用户名: 密码: 验证码:
黑河下游地下水波动带生态需水量空间分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑河流域是我国西北干旱区第二大内陆河流域。水资源是该区经济和社会可持续发展的主要制约因素。随着经济发展和人口增加,该区水资源需求越来越大。原有的中游经济发展用水与下游生态环境需水间的矛盾进一步恶化。水资源短缺引发的严重生态环境问题已威胁到整个黑河下游,乃至我国西北、华北地区的生态安全。因此,下游区域的生态恢复问题已迫在眉睫。尽管黑河下游地下水位下降已引起该区河岸生态系统的迅速退化,但河岸生态系统仍是该区生态系统的重要支柱。为恢复区域河岸生态系统基本功能,我国实施了黑河下游应急生态输水工程。随着该工程的实施,黑河下游河流来水量增加,依赖于河水补给的区域地下水水位及其辐射范围都发生了明显变化。“黑河下游地下水波动带”随之形成。黑河下游地下水波动带是整个黑河下游植被重建及生态恢复的重点区域。地下水是影响区域植被生长及分布的关键性因素。黑河下游,特别是黑河下游地下水波动带植被恢复规模和地下水位间的关系问题也因此成为人们关注的焦点。而植被需水正是体现这二者关系的纽带。因此,本文针对体现该区生态问题症结所在的环境要素——水与区域生态系统核心要素——植被的关系的生态需水问题进行了深入探讨。旨在为平衡该区人类需水与自然需水及确定流域生态保护目标、措施与方案提供科学支撑。
     首先,本文对黑河下游地下水波动带的范围进行了界定;然后借助遥感和GIS技术,结合研究区遥感数据、气象数据、土地利用数据、野外调查数据等对区域地表参数(地表反照率、植被指数、植被盖度、植被高度、地表比辐射率、地表温度)及区域地表能量通量(地表净辐射、土壤热通量、显热通量、潜热通量)进行了反演,进而获取区域蒸散发量;并以此为依据结合区域植被遥感分类结果中提取出的植被分布面积数据直接从“面”尺度计算了区域各类植被的生态需水量。该方法打破了生态需水研究中尺度转换问题的“瓶颈”制约,为区域(植被)生态需水量研究提供了新思路和新方法,对区域生态需水研究中尺度转换科学问题的解决进行了有益尝试,以期通过本研究提出的植被生态需水量计算方法对区域生态需水量研究中的尺度转换问题有所突破。主要研究结论如下:
     (1)黑河下游地下水波动带是在黑河下游应急生态输水工程实施背景下产生的地下水水位及其辐射范围变化明显的特殊区域。该区是整个黑河下游天然植被丰度最大的区域,因而成为黑河下游植被重建及生态恢复的重点区域。其植被类型、长势等生态要素对地下水的依赖极强,这使得地下水位及其辐射范围变化成为其生态环境演变的主要驱动因素。通过对黑河下游1990年与2006年地下水位空间分布及其变化的分析,结合2006年7月地下水位野外调查资料,提取黑河下游狼心山以下黑河干流(东河和西河)河道两侧20km范围作为研究区,面积约1.15454×10~4km~2。
     (2)区域地表参数反演是进行区域地表蒸散发估算的基础。研究区各地表参数反演结果如下:地表反照率分布在0.08~0.42间,其分布直方图呈单峰型;受研究区大面积分布的沙漠戈壁区影响,全区NDVI均值仅为-0.0686;通过对研究区实测LAI与反演得到的各植被指数(RVI、DVI、GVI、NDVI、SAVI、MSAVI)的相关分析,选取模拟精度高达0.9419的GVI三阶多项式模型对研究区LAI进行反演,反演LAI与实测LAI间的相关系数为0.66;利用相关模型反演出的研究区植被盖度和植被高度结果与野外实测数据的模拟精度分别为84.39%和88.88%;地表比辐射率在裸土区最低而水域最高,均值为0.9744;地表温度是地表热量平衡的结果,对植被生态需水研究至关重要,反演出的卫星过境时刻的地表温度分布在291.03~319.39K间,均值达311.05K。
     (3)地表蒸散发是影响区域土壤-植被-大气系统水热平衡的关键环节,可近似理解为植物生态需水量。研究区地表蒸散发参数估算结果如下:地表净辐射在254.08~860.73W/m~2间,均值为553.94W/m~2,最低值在西居延海及东、西河下游局部区域,最高值出现在水域;土壤热通量集中在100~170W/m~2间,均值为142.55W/m~2,低值区为植被盖度最大的绿洲区及西居延海和西河中下游地区,高值区为北部低山区及东部砾漠区;显热通量集中分布在100~300W/m~2,均值为220W/m~2;潜热通量高值区(>500W/m~2)为水体及其周围水分条件极好的河岸植被带和绿洲,其次为高盖度植被区,西居延海湖盆区局部潜热通量在-95.67~0W/m~2间。研究区2003年9月12日的蒸散发量集中在1~2mm内,均值为1.61mm。经验证,以上估算结果均达到研究精度要求,能满足后续区域生态需水量估算要求。
     (4)利用本研究提出的区域(植被)生态需水量估算方法计算出的研究区2003年9月胡杨、柽柳、草地三种植被类型的生态需水量分别为1.32×10~7m~3、2.13×10~7m~3和13.5×10~7m~3,区域植被总生态需水量为1.695×10~8m~3。但利用遥感数据获得的研究区植被分布面积在像元尺度上是被扩大的,因而本研究尝试通过引入各像元植被盖度来解决该问题。引入像元植被盖度后估算出的研究区胡杨、柽柳、草地分布区的月生态需水量分别为11.37×10~7m~3、0.45×10~7m~3和3.24×10~7m~3,区域植被总生态需水量为1.506×10~8m~3,估算结果略有降低。
     (5)利用遥感和GIS技术反演区域蒸散发进而估算区域生态需水量的研究方法打破了区域生态需水研究中尺度转换问题的“瓶颈”制约,为区域生态需水量估算提供了新思路和新方法,是对该研究尺度转换问题的一次有益尝试。通过与黑河下游现有生态需水研究成果的比较及分析发现,研究中还存在很多关键性的问题需要解决。首先,高分辨率遥感影像的引入是提高区域植被分布面积估算精度的有效途径;其次,许多生态地理学参数都需要建立大量的观测站点并实时获取数据以验证遥感反演出的主要参数,如地表能量通量和蒸散发量等。
The Heihe River is the second largest inland river in the arid region of northwestern China. Water resources are the primary limiting factor for the sustainable development of economy and society in the Basin.With the development of economy and increase of population,the water is needed more and more in this region.As a result,the already-existing conflict between economic use of the water in the middle reaches and ecological demand of the water in the lower reaches has been recently exacerbated.Water resources shortage had caused severe deterioration of the eco-environment in the lower reaches and threatened the ecological security of entire Heihe River Basin,even northwestern and northern China.So the ecological restoration has become urgent affair in the lower reaches.Riparian ecosystem has played an important role in stabilizing regional ecosystem.Though,it has degenerated gradually because groundwater level fell down. To restore the major riparian ecosystem in the region,stream water transport from the middle reaches of the river was implemented.The implementation of ecological water transport is bringing the changes of groundwater level,especially in the groundwater-fluctuating belt,which is the core region of the lower reaches of Heihe River in the course of vegetation rebuild and ecology restore.Groundwater is key factor to affect growth and distribution of vegetation.The relationship between the status of natural vegetation and the groundwater level becomes the attention-getting focus in the lower reaches of Heihe River,especially in the groundwater-fluctuating belt.Therefore the objective of this thesis is to study the relationship. The water requirement of vegetation is the link of the relationship.The focalization in the study is ecological water requirement.The purpose is to provide scientific support for balancing the water requirement from human being and natural ecosystem,and confirming the target,measure and project of ecosystem protected.
