]蔺昕,李晓军,孙铁珩,等.沈抚石油污灌区土壤有机质空间分布[J].生态学杂志, 2008,27(4): 569–572.
    [144]杨潇,地里拜尔·苏力坦,陈牧霞.新疆主要污灌区养分资源特征的研究[J].干旱区资源与环境, 2007, 21(1): 140–144.
    [145] Hu X D, Han L B. Sustainability of effluent irrigation schemes: a field investigation[J]. Journal of Beijing forestry university, 2000,22(2): 28–33.
    [146]焦平金,许迪,程先军.外加碳源对污水灌溉系统氮素迁移转化影响的实验研究[J].水力学报, 2008,39(3): 380–384.
    [147]地里拜尔·苏力坦,艾尼瓦尔·买买提,尤努斯江·吐拉洪.污灌对土壤—植物体系中养分迁移的影响[J].干旱区资源与环境, 2005,19(4): 179–182.
    [148] Siebe C. Nutrient inputs to soils and their uptake by alfalfa through long-term irrigation with untreated sewage effluent in Mexico[J]. Soil Use and Management, 1998,14: 119–122.
    [149] Brooles P C. The use of microbial parameters in monitoring soil pollution by heavy metals [J]. Biol Fertil Soils, 1995,19(4): 269–279.
    [150] Stenberg B. Monitoring soil quality of arable land: microbiological indicators[J]. Acta Agric Scand Section B, Soil and Plant Sci, 1999,49(1): 1–2.
    [151] Gupta A P, Narwal R P, Antil R S. Effect of different levels of phosphorus and sewage sludge on wheat[J]. J Indian Soc Soil Sci, 1993,41: 304–307.
    [152] Friedel J K, Langer T, Siebe C, et al. Effects of long-term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico[J]. Biology and Fertility of Soils, 2000,31: 414–421.
    [153] Zhang Y L, Dai J L, Wang R Q, et al. Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong,China[J]. European Journal of Soil Biology, 2008,44(1): 84–91.
    [154]王涵,高树芳,陈炎辉,等.重金属污染区土壤酶活性变化——以福建龙岩新罗区特钢厂污水灌溉区为例[J].应用生态学报, 2009,20(12): 3034–3042.
    [155]丁成.造纸废水污灌对土壤微生物数量动态的影响[J].盐城工学院学报, 2003,16(4): 9–11.
    [156]张晶,张惠文,苏振成,等.长期有机污水灌溉对土壤固氮细菌种群的影响[J].农业环境科学学报, 2007,26(2): 662–666.
    [157]曹靖,贾红磊,徐海燕,等.干旱区污灌农田土壤Cu、Ni复合污染与土壤酶活性的关系[J].农业环境科学学报, 2008,27(5): 1809–1814.
    [158] Chen W P, Wu L S, Frankenberger W T, et al. Soil enzyme activities of long-term reclaimed wastewater-irrigated soils[J]. J Environ Qual, 2008,37: 36–42.
    [159]张彦,张惠文,苏振成.污水灌溉对土壤重金属含量、酶活性和微生物类群分布的影响[J].安全与环境学报, 2006,6(6): 44–50.
    [160] Zhang Y, Zhang H W, Su Z C, et al. Soil microbial characteristics under long-term heavy metal stress: a case study in Zhangshi wastewater irrigation area, Shenyang[J]. Pedosphere, 2008,18(1): 1–10.
    [161] Bhattacharyya P, Tripathy S, Chakrabarti K, et al. Fractionation and bioavailability of metals and their impacts on microbial properties in sewage irrigated soil[J]. Chemosphere, 2008,72: 543–550.
    [162] Ramirez-Fuentes E, Lucho-Constantino C, Escamilla-Silva E, et al. Characteristics and carbon and nitrogen dynamics in soil irrigated with wastewater for different lengths of time[J]. Bioresource Technol, 2002,85: 179–187.
