用户名: 密码: 验证码:
基于遥感的地表特性对地表水热通量的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表水热通量反映了地气之间水分和能量的交换过程,是目前水资源领域研究的热点。地表的复杂性直接影响着地表水热通量的空间分布,进而影响着区域内及全球的气候环境变化。近年来,随着遥感技术的发展与逐渐成熟,其宏观、实时的特点使得研究大尺度范围的水热通量及地表特性更为便捷。因此,借助遥感手段,研究地表特性对地表水热通量的影响具有重要意义。
     本文选用北京市为研究区域,以Landsat的TM资料为基本数据源,首先利用监督分类中的最大似然法完成了土地利用/覆盖的遥感分类,并将分类结果与1:1万地形图进行了对比分析,表明其精度较好。同时,采用线性光谱混合分析方法提取了北京市平原区的不透水面信息,通过分析分解结果均方差统计影像,发现其平均误差小于0.02 ,满足精度要求。另外,本文引入DEM数据对原始的SEBAL模型进行了地形(高程、坡度、坡向)校正;部分参数估算时对不同下垫面给出不同的经验公式,从而拓展了SEBAL模型的适用范围,基于改进后的SEBAL模型定量反演了地表水热通量,对模型反演结果进行了初步验证,结果合理可信。
     在此基础上,本研究定量分析了不同土地利用/覆盖类型对地表水热通量的影响。引入归一化植被指数(NDVI)、不透水率及主要地形参数(高程、坡度、坡向)来表征地表的特性,讨论了这些参数与地表水热通量的相互关系。同时还分析了城市化导致的地表水热通量的城郊差异。
     研究结果表明,土地利用/覆盖类型的特点影响着各通量及日蒸散发的空间分布。净辐射通量受坡度、坡向的影响较大,其最大值点对应的坡度、坡向与影像获取时刻的太阳高度角及方位角直接相关;除水面以外,土壤热通量和显热通量与不透水率呈正相关,与NDVI呈负相关;潜热通量与不透水率呈负相关,与NDVI呈正相关。各通量的分布呈现明显的城郊差异性,由城市功能核心区到远郊的生态涵养区,净辐射通量及潜热通量呈现增加趋势,而土壤热通量及显热通量呈减小趋势,日蒸散发呈增加趋势。
Land surface water/heat fluxes reflect the exchange process of water and energy between land surface and atmosphere, and are the research focus in hydrological field. The complexity of underlying surface, directly determines spatial distribution of land surface water/heat fluxes. Recently, remote sensing technology, due to its macroscopic and real-time properties, is gradually widely used in the study of land surface water/heat fluxes and underlying surface in large-scale region. Therefore, it is essential and feasible to study the impact of land use/cover properties on land surface water/heat fluxes based on remote sensing data.
     In this study, using Landsat TM remote sensing data in Beijing, land use and land cover classification is conducted by maximum likelihood method and comparison with topographical map with scale 1:10000 proves its accuracy. Then information of impervious surface is extracted by spectral mixture analysis (SMA), and the RMS image indicates the result is reasonable. In addition, the study refines the original algorithms by coupling digital elevation model in the SEBAL model for the topographic correction (elevation, slope and aspect), and formulating different empirical formulas in different land surfaces for estimation of some variables, to expand the application of the regional remote sensing model. Land surface water/heat fluxes were estimated by modified SEBAL mode and the result shows reasonable.
     Then quantitative analysis of impacts on land surface water/heat fluxes was performed in three aspects, i.e. of typical land use/cover types; NDVI, impervious ratio, and terrain parameters (elevation, slope and aspect); urban and suburb regions.
     The results indicate that mean values of water/heat fluxes associated with different land use/cover types are significantly different. Net radiation is sensitive to slope and aspect and the maximum value occur at the slope of 25 degree and the aspect of 304 degree. Except water surface, both soil heat flux and sensible heat flux have positive correlation with surface impervious ratio and negative correlation with NDVI, while latent heat flux shows negative correlation with surface impervious ratio and positive correlation with NDVI. Urban and rural regions show obviously different fluxes characteristics, from central urban to suburb, net radiation flux and latent heat flux increase, while soil heat flux and sensible flux decrease, and daily evapotranspiration increase.
引文
[1] Bastiaanssen W G M. Regionalization of surface flux densities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates: [PhD. Thesis]. Wageningen Agricultural University, 1995.
    [2] Bastiaanssen W G M, Menentia M, Feddes R A, Holtslag A A M. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation . Journal of Hydrology, 1998, 212–213(1998a): 198–212.
    [3] Bastiaanssen W G M, Pelgrum H, Wang J, Ma Y, Moreno J, et al. A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. Journal of Hydrology, 1998, 212–213 (1998b): 213–229.
    [4] Bastiaanssen W G M. SEBAL-based sensible and laten theat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 2000, 229(l-2): 87-100.
    [5] Bastiaanssen W G M, Bandara K. Evaporative depletion assessments for irrigated watersheds in Sri Lanka. Irrigation Science, 2001, 21(l): l-15.