     First,the range of the groundwater-fluctuating belt was confirmed.Then simulation of the surface flux and the evapotranspiration were conducted using the technology of Remote Sensing and GIS,combining the basic data such as meteorological data,Landsat TM images,current land use maps and the data from field investigate.And then the quantity of ecological water requirement was estimated based on the simulated evapotranspiration and the distributional area of vegetation in the study area.This method to estimate ecological water requirement in the study afforded the new idea and method for the study of regional ecological water requirement. Conclusions could be drawn as follows:
     (1)The groundwater-fluctuating belt of the lower reaches of Heihe River is a special region where the groundwater level varies markedly under the influence of ecological water transport.The natural vegetation is the important underpinning in the riparian ecosystem. As a result,this region is the core region of the lower reaches of Heihe River during the vegetation rebuilt and the ecology restored.The groundwater level influences the type, distribution patterns and abundance of the natural vegetation species.Thus,the change of groundwater level is primary drive factor of environment evolution in this region.By analyzing the data of groundwater level came from the observation in the lower reaches of Heihe River in 1990 and 2006,the range of the groundwater-fluctuating belt was confirmed,which lies about 20km buffer zone of the Heihe River,covering area of 1.15454×10~4km~2.
     (2)The simulation of the land surface parameters is foundation to estimate the evapotranspiration.The simulated parameters of land surface as follows:The surface albedo is changing from 0.08 to 0.42.Its histogram presents single peak.The mean of NDVI is only -0.0686 which effected by Gobi and desert.By analyzing the correlativity of LAI from measure in field and RVI,DVI,GVI,NDVI,SAVI and MSAVI,the polynomial model of GVI was selected for the precision of simulation is 0.9419.The precision of estimation is 84.39%and 88.88%for the height vegetation and the vegetation fraction,respectively.The mean of land surface emissivity is 0.9744.The land surface temperature is the result from the balance of the quantity of heat in land surface.It is very important for ecological water requirement of vegetation.The land surface temperature is fluctuant from 291.03K to 319.39K and its mean is 311.05K.
     (3)The evapotranspiration will affect the balance of water and heat in the system of soil, vegetation and atmosphere.The evapotranspiration equaled to the ecological water requirement of vegetation in a way approximatively.The net radiation flux is changing from 254.08 to 860.73W/m~2 with a mean of 553.94W/m~2 in study area.The minimum net radiation flux appeared in the some area of Xi Juyan Lake,the water area has maximum net radiation flux.The soil heat flux was converged from 100 to 170W/m~2 and the mean is 142.55W/m~2.The soil heat flux is smaller in the inner of oasis and the lower reaches of Xihe River.The mean of sensible heat flux is 220W/m~2.The maximum latent heat flux present to the water area and its surrounding,for example the distributional area of riparian vegetation and oasis.The latent heat flux is minus(-95.67~0W/m~2)in Xi Juyan Lake.The mean of evapotranspiration is 1.61mm in Sept.12,2003 in study area.The validations of estimated results about the parameter of evapotranspiration indicate the simulated results are reasonable and enough for the estimation of ecological water requirement.
     (4)The quantity of ecological water requirement of Populus euphratica,Tamarix ramosissima and grassland is 1.32×10~7m~3,2.13×10~7m~3 and 13.5×10~7m~3 in September, 2003,respectively.The total ecological water requirement of vegetation is 1.695×10~8m~3. But the area is extended from the data of remote sensing in the pixel scale.The problem was resolved by introducing the vegetation fraction in this study.Corresponding,the quantity of water requirement of Populus euphratica,Tamarix ramosissima and grassland become 11.37×10~7m~3,0.45×10~7m~3 and 3.24×10~7m~3 by introducing vegetation fraction,respectively.The total ecological water requirement of vegetation also diminished to 1.506×10~8m~3.
     (5)This method estimates the quantity of ecological water requirement from the scale of surface directly which had broken the restriction from scale transform in the course of the ecological water requirement study,and afford the new idea and method for the study of regional ecological water requirement.By comparing the results from this study with other previous research about ecological water requirement in the lower reaches of Heihe River,we found there was a little difference.We will face many challenges in the further study.The high resolution remote sensing image will be needed to improve the estimation precision of vegetation area.Many ecogeographical variables will be required to monitor for validating estimation of important parameters, such as surface flux and the evapotranspiration
引文
1.Covich A.P.Water and ecosystems,PP41-55.In:Gleick,P.H.(Ed),Water in crisis:a guide to the world's fresh water resources[M].New York:Oxford Univ.Press,1993.
    2.Gleick P.H.Water in crisis:paths to sustainable water use[J].Ecological Applications,1998,8(3):571-579.
    3.Turner M.G.& Kedziora A.Impact of agricultural landscape structure on energy flow and water cycling [J].Landscape Ecology,1987,1(2):85-94.
    4.William B.M.,et al.Change in land use and land cover:a global perspective[M].London:Cambridge University Press,1994.
    5.程国栋,康尔泗等.西北干旱区内陆河水资源形成与变化的基础研究[R].国家自然科学基金重点项目研究报告(49731030),2002b.
    6.程国栋,仵彦卿.黑河流域生态环境问题及其对策研究报告[R].中国科学院寒区旱区环境与工程研究所,2002a.
    7.程国栋,赵传燕.西北干旱区生态需水研究[J].地球科学进展,2006,21(11):1101-1108.
    8.丰华丽,王超,李剑超.干旱区流域生态需水量估算原则分析[J].环境科学技术,2002,25(1):31-33.
    9.丰华丽,王超,李勇.流域生态需水量的研究[J].环境科学动态,2001,1:27-30.
    10.符淙斌,严中伟.全球变化与我国未来的生存环境[M].北京:气象出版社,1996.
    11.高前兆,仵彦卿,俎瑞平.河西内陆区水循环的水资源评价[J].干旱区资源与环境,2003,17(6):1-7.
    12.国家环境保护局译.21世纪议程[M].北京:中国环境科学出版社,1993:182-207.
    13.何志斌,赵文智,方静.黑河中游地区植被生态需水量估算[J].生态学报,2005,25(4):705-710.
    14.贾宝全,慈龙骏.新疆生态用水量的初步估算[J].生态学报,2000,20(2):243-250.
    15.贾宝全,徐英勤.干旱区生态用水的概念和分类-以新疆为例[J].干旱区地理,1998,21(2):8-12.
    16.李丽娟,郑红星.海河滦河河流系统生态环境需水量计算[J].地理学报,2000,55(4):495-500.
    17.李强坤,黄福贵,罗玉丽等.额济纳地区绿洲恢复生态需水量研究[J].水资源与水工程学报,2006,17(2):9-13.
    18.李云玲.基于水资源合理配置的黑河下游生态恢复研究[D].河海大学博士学位论文:2005.
    19.刘昌明.中国21世纪水供需分析:生态水利研究[J].中国水利,1999b,10-4-6.
    20.刘静铃,杨志峰.湖泊生态环境需水量的计算方法研究[J].自然资源学报,2002,17(5):604-609.
    21.南忠仁.干旱区土壤作物系统中重金属元素行为与归宿研究[D].兰州大学博士学位论文:2000.