    [163] Alvarez-Bernal D, Contreras-Ramos S M, Trujillo-Tapia N, et al. Effect of tanneries wastewater on chemical and biological soil characteristics[J] Appl Soil Ecol, 2006,33: 269–277.
    [164]赵其国.土壤与环境问题国际研究概况及其发展趋势[J].土壤, 1998,30 (6): 281–290.
    [165] Aleem A, Isar J, Malik A. Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil[J]. Bioresource Technology, 2003,86: 7–13.
    [166] Bansal O P. Heavy metal pollution of soils and plants due to sewage irrigation[J]. Indian Environmental Health, 1998,40: 51–52.
    [167] Lottermoser B G. Effect of long-term irrigation with sewage effluent on the metal content of soils, Berlin, Germany[J]. Environ Geochem Health, 2012,34(1): 67–76.
    [168] Mireles A, Solís C, Andrade E, et al. Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico city[J]. Nuclear Instruments and Methods in Physics Research B, 2004, 219-220: 187–190.
    [169] Mapanda F, Mangwayana E N, Nyamangara J, et al. The effect of long term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe[J]. Agricultural Ecosystem Environment, 2005,107: 151–165.
    [170] Singh K P, Mohon D, Sinha S, et al. Impact assessment of treatment/untreated wastewater toxicants discharge by sewage treatment plants on health, agricultural, and environmental quality in wastewater disposal area[J]. Chemos, 2004,55: 227–255.
    [171] Sharma R K, Agrawal M, Marshall F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India[J]. Ecotoxicology and Environmental Safety, 2007,66: 258–266.
    [172]张乃明,陈建军,常晓冰.污灌区土壤重金属累积影响因素研究[J].土壤, 2002, (2): 90–93.
    [173]辛术贞,李花粉,苏德纯.我国污灌污水中重金属含量特征及年代变化规律[J].农业环境科学学报, 2011,30(11): 2271–2278.
    [174]孟凡乔,巩晓颖,葛建国,等.污灌对土壤重金属含量的影响及其定量估算——以河北省洨河和府河灌区为例[J].农业环境科学学报, 2004, 23(2): 277–280.
    [175] Li P J, Stagnitti F, Xiong X, et al. Temporal and spatial distribution patterns of heavy metals in soil at a long-standing sewage farm[J]. Environ Monit Assess, 2009,149: 275–282.
    [176]李梅,吴启堂,李锐.佛山市郊污灌菜地土壤和蔬菜的重金属污染状况与评价[J].华南农业大学学报, 2009,30(2): 19–21.
    [177]黄治平,徐斌,涂德浴.规模化猪场废水灌溉农田土壤Pb, Cd和As空间变异及影响因子分析[J].农业工程学报, 2008,24(2): 77–83.
    [178]范拴喜,甘卓亭,李美娟,等.土壤重金属污染评价方法进展[J].中国农学通报, 2010, 26(17): 310–315.
    [179]梁镇海,陈翠翠,韩玉兰,等.基于模糊数学的太原市敦化灌区污灌土壤重金属污染评价[J].环境化学, 2010,29(6): 1152–1157.
    [180]栾文楼,温小亚,崔邢涛,等.石家庄污灌区表层土壤中重金属环境地球化学研究[J].中国地质, 2009,36(2): 465–473.
    [181]茹淑华,张国印,王凌,等.河北省典型污灌区土壤和植物重金属累积特征研究[J].河北农业科学, 2008,12(10): 78–81.
    [182]韩晋仙,马建华,魏林衡.污灌对潮土重金属含量及分布的影响——以开封市化肥河污灌区为例[J].土壤, 2006,35(3): 292–297.
    [183]姜勇,梁文举,张玉革,等.污灌对土壤重金属环境容量及水稻生长的影响研究[J].中国生态农业学报, 2004,12(3): 124–127.
    [184] Li P J, Wang X, Allinson G, et al. Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China[J]. Journal of Hazardous Materials, 2009,161: 516–521.