    [6] Bouchet R J. Evapotranspiration reelle at potentielle, signification climatique. IAHS Publ, 1963, 62 : 134-142
    [7] Carlson T N, Arthur S T. The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Global and Planetary Change, 2000, 25: 49-65.
    [8] Flanagan M, Civco D L. Sub-pixel impervious surface mapping. Proceedings of American Society for Photogrammetry and Remote Sensing Annual Convention, St. Louis, MO, 2001, April: 23–27.
    [9] Hatfield J L, Reginato R J, Idso S B, et al. Preface paper to the Semi-Arid Land-Surface-Atmosphere (SALSA) Program special issue. Agricultural and Forest meteorology, 2000, 105(1-3): 3-20.
    [10] Hurk B. Energy balanced based surface flux estimation from satellite data, and its application for surface moisture assimilation. Meteorol. Atmos. Phys, 2001, 76: 43-52.
    [11] Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resources Research, 1977, 13: 651-656.
    [12] Ji M, Jensen J R. Effectiveness of sub-pixel analysis in detecting and quantifying urban imperviousness form Landsat Thenmatic Mapper imagery. Geocarto International, 1999, 14(4): 33-41.
    [13] Kite G W, Droogers P. Comparing evapotranspiration estimates from satellites, hydrological models and field data. Journal of hydrology, 2000, 229: 3-18.
    [14] Landsat 7 Science Data User’s Handbook. http://ltpwww.gsfc.nasa.gov/IAS/ handbook / handbook_toc.htm, Chapter11, 2002.
    [15] Menenti M, Choudbury B J. Parameterization of land surface evapotranspiration using a location-dependent potential evapotransiration and surface temperature range [J]. Exchange Processes at the Land Surface for a Range of Space and Time Scales, IAHS Publ., 1993, 212: 561-568.
    [16] Morton F L. Estimating evapotranspiration from potential evaporation: Practicality of an iconoclastic approach. Journal of Hydrology, 1978, 38: 1-32.
    [17] Nemani R R, Running S W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. Journal of Applied Meteorology, 1989, 28: 276-284.
    [18] Penman H L. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948, 193(1032): 120-145.
    [19] Rashed T, Weeks J R, Gadalla M S. Revealing the anatomy of cities through spectral mixture analysis of multispectral satellite imagery: a case study of the greater Cairo region, Egypt. Geocarto International, 2001, 16(4): 5–15.
    [20] Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. International Journal of Remote Sensing, 1995, 16(12): 2165~2185.
    [21] Roerink G J, Su Z, Menenti M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B, 2000, 25(2): 147-157.
    [22] Schaudt, K J, Dickinson R E. An approach to deriving roughness length and zero-plane displacement height from satellite data, prototyped with BOREAS data. Agricultural and Forest Meteorology, 2000, 104: 143-155.
    [23] Seguin B, Itier B. Using midday surface temperature to estimate daily evaporation from satellite thermal IRR data. International Journal of Remote Sensing, 1983, 4: 371-383.
    [24] Small C. Estimation of urban vegetation abundance by spectral mixture analysis. International Journal of Remote Sensing, 2001, 22(7): 1305-1334.
    [25] Small C. Multitemporal analysis of urban reflectance. Remote Sensing of Environment, 2002, 81: 427-442.
    [26] Smith M O, Johnson P E, Adams J B. Quantitative determination of mineral types and abundances from reflectance spectra using principle component analysis. Journal of Geophysical Research, 1984, 90: 792-804.
    [27] Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 2002, 6(1): 85-99.
    [28] Teixeira A H de C, Bastiaanssen W G M, Ahmad M D, Bos. M G. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle San Francisco River basin, Brazil Part A: Calibration and validation. Agricultural and Forest Meteorology, 2009, 149: 462-476.
    [29] Weng Q, Lu D, Schubring J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 2004, 89: 467–483.
    [30] Weng Q, Lu D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. International Journal of Applied Earth Observation and Geoinformation. 2008, 10: 68–83.
    [31] Wu C, Murray A T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment, 2003, 84: 493–505.
    [32] Wu C. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sensing of Environment, 2004, 93: 480-492.
    [33] Xian G, Crane M. Assessment of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sensing of Environment, 2005, 97 (2): 203~215.
    [34]陈镜明.现用遥感蒸散模式中的一个重要缺点及改进.科学通报,1988,6:454-457.
    [35]陈玲.基于改进的SEBAL模型估算区域蒸散发:[硕士学位论文].兰州:兰州大学,2007.
    [36]陈玉敏.基于神经网络的遥感图像分类研究.测绘信息与工程,2002,27(3):6-8.
    [37]陈云浩,李晓兵,史培军.中国西北地区蒸散发量计算的遥感研究.地理学报,2001,56(3):261-267.
    [38]蔡晓斌,陈晓玲,王涛,吴忠宜.基于图斑空间关系的遥感专家分类方法研究.武汉大学学报(信息科学版),2006,31(4):321-324.
    [39]党安荣,王晓栋,陈晓峰,张建宝.遥感图像处理方法.北京:清华大学人居环境研究中心,2002.
    [40]费鲜芸,高祥伟.土地利用/土地覆盖遥感分类研究综述.山东农业大学学报(自然科学版),2002,33(3):391-394.