    22.倪晋仁,崔树彬,李天宏等.论河流生态环境需水[J].水科学报,2002a,9:14-20.
    23.倪晋仁,金玲,赵业安等.黄河下游河流最小生态环境需水量初步研究[J].水利学报,2002b,8:121-129.
    24.潘启民,任志远,郝国占.黑河流域生态需水量分析[J].黄河水利职业技术学院学报,2001,13(1):14-16.
    25.钱正英,沈国舫,潘家铮.西北地区水资源配置生态环境建设和可持续发展战略研究(综合卷)[M].北京:科学出版社,2004.
    26.邵宏波,梁宗锁,邵明安.生态环境用水研究的某些进展[J].干旱区资源与环境,2004,18(3):97-102.
    27.司建华,冯起,张小由等.黑河下游分水后的植被变化初步研究[J].西北植物学报,2005,25(4):631-640.
    28.司建华,龚家栋,张勃.干旱地区生态需水量的初步计算[J].干旱区资源与环境,2004,18(1):49-53.
    29.王根绪,程国栋.干旱内陆流域生态需水量及其估算-以黑河流域为例[J].中国沙漠,2002,22 (2):129-134.
    30.王根绪,张钰,刘桂民等.干旱内陆流域河道外生态需水量评价——以黑河流域为例[J].生态学报,2005,25(10):2467-2476.
    31.王乃昂,颉耀文,薛祥燕.近2000年来人类活动对我国西部生态环境变化的影响[J].中国历史地理论丛,2002,17(3):12-19.
    32.王让会,卢新民,宋郁东等.西北干旱区生态需水的规律和特点——以塔里木河下游为例[J].应用生态学报,2003,14:520-524.
    33.武选民,史生胜,黎志恒等.西北黑河下游额济纳盆地地下水系统研究(上)[J].水文地质工程地质,2002,(1):16-20.
    34.夏军,孙雪涛,谈戈.中国西部流域水循环研究进展与展望[J].地球科学进展,2003,18(1):58-67.
    35.夏军,郑冬燕,刘青娥.西北地区生态环境需水估算的几个问题研讨[J].水文,2002,22(5):14-17.
    36.严登华,王浩,秦大庸等.黑河流域下游水分驱动下的生态演化[J].中国环境科学,2005,25(1):37-41.
    37.杨志峰,崔保山,刘静玲,王西琴,刘昌明.生态环境需水量理论、方法与实践[M].北京:科学出版社,2003.
    38.叶笃正,陈泮勤.中国的全球变化预研究[M].北京:地震出版社,1992.
    39.张丽,董增川,丁大发.生态需水研究进展及存在问题[J].中国农村水利水电,2003a,(1):13-15.
    40.张丽,董增川,徐建新.黑河流域下游天然植被生态及需水研究[J].灌溉排水,2002,21(4):16-20.
    41.张丽,董增川,张琴.黑河流域下游天然植被生态需水预测[J].沈阳农业大学学报,2005a,36(1):80-82.
    42.张丽,董增川,赵斌.干旱区天然植被生态需水量计算方法[J].水科学进展,2003b,14(6):745-748.
    43.张丽,董增川.黑河流域下游天然植被生态需水及其预测研究[J].水利规划与设计,2005b,2:44-47.
    44.张丽.黑河流域下游生态需水理论与方法研究[D].北京林业大学博士学位论文:2004.
    45.张天昌.黑河水量调度与下游生态恢复初步评价[J],甘肃水利水电技术,2007,42(1):11-13.
    46.张小由.额济纳绿洲生态耗水与水量平衡研究[D].中国科学院研究生院博士学位论文:2006.
    47.赵传燕.黑河流域生态需水量机理及时空分布研究[D].中国科学院寒区旱区环境与工程研究所博士后科研报告:2005.
    48.赵文智,程国栋.干旱区生态水文过程研究若干问题评述[J].科学通报,2001,46(22):1851-1857.
    49.赵文智.黑河流域生态需水和生态地下水位研究[D].中国科学院研究生院博士学位论文:2002.
    50.郑冬燕.西北干旱地区内陆河流域生态需水研究——以黑河流域为例[D].武汉大学硕士学位论文:2005.
    51.朱仲元.干旱半干旱地区天然植被蒸散发模型与植被需水量研究[D].内蒙古农业大学博士学位论文:2005.
    1.Baird A.J.and Wilby R.L.Eco-hydrology:plant and water in terrestrial and aquatic environments,London and New York[M].Routledge Press,1999.
    2.Covich A.Water and ecosystems Gleick P H[A].Water in Crisis-A Guide to the World's Fresh Water Resources[C].New York:Oxford University Press,1993:40-55.
    3.Doorenbos J.and Pruitt W.O.Guidelines for predicting crop water requirements[C].Irrigation and Drainage Paper 24.Food and Agriculture Organization of the United Nations,Rome,1975.
    4.Falkenmark M.Coping with water scarcity under rapid population growth[C].Conference of SADC Ministers,Pretoria,1995,23-24.
    5.Gleick P.H.The Changing Water Paradigm:A Look at Twenty-first Century Water Resource Development[J].Water International,2000,25(1):127-138.
    6.Gleick P.H.The World's Water 2000-2001:The Biennial Report on Freshwater Resources[M].Washington,DC,USA,Island Press.1998.
    7.Gleick P.H.Water in Crisis:paths to sustainable water use[J].Ecological Applications,1996,8(3):571-579.
    8.Pereira L.S.and Smith M.Proposed procedures for revision of guidelines for predicting crop water requirements[C].Land and Water Use Div.,FAO Rome.1989.
    9.Schmitt T.G.Water-protection-Human Being,A Triangular Relationship in Changing times[J].Applied Geography and Development,1997,49:59-69.
    10.Strausfogel D.An evolutionary systems approach to policy intervention for achieving ecologically sustainable societies[J].System Practice,1996,9(5):441-468.
    11.Tennat D.L.In stream flow regimens for fish,wildlife,recreation and related environmental resources[C].In Orsborn J.F.and Allman C.H.(eds),Proceedings of Symposium and Specility Conference on Instream Floe Needs Ⅱ,American Fisheries Society,Bthesda,Maryland,1976,359-373.
    12.Whipple W.,DuBois J.D.,Grigg N,et al.A Proposed Approach to Coordination of Water Resource development and environmental Regulations[J].Journal of the American Water Resources Association,1999,35(4):713-716.
    13.Zhao Chuanyan,Nan Zhongren,Cheng Guodong.Methods for Estimating Irrigation Needs of Spring Wheat in the Middle Heihe Basin,China[J].Agricultural Water Management,2005,75:54-70.
    14.《21世纪中国可持续发展水资源战略研究》项目综合组.中国可持续发展战略研究综合报告[J].中国水利,2000,46(8):5-17.
    15.陈丽华.北京市生态用水研究[D].北京林业大学博士学位论文,2002.
    16.陈志恺,王浩,汪党献.西北地区水资源配置生态环境建设和可持续发展战略研究(水资源卷)[M]. 北京:科学出版社,2004.
    17.程国栋,赵传燕.西北干旱区生态需水研究[J].地球科学进展,2006,21(11):1101-1108.
    18.崔保山,杨志峰.湿地生态环境需水量等级划分与实例分析[J].资源科学,2003,25(1):21-28.
    19.崔保山,杨志峰.湿地生态环境需水量研究[J].环境科学学报,2002,22(2):219-224.