    [185]雷鸣,廖柏寒,秦普丰,等.矿区污染土壤Pb、Cd、Cu和Zn的形态分布及其生物活性的研究[J].生态环境, 2007,16(3): 807–811.
    [186]王学锋,杨艳琴.土壤植物系统重金属形态分析和生物有效性研究进展[J].化工环保, 2004,24(1): 1–5.
    [186]王亚平,黄毅,王苏明,等.土壤和沉积物中元素的化学形态及其顺序提取法[J].地质通报, 2005,24(8): 7–28.
    [187] Kirpichtchikoval T, Manceau A, Lanson B, et al. Speciation and mobility of Zn, Cu and Pb in a truck farming soil contaminated by sewage irrigation[J]. Journal de Physique IV France, 2003,107: 695–698.
    [188] Tessier A. Sequential extraction procedure for the speciation of particulate trace metals[J]. Ana1 Gem, 1979,51(7): 844–851.
    [189]马祥爱,秦俊梅,冯两蕊.长期污水灌溉条件下土壤重金属形态及生物活性的研究[J].中国农学通报, 2010,26(22): 318–322.
    [190] Bashira F, Kashmirib M A, Shafiqa T, et al. Heavy metals uptake by vegetables growing in sewage irrigated soil: relationship with heavy metal fractionation in soil[J]. Chemical Speciation and Bioavailability, 2009,21(4): 199–209.
    [191] Song Y F, Wilke B M, Song X Y, et al. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation[J]. Chemosphere, 2006,65: 1859–1868.
    [192] Chen Y, Wang C X, Wang Z J. Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants[J]. Environment International, 2005,31: 778–783.
    [193]张晶,张惠文,丛峰,等.长期灌溉含多环芳烃污水对稻田土壤酶活性与微生物种群数量的影响[J].生态学杂志, 2007,26(8): 1193–1198.
    [194]杜斌,龚娟,李佳乐.太原市污水灌溉对水土环境的有机污染研究[J].人民长江, 2010,41(17): 58–61.
    [195]王洪涛,张丽华.辽宁省污灌区土壤中多环芳烃的测定[J].环境保护与循环经济, 2009, 29(5): 30–31.
    [196]肖汝,汪群慧,杜晓明,等.典型污灌区土壤中多环芳烃的垂直分布特征[J].环境科学研究, 2006,19(6): 49–53.
    [197] Wang W, Massey Simonich S L, Xue M, et al. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China[J]. Environmental Pollution, 2010,158(5): 1245–1251.
    [198]陈静,王学军,陶澍,等.天津污灌区耕作土壤中多环芳烃的纵向分布[J].城市环境与城市生态, 2003,16(6): 272–274.
    [199]彭华,王维思.河南省典型农业区域土壤中多环芳烃污染状况研究[J].中国环境监测, 2009,2: 61–62.
    [200]金爱芳,何江涛,陈素暖,等.北京东南郊污灌区土壤有机氯农药的垂向分布特征[J].环境科学学报, 2009, 29(9): 1970–1977.
    [201] Chen F, Ying G, Kong L, et al. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China[J]. Environmental Pollution, 2011, 159(6): 1490–1498.
    [202] Stumpe B, Marschner B. Long-term sewage sludge application and wastewater irrigation on the mineralization and sorption of 17β-estradiol and testosterone in soils[J]. Science of the Total Environment, 2007,374: 282–291.
    [203] Wu G H, Cao S S. Mercury and cadmium contamination of irrigation water, sediment, soil and shallow groundwater in a wastewater-irrigated field in Tianjin, China[J]. Bull Environ Contam Toxicol, 2010,84: 336–341.
    [204]段飞舟,何江,高吉喜,等.城市污水灌溉对农田土壤环境影响的调查分析[J].华中科技大学学报(城市科学版), 2005,22(5): 181–184.