    [41]高彦春,龙笛.遥感蒸散发模型研究进展.遥感学报,2008,12(3):515-528.
    [42]韩惠.基于遥感技术的祖厉河流域土地利用/土地覆盖变化与蒸散发研究:[博士学位论文].兰州:兰州大学,2006.
    [43]胡希军,瞿有甜.神经网络在遥感图像自动分类中的应用研究.浙江师范大学学报(自然科学版),1996,19(4):82-85.
    [44]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988.
    [45]李红军,雷玉平,郑力,毛任钊. SEBAL模型及其在区域蒸散研究中的应用.遥感技术与应用,2005,20(3):321-325.
    [46]李金莲,刘晓玫,李恒鹏. SPOT5影像纹理特征提取与土地利用信息识别方法.遥感学报,2006,10(6):926-931.
    [47]蔺文静,董华,陈立,王贵玲.基于SEBAL模型的区域蒸发蒸腾遥感估算.遥感应用,2008,(5):50-54.
    [48]林云杉,徐涵秋,周榕.城市不透水面及其与城市热岛的关系研究——以泉州市区为例.遥感技术与应用,2007,22(1):14-19.
    [49]刘朝顺.区域尺度地表水热的遥感模拟及应用研究——以山东省为例:[博士学位论文].南京:南京信息工程大学,2008.
    [50]刘健,余坤勇,亓兴兰,黄维友.基于专家分类知识库的林地分类.福建农林大学学报(自然科学版),2006,35(1):42-46.
    [51]刘绍民,刘志辉.用Priestley-Taylor公式估算作物农田蒸散量的研究.高原气象, 1997,16:191-196.
    [52]刘绍民,孙睿,孙中平等.基于互补相关原理的区域蒸散量估算模型比较.地理学报,2004,59(3):331-340.
    [53]刘钰,Pereira L S, Teixeira J L.参照腾发量的新定义及计算方法对比.水利学报,1997,(6):27-33.
    [54]刘志武,雷志栋,党安荣,杨诗秀.遥感技术和SEBAL模型在干旱区腾发量估算中的应用.清华大学学报(自然科学版),2004,44(3):421-424.
    [55]刘志武.阿克苏平原绿洲腾发遥感模型研究:[博士学位论文].北京:清华大学,2005.
    [56]吕长春,王忠武,钱少猛.混合像元分解模型综述.遥感信息,2003,3:55-58.
    [57]马耀明,戴有学,马伟强等.干旱半干旱区非均匀地表区域能量通量的卫星遥感参数化.高原气象,2004,23(2):139-146.
    [58]马兆龙.城市水域绿地的微气候效应研究:[硕士学位论文].北京:清华大学,2006.
    [59]潘志强,刘高焕.黄河三角洲蒸散的遥感研究.地理信息科学,2003,(3):91-96.
    [60]饶雄,张景雄,丁翼星.基于多项Logit模型的土地覆被分层分类方法研究.武汉大学学报(自然科学版),2008,33(11):1166-1169.
    [61]岳文泽,徐建华,武佳卫,徐丽华.基于线性光谱分析的城市旧城改造空间格局遥感研究以1997~2000年上海中心城区为例.科学通报,2006,51(8):966-974.
    [62]王介民,马耀明.卫星遥感在HEIFE非均匀陆面过程研究中的应用.遥感技术与应用,1995,10(3):19-26.
    [63]王介民,高峰,刘绍民.流域尺度TE的遥感反演.遥感技术与应用,2003,18(5):332-338.
    [64]王昆,戚浩平.土地利用与土地覆盖遥感分类方法研究综述.山西建筑, 2008, 34(5):353-354.
    [65]谢贤群.遥感瞬时作物表面温度估算农田全日蒸散总量.环境遥感,1991,6(4):253-259.
    [66]徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究.遥感学报,2005,9(5):589-595.
    [67]徐榕峰.基于遥感的龙海市土地利用变化动态监测与专题研究.福州:福州大学,2003.
    [68]杨何群.基于遥感和DEM的山区—平原地表水热通量估算及对比研究:[硕士学位论文].兰州:兰州大学,2006.
    [69]詹志明,冯兆东,秦其明.陇西黄土高原陆面蒸散的遥感研究.地理与地理信息科学,2004,
    [70]张若琳,万力,张发旺,石迎春.土地利用遥感分类方法研究进展.南水北调与水利科技,2006,4(2):39-42.
    [71]张文江.典型草原生态系统区域尺度地表水热通量模拟研究:[博士学位论文].北京:中国科学院地理科学与资源研究所,2007.
    [72]张志成.土地利用/覆盖变化的遥感监测与区域对比——以福州和台北为例:[硕士学位论文].福州:福建师范大学,2005.
    [73]周存林,徐涵秋.福州城区不透水面的光谱混合分析与识别制图.中国图象图形学报,2007,12(5):875-881.
    [74]周纪,陈云浩,张锦水,李京.北京城市不透水层覆盖度遥感估算.国土资源遥感,2007,(3):13-17.
    [75]朱述龙,张占睦.遥感图像获取与分析.北京:科学出版社,2000:96-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700