    20.董增川,刘凌.西部地区水资源配置研究[J].水利水电技术,2001(3):1-4.
    21.樊自立等.塔里木河流域资源环境与持续发展[M].北京:科学出版社,1998.
    22.方子云.环境水利学导论[M].北京:中国环境科学出版社,1994.
    23.方子云.水资源保护工作手册[M].南京:河海大学出版社,1988,627-629.
    24.丰华丽,王超,李剑超.河流生态与环境用水研究进展[J].河海大学学报,2002,30(3):19-23.
    25.丰华丽,王超,李勇.流域生态需水量的研究[J].环境科学动态,2001,(1):27-30.
    26.韩英,饶碧玉.植被生态需水量计算方法综述[J].水利科技与经济,2006,12(9):605-611.
    27.何永涛,闵庆文,李文华.植被生态需水研究进展及展望[J].资源科学,2005,27(4):8-13.
    28.何志斌,赵文智,方静.黑河中游地区植被生态需水量估算[J].生态学报,2005,25(4):705-710.
    29.胡续礼.生态环境需水量的概念及其计算方法述评[J].治淮,2007,7:19-21.
    30.贾宝全,慈龙骏.新疆生态用水量的初步估算[J].生态学报,2000,20(2):243-250.
    31.姜德娟,王会肖,李丽娟.生态环境需水量分类及计算方法综述[J].地理科学进展,2003,22(4):369-378.
    32.雷敏.黄土高原生态环境需水及水资源持续利用研究[D].西北大学硕士学位论文:2003.
    33.李莉.平原河网生态环境需水量计算研究[D].河海大学硕士学位论文:2004.
    34.李丽娟,郑红星.海滦河流域河流系统生态环境需水量计算[J].地理学报,2000,55(4):495-500.
    35.李强坤,黄福贵,罗玉丽等.额济纳地区绿洲恢复生态需水量研究[J].水资源与水工程学报,2006,17(2):9-13.
    36.刘昌明,王礼先,夏军.西北地区水资源配置生态环境建设和可持续发展战略研究(生态环境卷)[M].北京:科学出版社,2004.
    37.刘昌明,魏忠义等.华北平原农业水文与水资源[M].北京:科学出版社,1989,121-123.
    38.刘昌明.中国21世纪水供需分析:生态水利研究[J].中国水利,1999,10:4-6.
    39.刘昌明.我国西部大开发中有关水资源的若干问题[J].中国水利,2000,(8):23-25.
    40.刘桂民,王根绪.我国干旱区生态需水若干问题评述[J].冰川冻土,2004,26(5):650-656.
    41.刘静玲,杨志峰,林超等.流域生态需水规律研究[J].中国水利,2006,13:18-21
    42.刘燕华.柴达木盆地水资源合理利用与生态环境保护[M].北京:科学出版社,2000.
    43.滦兆擎,邓伟,朱宝光.洪河国家级自然保护区湿地生态环境需水初探[J].干旱区资源与环境,2004,18(1):59-63.
    44.马铁民.扎龙湿地生态系统需水量研究[D].河海大学硕士学位论文:2004.
    45.潘启民.黑河流域生态需水量分析[J].黄河水利职业技术学院学报,2001,13(1):14-16.
    46.钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利水电出版社,2001,45-50.
    47.曲炜.西北内陆干旱区水资源可利用量研究[D].河海大学博士学位论文:2005.
    48.全达人,马春花.生态环境建设与生态环境用水[J].宁夏农学院学报,2001,22(3):39-43.
    49.邵宏波,梁宗锁,邵明安.生态环境用水研究的某些进展[J].干旱区资源与环境,2004,18(3):97-102.
    50.石伟,王光谦.黄河下游生态需水量及其估算[J].地理学报,2002,57(5):595-602.
    51.汤洁,麻素挺,林年丰等.吉林西部植被生态环境需水量供需平衡研究[J].环境科学研究,2005,18(1):5-9.
    52.汤奇成.绿洲的发展与水资源的合理利用[J].干旱区资源与环境,1995,9(3):107-112.
    53.汤奇成.塔里木盆地水资源与绿洲建设[J].自然资源,1989,(6):28-34.
    54.王芳,梁瑞驹,杨小柳等.中国西北地区生态需水研究(1)[J].自然资源学报,2002,17(1):1-8.
    55.王根绪,程国栋.干旱内陆流域生态需水量及其估算-以黑河流域为例[J].中国沙漠,2002,22(2):129-134.
    56.王根绪,张钰,刘桂民等.干旱内陆流域河道外生态需水量评价-以黑河流域为例[J].生态学报,2005,25(10):2467-2476.
    57.王礼先.植被生态建设与生态用水-以西北地区为例[J].水土保持研究,2000,7(3):5-7.
    58.王让会,宋郁东,樊自立等.塔里木河流域“四源一干”生态需水量的估算[J].水土保持学报,2001,15(1):19-22.
    59.王西琴,刘昌明,杨志峰.河道最小环境需水量确定方法及应用研究(1)-理论[J].环境科学学报,2001,21(5):544-547.
    60.王占兴.高寒地区中小流域生态环境需水问题的研究[D].河海大学硕士学位论文:2005.
    61.夏军,郑冬燕,刘青娥.西北地区生态环境需水估算的几个问题研讨[J].水文,2002,22(5):14-17.
    62.徐志侠.基于生态系统分析的河道最小生态需水计算方法研究(Ⅰ)[J].水利水电技术,2004(12):15-18.
    63.严登华,何岩,邓伟等.东辽河流域河流系统生态需水研究[J].水土保持学报,2001,15(1):46-49.
    64.杨志峰,崔保山,刘静玲等.生态环境需水量理论、方法与实践[M].北京:科学出版社,2003.
    65.张丽,董增川,丁大发.生态需水研究进展及存在问题[J].中国农村水利水电,2003,(1):13-15.
    66.张丽,董增川,徐建新.黑河流域下游天然植被生态及需水研究[J].灌溉排水,2002,21(4):16-20.
    67.张丽.黑河流域下游生态需水理论与方法研究[D].北京林业大学硕士学位论文:2004.
    68.赵传燕.黑河流域生态需水量机理及时空分布研究[D].中国科学院寒区旱区环境与工程研究所博士后科研报告:2005.
    69.赵文智,常学礼,何志斌等.额济纳荒漠绿洲植被生态需水量研究[J].中国科学D辑,2006,36(6):559-566.
    70.赵文智,程国栋.干旱区生态水文过程研究若干问题[J].科学通报,2001,46(22):1851-1857.
    71.郑冬燕.西北干旱地区内陆河流域生态需水研究-以黑河流域为例[D].武汉大学硕士学位论文:2005.
    72.左其亭.干旱半干旱地区植被生态用水计算[J].水土保持学报,2002,16(3):114-119.
    1.成文娟.额济纳旗土壤特性分析[J].湖北民族学院学报(自然科学版),2006,24(3):275-279.
    2.池宏康,周广胜,许振柱等.表观反射率及其在植被遥感中的应用[J].植物生态学报,2005,29(1):74-80.
    3.丁燕云,李占奎.银根——额济纳旗盆地航磁反映的构造特征[J].物探与化探,1999,23(3):191-194.
    4.杜巧玲,许学工,李海涛等.黑河中下游绿洲生态安全变化分析[J].北京大学学报(自然科学版),2005,41(2):273-281.
    5.豪树奇,额济纳绿洲土壤水分状况的研究[D],内蒙古农业大学硕士学位论文,2005.