    [205]莫若斌,曲伯华. 1931年日本发生富山“痛痛病”事件[J],环境导报, 2003,16: 20.
    [206]鲁海燕,曹靖,杨鑫,等.白银地区污灌对农田土壤细菌多样性的影响[J].长春理工大学学报(自然科学版), 2010,2: 110–116.
    [207]李毓,阚文敏.城市污水灌溉中氮素转化的实验研究及污染风险分析[J].天津城市建设学院学报, 2006,12(2): 131–133.
    [208]刘德启.污灌系统氮素在土壤中的转化与渗漏污染[J].西北师范大学学报, 1995,32(2): 57–60.
    [209]万正成.城市污水灌溉对地下水水质的影响分析[J].江苏环境科技, 2004,17(1): 29–31.
    [210]李桐,姚宏.通辽污灌渠及土壤的硝态氮亚硝态氮含量分析[J].山西建筑, 2010,36(24): 360–361.
    [211]李洪良.农田污水灌溉的风险分析研究[D].南京:河海大学, 2007.
    [212] Sharma C P. Plant micronutrient[M]. USA, New Hampshier: Science Publisher, 2006, 5–10.
    [213]高侠莉,王爱民,袁宗飞,等.污灌对蔬菜的生理生态指标及细胞学影响研究[J].中国环境科学, 1997,17(5): 443–445.
    [214]刘登义,王友保,张徐祥,等.污灌对小麦幼苗生长及活性氧代谢的影响[J].应用生态学报, 2002,13(10): 1319–1322.
    [215]苗明升,王培,李莉,等.污灌对大豆种子萌发及早期生长发育的研究[J].山东科学, 2008,21(3): 49–52.
    [216]李兆智,荆文,姜亚洲,等.污灌对玉米萌发和早期生长发育的影响[J].山东师范大学学报, 2006,21(2): 121–123.
    [217] Naaz S, Pandey S N. Effects of industrial waste water on heavy metal accumulation, growthand biochemical responses of lettuce (Lactuca sativa L.)[J]. Journal of Environmental Biology, 2010,31: 273–276.
    [218]张永清,苗果园,张定一.污灌胁迫对春小麦抗氧化酶活性及根系与幼苗生长的影响[J].农业环境科学学报, 2005,24(4): 662–665.
    [219]王友保,刘登义.污灌对作物生长及其活性氧清除系统的影响[J].环境科学学报, 2003,23(4): 555–558.
    [220]冯绍元,齐志明,黄冠华,等.清、污水灌溉对冬小麦生长发育影响的田间试验研究[J].灌溉排水学报, 2003,22(3): 11–14.
    [221]齐志明,冯绍元,黄冠华,等.清、污水灌溉对夏玉米生长影响的田间试验研究[J].灌溉排水学报, 2003,22(2): 36–38.
    [222]吕谋超,蔡焕杰,陈新明.污水灌溉对番茄生理特性及土壤环境的影响[J].灌溉排水学报, 2007,26(6): 26–30.
    [223]南忠仁,李吉均,张建明,等.白银市区土壤作物系统重金属污染分析与防治对策研究[J].环境污染与防治, 2002,24(3): 170–173.
    [224]张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报, 2001,32(4): 182–186.
    [225]朱云,杨中艺.生长在铅锌矿废水污灌区的长豇豆组织中Pb、Zn、Cd含量的品种间差异[J].生态学报, 2007,27(4): 1376–1386.
    [226]邵孝侯,廖林仙,李洪良.生活污水灌溉小白菜的盆栽试验研究[J].农业工程学报, 2008,24(1): 89–94.
    [227] Oliver M A. Soil and human health: a review[J]. European Journal of Soil Science, 1997,48: 573–592.
    [228] Duruibe J O, Ogwuegbu M O C, Egwurugwu J N. Heavy metal pollution and human biotoxic effects[J]. International Journal of Physical Sciences, 2007,2(5): 112–118.
    [229]李芳柏,古国榜.城市污水处理与农业回用辨析[J].农业环境保护, 1998,17(5): 237–239.
    [230] Trang D T, M?bak K, Cam P D, et al. Incidence of and risk factors for skin ailments among farmers working with wastewater-fed agriculture in Hanoi, Vietnam[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2007,101: 502–510.
    [231] Qishlaqi A, Moore F, Forghani G. Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran[J]. Environmental Monitoring and Assessment, 2008,141: 257–273.
    [232] Chary N S, Kamala C T, Raj D S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer[J]. Ecotoxicology and Environmental Safety, 2008,69(3): 513–524.
    [233] Liu W H, Zhao J Z, Ouyang Z Y, et al. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China[J]. Environment International, 2005,31: 805–812.
    [234] Khan S, Cao Q, Zheng Y M, et al. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China[J]. Environmental Pollution, 2008,152: 686–692.
    [235] Singh A, Sharma R K, Agrawal M, et al. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India[J]. Food and Chemical Toxicology, 2010,48: 611–619.
    [236] Shanker A K, Cervantes C, Loza-Tavera H, et al. Chromium toxicity in plants[J]. Environment International, 2005,37: 739–753.
    [237] Singh K P, Mohan D, Sinha S, et al. Impact assessment of treated/untreated wastewater toxicants discharge by sewage treatment plants on health, agricultural, and environmental quality in wastewater disposal area[J]. Chemosphere, 2004,55: 227–255.
    [238]朱宇恩,赵烨,李强,等.北京城郊污灌土壤-小麦(Triticum aestivum)体系重金属潜在健康风险评价[J].农业环境科学学报, 2011,30(2): 263–270.
    [239]李法虎,黄冠华,邓健.污水灌溉对土壤浸提液元素浓度变化影响的田间试验研究[J].农业工程学报, 2005,21(11): 124–129.
    [240]侯晓明.污水灌溉总量控制优化分析[J].人民黄河, 2008,30(12):82–86.
    [241]河北省人民政府.关于农田污灌危害农产品问题解决意见报告的通知[C]. 2003, 1–4.
    [242]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社, 2000.
    [243] Pagotto C, Remy N, Legret M, et al. Heavy metal pollution of road dust and roadsides near a major rural highway[J]. Environmental Technology, 2001,22(3): 307–319.
    [244]关松荫.土壤酶及其研究法[M].北京:农业出版社, 1986. 274–339.
    [245]周礼凯,张志明.土壤酶及其研究法[J].土壤通报, 1980,11(5): 37–38.
    [246]赵兰波,姜岩.土壤磷酸酶的测定方法探讨[J].土壤通报, 1986,17(3): 138–141.
    [247]王建国,杨林章,单艳红.模糊数学在土壤质量评价中的应用研究[J].土壤学报, 2001,38(2): 176–183.
    [248]张国印.河北平原土壤质量评价指标和方法初探[D].北京:中国农业大学, 2005.
    [249]李娟娟,马金涛,楚秀娟,等.应用地积累指数法和富集因子法对铜矿区土壤重金属污染的安全评价[J].中国安全科学学报, 2006,16(12): 135–139.
    [250]彭景,李泽琴,侯家渝.地积累指数法及生态危害指数评价法在土壤重金属污染中的应用及探讨[J].广东微量元素科学, 2007,14(8): 13–17.
    [251] Hakanson L. An ecological risk index for aquatic pollution control: a sediment logical approach[J]. Water Research, 1980,14: 975–1001.
    [252]河北省环境保护厅.河北省土壤污染状况调查报告[R]. 2010, 261–275.
    [253]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社, 1990, 87–90.
    [254]徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术, 2008,31(2): 112–115.
    [255] Rapant S, Kordik J. An environmental risk assessment map of the Slovak Republic:Application of data from geochemical atlases[J]. Environmental Geology, 2003,44(4): 400–407.