    6.贾艳红,赵传燕,南忠仁.西北干旱区黑河下游植被覆盖变化研究综述[J].地理科学进展,2007,26(4):64-74.
    7.李守波.黑河下游地下水波动带地下水时空动态GIS辅助模拟研究[D].兰州大学硕士学位论文,2007.
    8.李云玲,严登华,裴源生.黑河下游生态演化研究[J].人民黄河,2004,26(6):12-15.
    9.李志建,倪恒,汤梦玲等.黑河下游地区土壤水盐及有机质空间分布与植被分布及长势分析[J].资源调查与环境,2003,24(2):143-150.
    10.梅荣.现代空间信息技术支持下的额济纳湿地变化及其驱动因子探讨[D].内蒙古师范大学硕士学位论文,2004.
    11.潘世兵,路京选,张建立等.黑河流域额济纳绿洲生态保护措施及其效应分析[J].地理与地理信息科学,2006,22(3):106-112.
    12.齐善忠,王涛.黑河流域中下游地区土地沙漠化现状及其原因分析[J].水土保持学报,2003,17(4):98-109.
    13.苏建平,仵彦卿,黎志恒等.黑河下游河岸绿洲区包气带土壤水分与植被生长状况的研究[J].西北植物学报,2004,24(4):662-668.
    14.吴胜军.干早地区包气带中水分和盐份的分布运移及其对生态环境的影响[D].中国地质大学硕士学位论文,2002.
    15.仵彦卿,慕富强,贺益贤等.河西走廊黑河鼎新至哨马营段河水与地下水转化途径分析[J].冰川冻土,2000,22(1):73-77.
    16.张光辉,刘少玉,张翠云等.黑河流域地下水循环演化规律研究[J].中国地质,2004,31(8):289-293.
    17.张丽.黑河流域下游生态需水理论与方法研究[D].北京林业大学硕士学位论文:2004.
    18.张天昌.黑河水量调度与下游生态恢复初步评价[J].甘肃水利水电技术,2007,42(1):11-13.
    19.张武文、王林和,李德平等,额济纳平原水资源特点与合理利用[J],干旱区资源与环境(增刊):2000,14(5):19-24.
    20.张应华,仵彦卿,苏建平等.额济纳盆地地下水补给机理研究[J].中国沙漠,2006,26(1):96-102.
    21.赵传燕.黑河流域生态需水量机理及时空分布研究[D].中国科学院寒区旱区环境与工程研究所博士后科研报告:2005.
    1.Anatoly A.G.,Yoram J.K.,Robert S.,et al.Novel algorithms for remote estimation of vegetation fraction [J].Remote Sensing of Environment,2002,80(1):76-87.
    2.Baret F.,Clevers J.P.W.,Stevens M.D.The robustness of canopy gap fraction estimates from the red and near infrared reflectance-A comparison between approaches for sugar beet canopies[J].Remote Sensing Environment,1995,54:141-151.
    3.Bonan G.B.Land-atmosphere interactions for climate system models:coupling biophysical,biogeochemical and ecosystem dynamical processes[J].Remote Sensing of Environment,1995.(51):57-73.
    4.Brogea N.H.,Mortensen J.V.Deriving Green Crop Area Index and Canopy Chlorophy Ⅱ Density of Winter Wheat from Spectral Reflectance Data[J].Remote Sensing of Environment,2002,81:45-57.
    5.Carlson T.N.and Ripley A.J.On the relationship between fractional vegetation cover,leaf area index and NDVI[J].Remote Sensing of Environment,1997,62:241-252.
    6.Chehbouni J.Q.,Huete A.R.,Kerr Y.H.,et al.A modified soil adjusted vegetation Index[J].Remote Sensing Environment,1994,48:119-126.
    7.Chen J.M.and Sylvain G.L.A Four-Scale Bidirectional Reflectance Model Based on Canopy Architecture [J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(5):1316-1337.
    8.Chen J.M.,Cihlar J.Retrieving leaf area index of boreal conifer forests using Landsat TM images[J].Remote Sensing of Environment,1996,(55):153-162.
    9.Dickson R.E.Land surface processes and climate surface albedos and energy balance[J].Advances in Geophysics,1983,25:305-353.
    10.Dymond J.R.,Stephens P.R.,Newsome P.F.,et al.Percent vegetation cover of a degrading rangeland from SPOT[J].International Journal of Remote Sensing,1992,13(11):1999-2007.
    11.Gillies R.R.,Kustas W.P.,Humes K.S.A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI)and surface e.International Journal of Remote Sensing,1997,(18):3145-3166.
    12.Graetz R.D.,Pech R.R.,Davis A.W.The assessment and monitoring of sparsely vegetated rangelands using calibrated Landsat data[J].International Journal of Remote Sensing,1988,9(7):1201-1222.
    13.Gutman G.,Ignatov A.The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J].International Journal of Remote Sensing,1998,19(8):1533-1543.
    14.Hu B.,Lucht W.,Strahler A.,et al.Surface albedos and angle-corrected NDVI from AVHRR observations of South America [J]. Remote Sensing of Environment, 2000, 71:119-132.
    15. Huete A.R. A soil adjusted vegetation index(SAVI) [J]. Remote Sensing Environment, 1988, (25): 295-309.
    16. Jimenez-Mufioz.J.C. and Sobrino.J.A. A generalized single channel method for retrieving land surface temperature from remote sensing data [J]. Journal of Geophysical Research, 2003,108 (D22): 4688-4695.
    17. Kung E.C., Bryson R.S., Lenschow D.H. Study of a continental surface albedo on the basis of flight measurements and structure of the Earth's surface cover over North America [J]. Monthly Weather Review, 1964, 92(12): 534-563.
    18. Leprieur C, Verstraete M.M., Pinty B. Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data [J]. Remote Sensing Review, 1994, (10): 265-284.
    19. Li Z.Q., Garand L. Estimation of surface albedo from space-a parameterization for global application [J]. Journal of Geophysical Research, 1994,99:8355-8360.
    20. Liang Shunlin, Shuey C.J., Russ A.L., et al. Narrowband to broadband conversions of laud surface albedo: II Validation [J]. Remote Sensing of Enviroument, 2002,84:25-41.
    21. Liang Shunlin. A direct algorithm for estimating land surface broadband albedos from MODIS imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(1): 136-145.
    22. Liang Shunlin. Narrowband to broadband conventions of land surface albedo: I Algorithms [J]. Remote Sensing of Environment, 2000,76:213-238.
    23. Lucht W., Hyman A.H., Strachler A.H., et al. A comparison of satellite-derived spectral albedos to ground-based broadband albedo measurements modeled to satellite spatial scale for a semidesert landscape [J]. Remote Sensing of Environment, 2000,74: 85-98.
    24. Myneni R.B., Nemani R.R., Running S.W. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing, 1997,35 (6): 1380-1393.
    25. Pech R.P., Crraetz R.D., Davis A.W. Reflectance modeling and the derivation of vegetation indices for an Australian semi-arid shrubland [J]. International Journal of Remote Sensing, 1986, (7): 389-403.
    26. Peter R.J. Estimation of fAPAR, LAI, and vegetation fractional cover from ATSR-2 imagery [J]. Remote Sensing of Environment, 2002, 80(1): 114-121.
    27. Prata A.J. Land surface temperature derived from the AVHRR and the ASTER, Part 1 theory [J]. Journal of Geophysical Research, 1993,98:16689-16702.
    28. Purevdor J.T.S., Tateishi R., Ishiyama T., et al. Relationships between percent vegetation cover and vegetation indices [J]. International Journal of Remote Sensing, 1998,19(18): 3519-3535.
    29. Qi J. A modified soil adjusted vegetation index [J]. Remote Sensing Environment, 1994, (48): 119-126.
    30. Qi J., Marsett R.C., Moran M.S., et al. Spatial and temporal dynamics of vegetation in the San Pedro River basin area [J]. Agricultural and Forest Meteorology, 2000, (105): 55-68.
    31. Quarmby N.A., Townshend J.R.G, Settle J., et al. Linear mixture modeling applied to AHVRR data for crop area estimation [J]. International Journal of Remote Sensing, 1992,13(3): 415-425.
    32. Settle J.J., Drake N.A. Linear mixing and the estimation of ground cover proportions [J]. International Journal of Remote Sensing,1993,(14):1159-1177.
    33.Sobrino J.A.,Juan C.,Jim enez-Munoz,Leonardo Paolini.Land surface temperature retrieval from Landsat TM5[J].Remote Sensing Environment,2004,90(4):434-440.
    34.Sobrino J.A.,Raissouni N.and Li Z.L.A comparative study of land surface emissivity retrieval from NOAA data[J].Remote Sensing Environment,2001,75(2):256-266.
    35.Sobrino J.A.,Raissouni N.Toward remote sensing methods of land cover dynamic monitoring:application to Morocco.International Journal of Remote Sensing,2000,21(2):353-366.
    36.Tarpley J.D.,Schneider S.R.,Money R.L.Global vegetation indices from the NOAA-7 meteorological satellite.Journal Climate Application Meteor,1984,23:491-494.
    37.Turner D.P.,Cohen W.B.,Kennedy R.E.,et al.Relationship leaf area index and Landsat TM spectral vegetation indices three temperate zone sites[J].Remote sensing of Environment,1999,70:52-68.
    38.Valor E.,Caselles V.Mapping land surface emissivity from NDVI:application to European,African and South American areas[J].Remote Sensing of Environment,1996,57:167-184.
    39.Van De Griend A.A.and Owe M.On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J].International Journal of Remote Sensing,1993,14(6):1119-1131.
    40.Wark D.Q.,Yamamoto Y.,Lienesch J.H.Methods of estimating infrared flux and surface temperature from meteorological satellites[J].J Atmos Sci,1962,19:369-384.
    41.Wittich K.P.,and Hansing O.Area-averaged vegetative cover fraction estimated from satellite data[J].International Journal of Biometeorology,1995,38(3):209-215.
    42.Xiao J.and Moody A.A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico,USA[J].Remote Sensing of Environment,2005,98:237-250.
    43.Yin Xiwei.The albedo of vegetated land surfaces:system analysis and mathematical modeling[J].Theoretical and Applied Climatology,1998,60:121-140.
    44.Zeng X.,Dickinson R.E.,Walker A.,et al.Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling[J].Journal of Applied Meteorology,2000,39:826-839.
    45.查书平.基于RS和GIS的长江三角洲蒸散量研究[D].南京气象学院硕士学位论文,2004.
    46.陈丹,钱峻屏,张虹鸥等.基于遥感数据的广东植被指数时空变化研究[J].生态科学,2006,25(5):412-416.
    47.陈建绥.中国地表反照率的分布及变化[J].地理学报,1964,30(2):85-93.
    48.陈晋,陈云浩,何春阳等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报,2001,5(6):416-422.
    49.陈沈斌,孙九林.建立我国主要农作物卫星遥感估产运行系统的主要技术环节及解决途径[J].自然资源学报,1997,12(4):363-369.
    50.陈云浩,李晓兵,史培军.北京海淀区植被覆盖的遥感动态研究[J].植物生态学报,2001c,25(5):588-593.
    51.陈云浩,李晓兵,史培军.中国西北地区蒸发散量计算的遥感研究[J].地理学报,2001b,56(3): 261-268.
    52.陈云浩,李晓兵,谢锋.我国西北地区地表反照率的遥感研究[J].地理科学,2001a,21(4):327-333.
    53.邓孺孺.青藏高原地表反照率反演及冷热源分析[D].中国科学院遥感应用研究所博士学位论文,2003.
    54.方秀琴,张万昌,刘三超.黑河流域叶面积指数的遥感估算[J].国土资源遥感,2004,1:27-31.
    55.郭铌.植被指数及其研究进展[J].干旱气象,2003,21(4):71-75.
    56.胡少英,张万昌.黑河及汉江流域MODIS叶面积指数产品质量评价[J].遥感信息,2005,4:22-27.
    57.黄妙芬,邢旭峰,刘素红等.反演地表温度三要素获取途径研究及其应用价值[J].干旱区地理,2005,28(4):541-547.
    58.黄妙芬,邢旭峰,王培娟等.利用Landsat TM热红外通道反演地表温度的三种方法比较[J].干旱区地理,2006,29(1):132-137.
    59.惠凤鸣,田庆久,金震宇等.植被指数与叶面积指数关系研究及定量化分析[J].遥感信息,2003,2:10-13.
    60.金莲姬,刘晶淼,李雁领等.利用NOAA-AVHRR遥感资料反演长江三角洲地表反照率的试验[J].南京气象学院学报,2002,25(1):28-35.
    61.金晓媚.黑河流域天然植被的面积变化研究[J].地学前缘,2005,12(特刊):166-169.
    62.李朝峰.基于知识发现和决策规则的遥感图像城区土地覆盖/利用分类方法[J].计算机工程与应用,2004,23:212-215.
    63.李粉玲.高山高原地区地表温度遥感反演研究[D].兰州大学硕士学位论文,2006.
    64.李开丽,蒋建军,茅荣正等.植被叶面积指数遥感监测模型[J].生态学报,2005,25(6):1491-1496.
    65.李苗苗.植被覆盖度的遥感估算方法研究[D].中国科学院遥感应用研究所硕士学位论文,2003.
    66.李述,刘勇.基于多特征的遥感影像土地利用/覆盖分类-以腾格里沙漠东南边缘地区为例[J].遥感技术与应用,2006,21(2):154-158.
    67.李晓兵,史培军.基于NOAA/AVHRR数据的中国主要植被类型NDVI变化规律研究[J].植物学报,1999,41(3):314-324.
    68.李新武,郭华东,廖静娟.航天飞机极化干涉雷达数据反演地表植被参数[J].遥感学报,2002,6(6):424-429.
    69.李燕军.植被指数筛选与物种多样性遥感监测模型研究[D].甘肃农业大学硕士学位论文,2006.
    70.李震,阎福礼,范湘涛.中国西北地区NDVI变化及其与温度和降水的关系[J].遥感学报,2005,9(3):308-313.
    71.刘爱霞.中国及中亚地区荒漠化遥感监测研究[J].中国科学院研究生院博士学位论文,2004.
    72.刘三超,张万昌,蒋建军等.用TM影像和DEM获取黑河流域地表反射率和反照率[J].地理科学,2003,23(5):585-591.
    73.刘树华.环境物理学[M].北京:化学工业出版社,2004.
    74.刘同海.TM数据草原沙漠化信息提取研究[D].中国农业科学院硕士学位论文,2005.
    75.陆渝蓉,高国栋.我国辐射平衡各分量的计算方法及时空分布特征(1)[J].南京大学学报(自然科学版),1976,(2):89-110.
    76.孟宪红,吕世华,张宇等。使用LANDSAT-5 TM数据反演金塔地表温度[J].高原气象,2005,24(5): 721-726.