    [256] Arora M, Kiran B, Rani S, et al. Heavy metal accumulation in vegetables irrigated with water from different sources[J]. Food Chemistry, 2008,111: 811–815.
    [257] Qishlaqi A, Moore F, Forghani G. Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran[J]. Environmental Monitoring and Assessment, 2008,141: 257–273.
    [258] Rattan R K, Datta S P, Chhonkar P K, et al. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study[J]. Agriculture, Ecosystems and Environment, 2005,109: 310–322.
    [259] Chen Z F, Zhao Y, Zhu Y E, et al. Health risks of heavy metals in sewage-irrigated soils and edible seeds in Langfang of Hebei province, China[J]. J Sci Food Agric, 2010,90: 314–320.
    [260] Ge K Y. The status of nutrient and meal of Chinese in the 1990s[M]. Beijing: Beijing People’s Hygiene Press, 1992.
    [261] Wang X L, Sato T, Xing B S, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish[J]. Sci Total Environ, 2005,350: 28–37.
    [262] US-EPA, IRIS. United States, Environmental Protection Agency, Integrated Risk Information System. http://www.epa.gov/iris/subst. 2002.
    [263]杨孝智,陈扬,徐殿斗,等.北京地铁站灰尘中重金属污染特征及健康风险评价[J].中国环境科学, 2011,31(6): 944–950.
    [264]万忠梅.土壤酶活性因子研究进展[J].西北农林科技大学学报, 2005,33(6): 87–90.
    [265]张咏梅.土壤酶学研究进展[J].热带亚热带植物学学报, 2004,12(1): 83–90.
    [266]唐玉姝,魏朝富,颜延梅,等.土壤质量生物学指标研究进展[J].土壤, 2007,39(2): 157–163.
    [267]和文祥,朱铭莪.陕西土壤脲酶活性与土壤肥力关系分析[J].土壤学报, 1997,34(4): 392–397.
    [268]鲁萍,郭继勋,朱丽.东北羊草草原主要植物群落土壤过氧化氢酶活性的研究[J].应用生态学报, 2002,13(6): 675–679.
    [269]于群英.土壤磷酸酶活性及其影响因素研究[J].安徽技术师范学院学报, 2001,15(4): 5–8.
    [270] Han F X, Banin A, Su Y, et al. Industrial age anthropogenic inputs of heavy metals into the pedosphere[J]. Naturwissenschaften, 2002,89: 497–504.
    [271] Morera M T, Echeverria J C, Mazkiaran C, et al. Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils[J]. Envir Pollution, 2001,113: 135–144.
    [272] Bermond A. Limits of sequential extraction procedures reexamined with emphasis on the role of H+ ion reactivity[J]. Anal Chim Acta, 2001,445: 79–88.
    [273] Ahumada I, Mendoza J, Navarrete E, et al. Sequential extraction of heavy metals in soils irrigated with wastewater[J]. Commun Soil Sci Plant Anal, 1999,30(9-10): 1507–1519.
    [274] Ladonin D V. Heavy metal compounds in soils: problems and methods of study[J]. Eurasian Soil Sci, 2002,35(6): 605–613.
    [275] Aziz O, Inam A, Samiulla H. Utilization of petrochemical industry waste water for agriculture[J]. Water Air Soil Pollut, 1999,115: 321–335.
    [276]Quevauviller P. Operationally defined extraction procedures for soil and sediment analysis: I. Standardization[J]. Trends Anal Chem, 1998,17: 289–298.
    [277] Venkatesha Raju K, Somashekar R K, Prakash K L. Heavy metal status of sediment in river Cauvery, Karnataka[J]. Environ Monit Assess, 2012,184: 361–373.
    [278] Shi R G, Lv J G, Cai Y M, et al. Levels, spatial distribution and possible sources of heavy metals contamination of suburban soils in Tianjin, China[J]. Bull Environ Contam Toxicol, 2010,85: 287–290.
    [279] MicóC, RecataláL, Peris M, et al. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis[J]. Chemosphere, 2006,65: 863–872.
    [280] Qiao M, Cai C, Huang Y Z, et al. Characterization of soil heavy metal contamination and potential health risk in metropolitan region of northern China[J]. Environ Monit Assess, 2011,172: 353–365.
    [281] Peris M, RecataláL, MicóC, et al. Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean Region[J]. Water Air Soil Pollution, 2008,192: 25–37.
    [282] Romic M, Romic D. Heavy metals distribution in agricultural topsoils in urban area[J]. Environmental Geology, 2003,43: 795–805.
    [283] Ma L O, Rao G N. Heavy metals in the environment[J]. J Envir Qual, 1997,26: 259–264.
    [284] Olajire A A, Ayodele E T, Oyedirdan G O, et al. Levels and speciation of heavy metals in soils of industrial southern Nigeria[J]. Envir Monit Assess, 2003,85: 135–155.
    [285] Mahanta M J, Bhattacharyya K G. Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India[J]. Environ Monit Assess, 2011,173: 221–240.
    [286] Fitamo D, Itana F, Olsson M. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia[J]. Environ Manage, 2007,39: 178–193.
    [287] Adriano D C. Trace elements in the terrestrial environment: Biogeochemistry, bioavailability and risk of metals(2nd ed)[M]. New York: Springer-Verlag, 2001.
    [288] Pendias A K, Pendias H. Trace elements in soils and plants(3rd ed)[M]. Boca Raton, FL: CRC Press, 2001.
    [289] Li F, Fan Z, Xiao P, et al. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China[J]. Environmental Geology, 2009,57: 1815–1823.
    [290] Wang X S, Qin Y. Some characteristics of the distribution of heavy metals in urban topsoil of Xuzhou, China[J]. Environmental Geochemistry and Health, 2007,29: 11–19.
    [291] Jain C K, Malik D S, Yadav R. Metal fractionation study on bed sediments of lake nainital, Uttaranchal, India[J]. Environmental Monitoring and Assessment, 2007,130: 129–139.
    [292] Imperato M, Adamo P, Naimo D, et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy)[J]. Environmental Pollution, 2003,124: 247–256.
    [293] Li X D, Poon C S, Liu P S. Heavy metal contamination of urban soils and street dusts in Hong Kong[J]. Applied Geochemistry, 2001,16: 1361–1368.
    [294] Lu Y, Zhu F, Chen J, et al. Chemical fractionation of heavy metals in urban soils of Guangzhou, China[J]. Environmental Monitoring and Assessment, 2007,134: 429–439.
    [295] Jaradat Q M, Massadeh A M, Zaitoun M A, et al. Fractionation and sequencial extraction of heavy metals in the soil of scrap yard of discarded vehicles[J]. Environmental Monitoring and Assessment, 2006,112: 197–210.
    [296] Huang J, Huang R, Jiao J J, et al. Speciation and mobility of heavy metals in mud in coastal reclamation areas in Shenzhen, China[J]. Environmental Geology, 2007,53: 221–228.
    [297] Wasay S A, Parker W J, Van Geel P J. Characterization of soil contaminated by disposal of battery industry waste[J]. Canadian Journal of Civil Enggineering, 2001,28: 341–348.
    [298] Ratuzny T, Gong Z, Wilke B M. Total concentrations and speciation of heavy metals in soils of the Shenyang Zhangshi irrigation area, China[J]. Environmental Monitoring and Assessment, 2009,156: 171–180.
    [299] Li X, Thornton L. Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities[J]. Applied Geochemistry, 2001,16: 1693–1706.
    [300] Singh A, Sharma R K, Agrawal M, et al. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India[J]. Tropical Ecology, 2010,51(2S): 375–387.
    [301] Khan S, Farooq R, Shahbaz S, et al. Health risk assessment of heavy metals for population via consumption of vegetables[J]. World Appl Sci J, 2009,6: 1602–1606.