    77.莫登奎,林辉,孙华等.基于高分辨率遥感影像的土地覆盖信息提取[J].遥感技术与应用,2005,20(4):411-414.
    78.潘晓玲.干旱区绿洲生态系统动态稳定性的初步研究[J].第四纪研究,2001,21(4):345-351.
    79.彭望禄,白振平,刘湘南等.遥感概论[M].北京:高等教育出版社,2002.
    80.浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    81.孙红雨,王长耀,牛铮等.中国地表植被覆盖变化及其与气候因子关系-基于NOAA时间序列数据分析[J].遥感学报,1998,2(3):204-210.
    82.覃志豪,Zhang Minghua,Arnon Karnieli等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466.
    83.覃志豪,李文娟,徐斌等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004,61(3):28-36.
    84.汤国安等.遥感数字图像处理[M].北京:科学出版社,2004.
    85.唐延林,王秀珍,王福民等.农作物LAI和生物量的高光谱法测定[J].西北农林科技大学学报,2004,32(11):100-104.
    86.田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333.
    87.田振坤,黄妙芬,刘良云等.使用单窗算法研究北京城区热岛效应[J].遥感信息,2006,(1):21-24.
    88.涂梨平,周斌.利用Landsat/TM热红外数据进行陆面温度反演的比较[J].科技通报,2007,23(3):326-331.
    89.涂梨平.利用Landsat TM数据进行地表比辐射率和地表温度的反演[D].浙江大学硕士学位论文,2006.
    90.王介民,高峰.关于地表反照率遥感反演的几个问题[J].遥感技术与应用,2004,19(5):295-300.
    91.王开存,刘晶森,周秀骥等.利用MODIS卫星资料反演中国地区晴空地表短波反照率及其特征分析[J].大气科学,2004,28(6):941-949.
    92.文军,王介民.一种由卫星遥感资料获得的修正的土壤调整植被指数[J].气象与环境研究,1997,2(3):302-309.
    93.吴骅,李彤.TM热红外波段等效比辐射率估算[J].遥感信息,2006,(3):26-28.
    94.削申亮.作物叶面积指数遥感反演与验证研究-以河北实验区为例[D].中国农业科学院硕士学位论文,2007.
    95.徐全芝,张万昌,刘三超等.黑河流域叶面积指数的遥感反演[J].干旱区研究,2003,20(4):281-285.
    96.徐兴奎,林朝晖.青藏高原地表月平均反照率的遥感反演[J].高原气象,2002c,21(3):233-237.
    97.徐兴奎,刘素红.中国地表月平均反照率的遥感反演[J].气象学报,2002a,60(2):215-219.
    98.徐兴奎.长江三角洲地区地表月平均反照率的卫星遥感研究[J].大气科学,2002b,26(3):394-401.
    99.徐兴奎.基于遥感和地理信息系统的中国地表能量特征分析[D].中国科学院遥感应用研究所博士学位论文,1999.
    100.薛利红,曹卫星,罗卫红等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报,2004,28(1)47-52.
    101.杨存建,周成虎.基于知识发现的TM图像居民地自动提取研究[J].遥感技术与应用,2001,16(1): 1-6.
    102.杨何群.基于遥感和DEM的山区-平原地表水热通量估算及对比分析研究[D].兰州大学硕士学位论文,2006.
    103.杨吉龙,李家存,杨德明.高光谱分辨率遥感在植被监测中的应用综述[J].世界地质,2001,20(3):307-312.
    104.喻锋,李晓兵,王宏等.基于NDVI-Ts特征空间的中国土地覆盖分类研究[J].植物生态学报,2005,29(6):934-944.
    105.张克斌,李瑞,夏照华等.宁夏盐池植被盖度变化及影响因子[J].中国水土保持科学,2006,4(6):18-22.
    106.张仁华.实验遥感模型及地面基础[M].北京:科学出版社,1996.
    107.张晓涛.区域蒸发蒸腾量的遥感估算-以民勤绿洲为例[D].西北农林科技大学硕士学位论文,2006.
    108.张云霞,李晓兵,陈云浩.草地植被覆盖度的多尺度遥感与实地测量方法综述[J].地球科学进展,2003,18(1):85-93.
    109.张兆明,何国金,肖荣波等.利用TM6数据反演陆地表面温度新算法研究[J].遥感技术与应用,2005,20(6):547-550.
    110.章文波,符素华,刘宝元.目估法测量植被覆盖度的精度分析[J].北京师范大学学报(自然科学版),2001,37(3):402-408.
    111.赵萍,冯学智,林广发.SPOT卫星影像居民地信息自动提取的决策树方法研究[J].遥感学报,2003,7(4):309-316.
    112.赵英时等.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    113.朱怀松,刘晓锰,裴欢.热红外遥感反演地表温度研究现状[J].干旱气象,2007,25(2):17-21.
    114.祝昌汉,朱福康,刘玉洁.青藏高原晴空行星反照率与地表反照率关系的研究[J].气象学报,1993,51(1):58-65.
    115.祝善友,张桂欣,尹球等.地表温度热红外遥感反演的研究现状及其发展趋势[J].遥感技术与应用,2006.21(5):420-425.
    1. Bastiaanssen W.G.M., Menenti M., Feddes R.A., et al. A remote sensing surface energy balance algorithmfor land (SEBAL): 1. Formulation [J]. Hydrology, 1998, 3: 198-212.
    2. Brutsaert W. Evaporation into the Atmosphere [M]. Reidel, Dordreeht, Netherlands, 1982: 299 pp.
    3. Brutsaert W. On a derivable formula for long-wave radiation from clear skies [J]. Water Resources Research, 1975,11:742-744.
    4. Chehbouni A., Nouvellon Y., Lhomme J.P., Watts C., Boulet G., Kerr Y.H., Moran M.S. and Goodrich D.C.Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature [J]. Agric. For. Meteorol, 2001,108:55-65.
    5. Choudhury B.J. and Montoith J.L. A four-layer model for the heat budget of homogeneous land surfaces [J]. Quart. J. Roy. Meteorol. Soc., 1988,114: 373-398.
    6. Choudhury B.J., Idso S.B. Analysis of an empirical model of soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation [J]. Agricultural and Forest Meteorology, 1987, 39: 283-297.
    7. Friedl M. Relationships among remotely sensed data, surface energy balance, and area-averaged fluxes over partially vegetated land surfaces [J]. Journal of Applied Meteorology, 1996,35 (11): 2091-2103.
    8. Friedl M.A. Forward and inverse modeling of land surface energy balance using surface temperature measurements [J]. Remote sensing of Environment, 2002, 79:344-354.
    9. Jackson R.D., Hatfield J.L., Reginato R.J., et al. Estimates of daily evapotranspiration from one time of day measurements [J]. Agriculture Water Manage, 1983(7): 351-362.
    10. Kustas W.P. Estimates of evapotranspiration with a one- and two-layer model of heat transfer over partial canopy cover [J]. Journal of Applied Meteorology, 1990,29: 704-715.
    11. Kustas W.P., Daughtry C.S.T. Estimation of the soil heat flux/net radiation ratio from spectral data [J]. Agricultural and Forest Meteorology, 1990, 49 (3): 205-223
    12. Kustas W.P., Moran M.S., Jackson R.D., et al. Instantaneous and daily values of the surface energy balance over agriculture fields using remote sensing and a reference field in an arid environment [J]. Remote Sensing Environment, 1990(32): 125-141.
    13. Kustas W.P., Norman J.M., Anderson M.C., et al. Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship [J]. Remote Sensing of Environment, 2003, 85: 429-440.
    14. Monteith J.L. Evaporation and surface temperature [J]. Quarterly Journal of Royal Meteorological Society, 1981,107: 1-27.
    15. Monteith J.L. Principles of environmental physics [M]. Edward Arnold Press, 1973.
    16. Rivas Rual., Caselles Vicente. A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data[J].Remote Sensing of Environment 2003,93:68-76.
    17.Roerink G.J.,Su Z.,and Menenti M.S.SEBI:A simple remote sensing algorithm to estimate the surface energy balance[J].Phys Chem Earth(B),2000,25(2):147-157.
    18.Sequin B.,Itier B.Using midday surface temperature to estimate daily evaporation from satellite thermal I.R.data[J].International Journal Remote Sensing,1983,4:371-384.
    19.Stewart J.B.,Kustas W.P.,Humes K.S.,Nichols W.D.,Moran M.S and De Bruin H.A.R.Sensible heat flux-radiometric surface temperature relationship for eight semi-add areas[J].J.Appl.Meteorol,1994,33:1110-1117.
    20.Su Z.A Surface Energy Balance System(SEBS)for estimation of turbulent heat fluxes from point to continental scale[A].In:Su Z.,Jacobs J.(Eds.),Advanced Earth Observation-Land Surface Climate.Publications of the National Remote Sensing Board(BCRS),2001,USP-2,01-02,91-108.
    21.Su Z.The Surface Energy Balance System(SEBS)for estimation of turbulent heat fluxes[J].Hydrology and Earth system Sciences,2002,6(1):85-99.
    22.Sugita M.,Brutsaert W.Daily evaporation over a regional from lower boundary layer profiles[J].Water Resource Research,1991(27):747-752.
    23.Taconet O.,Carlson T.,Bernard R.,et al.Evaluation of surface/vegetation parameterization using satellite measurements of surface temperature[J].J Clim Appl Meteorol,1986(25):1752-1767.
    24.Thom A.S.,Oliver H.R.On Penmans' equation for estimating regional evaporadon quart[J].J Royal Meteor Sot.,1977,103:345-357.25.Timmermans W.J.,Meijerink A.M.J.Remotely sensed actual evapotranspiration:implications for groundwater management in Botswana[J].International Journal of Applied Earth Observation and Geoinformation,1999,1(3-4):222-233.
    26.Wang J.and Mitsuta Y.Evoporation from the desert:Some preliminary results of HEIFI[J].Boundary-Layer Meteorol,1991,59:413-418.
    27.Wang J.and Mitsuta Y.Peculiar downward water vapor flux over gobi desert in the daytime[J].J.Meteor.Soc.Japan,1990,68(3):399-402.
    28.Zhang L.,Lemeur R.Evaluation of daily evapotranspiration estimates from instantaneous measurements [J].Agriculture and Forest Meteorology,1995(74):139-154.
    29.郭晓寅,程国栋.遥感技术应用于地表面蒸散发的研究进展[J].地球科学进展,2004,19(1):107-114.
    30.何玲.基于MODIS遥感数据无定河流域陆面蒸发蒸腾量研究[D].西北农林科技大学硕士学位论文,2006.
    31.黄妙芬,刘素红,朱启疆.应用遥感方法估算区域蒸散量的制约因子分析[J].干旱区地理,2004,27(1):100-105.
    32.李付琴,田国良,隋洪智,等.植被条件下遥感监测土壤水分的方法探讨.田间实验部分[A].田国良.黄河流域典型地区遥感动态研究[C].北京:科学出版社,1990:151-176.
    33.李守波,赵传燕.基于能量平衡的关川河流域蒸散发的遥感反演[J].遥感技术与应用,2006,21(6): 521-526.
    34.刘志红,刘文兆,李锐.基于3S技术的区域蒸散研究进展[J].中国水土保持科学,2006,4(3):117-122.
    35.马耀明,马伟强,李茂善等.黑河中游非均匀地表能量通量的卫星遥感参数化[J].中国沙漠,2004,24(4):392-399.
    36.马耀明,王介民,Menenti M.等.卫星遥感结合地面观测估算非均匀地表区域能量通量[J].气象学报,1999,57(2):180-189.
    37.庞治国,付俊娥,李纪人等.基于能量平衡的蒸散发遥感反演模型研究[J].水科学进展,2004,15(3):364-369.
    38.谢贤群.遥感瞬时作物表面温度估算农田全日蒸散发总量[J].环境遥感,1991,6(4):253-259.
    39.杨宝钢.复杂地表区域蒸发散量的统计-动力参数化方案研究[D].南京气象学院硕士学位论文,2004.
    40.杨何群.基于遥感和DEM的山区-平原地表水热通量估算及对比分析研究[D].兰州大学硕士学位论文,2006.
    41.张长春,王光谦,魏加华.基于遥感方法的黄河三角洲生态需水量研究[J].水土保持学报,2005,19(1):149-152.
    42.张仁华.实验遥感模型及地面基础[M].北京:科学出版社,1996.
    43.张万昌,刘三超,蒋建军等.基于GIS技术的黑河流域地表通量及蒸散发遥感反演[J].海洋科学进展,2004,22(增刊):138-145.
    44.张晓涛,康绍忠,王鹏新等.估算区域蒸发蒸腾量的遥感模型对比分析[J].农业工程学报,2006,22(7):6-13
    1.高前兆,李福兴等.黑河流域水资源合理开发利用[M].兰州:甘肃科学技术出版社,1991.
    2.李佳陶,余伟莅,李钢铁等.不同地下水位胡杨蒸腾速率与叶水势的变化分析[J].内蒙古林业科技,2006,(1):1-4.
    3.李强坤,胡亚伟,丁宪宝等.西北干旱地区绿洲生态需水及其量化方法研究[J].资源环境与工程,2007,26(5):558-561.
    4.李世明,吕光沂,李元红等.河西走廊可持续发展与水资源合理利用[M].北京:中国环境科学出版社,2000.
    5.李云玲.基于水资源合理配置的黑河下游生态恢复研究[D].河海大学博士学位论文,2005.
    6.钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利水电出版社,2001.
    7.司建华,冯起,席海洋等.极端干旱区柽柳林地蒸散量及能量平衡分析[J].干旱区地理,2006,29 (4):517-522.
    8.司建华,冯起,张小由等.黑河下游分水后的植被变化初步研究[J].西北植物学报,2005,25(1):631-640.
    9.王根绪,程国栋.干旱内陆流域生态需水量及其估算-以黑河流域为例[J].中国沙漠,2002,22(2):129-134.
    10.王根绪,张钰,刘桂民等.干旱内陆流域河道外生态需水量评价-以黑河流域为例[J].生态学报,2005,25(10):2467-2476.
    11.杨国宪,候传河,韩献红等.黑河额济纳绿洲生态与水[M].郑州:黄河水利出版社,2006.
    12.张丽,董增川,徐建新.黑河流域下游天然植被生态及需水研究[J].灌溉排水,2002,21(4):16-20.
    13.张丽.黑河流域下游生态需水理论与方法研究[D].北京林业大学硕士学位论文,2004.
    14.张丽.基于生态的流域水资源承载能力研究[D].河海大学博士学位论文,2004.
    15.赵文智,常学礼,何志斌等.额济纳荒漠绿洲植被生态需水量研究[J].中国科学D辑地球科学,2006,36(6):559-566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700