    [302] Naughton D P, Petróczi A. Heavy metal ions in wines: meta-analysis of target hazard quotients reveals health risks[J]. Chem Centr J, 2008,2: 22.
    [303] Hague T, Petroczi A, Andrews P L R, et al. Determination of metal ion content of beverages and estimation of target hazard quotients: a comparative study[J]. Chem Centr J, 2008,2: 13.
    [304] Dong W Q R, Cui Y, Liu, X. Instances of soil and crop heavy metal contamination in China[J]. Soil and Sediment Contamination, 2001,10(5): 497–510.
    [305] Sharma R K, Agrawal M, Marshall F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India[J]. Ecotoxicology and Environmental Safety, 2007,66: 258–266.
    [306] Muchuweti A, Birkett J W, Chinyanga E, et al. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: implications for humanhealth[J]. Agric Ecosyst Environ, 2006,112: 41–48.
    [307] Rattan R K, Datta S P, Chhonkar P K, et al. Long term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater: a case study[J]. Agric Ecosyst Environ, 2005,109: 310–322.
    [308] Turkdogan M K, Kilicel F, Kara K, et al. Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey[J]. Environ Toxicol Pharmacol, 2003,13: 175–179.
    [309] FAO/WHO, List of Contaminants and their Maximum Levels in foods[R]. Codex Alimentarius Commission,1984.
    [310] USEPA. Handbook for non-cancer health effects evaluation[M]. Washington: DC, 2000.
    [311] SEPA. The limits of pollutants in food (GB2762–2005)[M].China: State Environmental Protection Administration, 2005.
    [312] Zang S, Lu A, Shan X Q, et al. Microwave extraction of heavy metals from wet rhizosphere soils and its application to evaluation of bioavailability[J]. Anal Bioanal Chem, 2002,374(5): 942–947.
    [313]杨志军,张志国,曹金勇,等.土壤与农作物重金属含量相关性的初步研究[J].淮阴工学院学报, 2003,18: 85–88.
    [314]马运宏,范瑜,胡维佳,等.重金属在土壤一作物系统中迁移分布规律的分析[J].江苏环境科, 1995,1: 8–10.
    [315] Kabala C, Singh B R. Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter[J]. Journal of Environmental Quality, 2001,30: 485–492.
    [316]申屠佳丽.蔬菜系统镉污染的土壤化学与生物学响应及蔬菜安全诊断[D].浙江:浙江大学, 2008.
    [317]张润楚.多元统计分析[M].北京:科学出版社, 2006, 165–183.
    [318]袁志发,周静芋.多元统计分析[M].北京:科学出版社, 2002, 188–200.
    [319]朱建平.应用多元统计分析[M].北京:科学出版社, 2006, 93–10.
    [320] Shrestha S, Kazama F, Nakamura T. Use of principal component analysis, factor analysis and discriminant analysis to evaluate spatial and temporal variations in water quality of the Mekong River[J]. Journal of Hydroinformatics, 2008,10: 43–56.
    [321] Reid M K, Spencer K L. Use of principal components analysis (PCA) on estuarine sediment datasets: the effect of data pre-treatment[J]. Environmental Pollution, 2009,157: 2275–2281.
    [322] Yongming H, Peixuan D, Junji C, et al. Multivariate analysis of heavy metals contamination in urban dusts of Xi’an, Central China[J]. Science of the Total Environment, 2006,355: 176–186.
    [323] Praveena S M, Ahmed A, Radojevic M, et al. Heavy metals in mangrove surfacesediment of Mengkabong Lagoon, Sabah: multivariate and geo-accumulation index approaches[J]. International Journal of Environmental Research, 2008b,2: 139–148.
    [324] Gringarten E, Deutsch C V. Teacher’s aide: variogram interpretation and modeling[J].Mathematical Geology, 2001,33(4): 507–534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700