用户名: 密码: 验证码:
对向靶磁控溅射法制备TiO_2纳米薄膜及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2材料由于具备高催化活性、无毒性和化学稳定性等优点而被广泛应用于资源与环境领域,TiO_2薄膜因比粉体易于从反应体系中分离与回收利用而备受关注。本文将一种新型物理沉积技术,即对向靶磁控溅射法应用于TiO_2薄膜制备过程,可有效避免溅射粒子对沉积薄膜的轰击作用,提高靶材的利用率,所制备薄膜与基底结合牢固。
     以两个对向平行放置的钛靶为溅射靶材,分别选取Ar与O_2为工作气体和反应气体,采用直流反应溅射法在FTO导电玻璃基底上制备了TiO_2纳米薄膜。通过FE-SEM和AFM对不同溅射时间段的TiO_2纳米薄膜进行表面形貌分析,结果显示TiO_2纳米薄膜在基底上呈先层状后岛状(Stranski-Krastanow)的生长模式。
     通过台阶仪、XRD、FE-SEM、HR-TEM、AFM和UV-Vis等表征手段,详细分析了对向靶磁控溅射过程各个条件参数对所制备TiO_2纳米薄膜晶体结构、表面形貌与光学性质的影响。溅射功率主要影响TiO_2纳米薄膜的沉积速率,薄膜厚度与溅射功率呈线性增加的关系;当溅射功率大于280W时薄膜开始由非晶状态转化为锐钛矿结构,但结晶度较低。退火处理可使TiO_2纳米薄膜获得足够自由能,促进TiO_2颗粒的表面迁移与相互团聚,并提高薄膜的结晶度。Ar/O_2流量比是影响靶面上溅射过程与氧化过程速率的决定性因素,当Ar/O_2流量比低于1:1时溅射过程进入靶面氧化模式,薄膜沉积速率和结晶度均有所降低;当Ar/O_2流量高于1:1时,随着溅射室内氧气流量的增加,薄膜由纯锐钛矿结构转变为锐钛矿-金红石混晶结构。高溅射气压会抑制金红石的生长,当溅射气压小于2.5Pa时,沉积在基底上的TiO_2纳米薄膜结晶度随溅射气压的升高而提高;若溅射气压继续增大则会导致沉积薄膜的结晶度下降。
     以异丙醇(iso-propanol,简称IPA)气体为目标降解物检测所制备薄膜的光催化活性;以TiO_2纳米薄膜电极的瞬态光电流检测薄膜的光电性能,研究确定具备最优光催化活性和光电性能的TiO_2纳米薄膜制备条件为:溅射功率350W,溅射气压2.5Pa,Ar/O_2流量比1:1,后期退火温度550℃。该薄膜可在120min紫外照射时间内降解初始浓度为90ppm的IPA气体,且在IPA降解实验中呈现出良好的催化活性稳定性。在光催化反应中异丙醇首先转化成丙酮再被氧化为CO_2,中间伴随有少量乙醛出现。在外加电压0.6V条件下,该薄膜在标准三电极体系中的瞬态光电流密度可达1.02mA/cm2,具有较优光电转换性能。
TiO_2have been widely used in many environmental applications due to its highphotocatalytic activity, non-toxicity and chemical stability. Compared to powders,TiO_2thin films could be easily separated from the reaction system and thus attracted agreat deal of attention. Here we proposed a new physical deposition technique,namely DC facing target magnetron sputtering for TiO_2thin film preparation with theaim of prevention of high energetic ions bombardment and increase of targetutilization during the sputtering process. The prepared films coule be stably coated onvarious kinds of substrates with strong adhesion.
     TiO_2thin film was deposited on FTO substrates using a pair of facing Ti targetsas sputtering targets. Pure Ar gas and O_2gas were selected as the working gas andreactive gas respectively. A series of TiO_2thin films deposited under differentsputtering times were characterized by Field Emission Scanning Electron Microscopy(FE-SEM) and Atomic Forece Microscope (AFM), which proved TiO_2thin filmsforming in Stranski-Krastanow growth on FTO substrates.
     The effects of sputtering parameters on the crystal structure, surface morphologyand opitical property of TiO_2thin films were investigated by the characterizationincluding surface roughness tester, X-Ray diffraction, FE-SEM, AFM and UV-VisibleSpectrophotometer (UV-Vis). Firstly, sputtering power mainly affected the depositionrate of TiO_2thin film and the film thickness increased linearly with the sputteringpower. The amorphous films transform to anatase with the higher sputtering powerthan280W. Sencondly, annealing treatment could improve the crystallinity of TiO_2thin films by providing free energy which promoted the surface migration andreunification of grains. Thirdly, Ar/O_2flow ratio played an important role in thesputtering and oxidation reaction on the target surface. Both of deposition rates andcrystallinity of TiO_2thin films reduced with lower Ar/O_2flow ratio than1:1due to“the oxidation mode”. When Ar/O_2flow ratio was higher than1:1, the phase of TiO_2thin films change from pure anatase into mixed-phase as the O_2flow increased.Fourthly, high pressure inhibited the growth of rutile phase. When the sputteringpressure was lower than2.5Pa, the crystallinity of deposited films increased with theincreasing sputtering pressure. However, the followed increasing pressure caused anapparently derease of the crystallinity of deposited films.
     The photocatalytic activities of TiO_2thin films were evaluated by thedecomposition of gaseous iso-propanol (IPA) under UV light irradiation. And the photoelectric performances of the deposited films were analyzed by measuringtransient photocurrent of TiO_2electrodes. The optimized sputtering parameters suchas350W,550centigrade,1:1and2.5Pa were determined by the above measurments.Under UV irradiation, IPA degradation rate of the optimized TiO_2thin film whichkept high stability constant during the repetitive experiments, could reach to100%in120min with the IPA inicial concentration of90ppm. Simultaneously, the highesttransient photocurrent with the value of1.02mA/cm2was obtained by the samesample.
引文
[1]刘春艳.纳米光催化及光催化环境净化材料[M].北京:化学工业出版社,2008.
    [2] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductorelectrode [J]. Nature,1972,238:37~38.
    [3] Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystallinesystems [J]. Chemical Reviews,1995,95(1):49~68.
    [4] Sato S, White J M. Photoassisted water-gas shift reaction over platinizedtitanium dioxide catalysts [J]. Journal of the American Chemical Society,1980,102(24):7206~7210.
    [5] Fox M A, Dulay M T. Heterogeneous photocatalysis [J]. Chemical Reviews,1993,93(1):341~357.
    [6] Pechy P, Rotzinger F P, Nazeeruddin M K, et al. Preparation of phosphonatedpolypyridyl ligands to anchor transition-metal complexes on oxide surfaces-application for the conversion of light to electricity with nanocrystalline TiO2films [J]. Journal of the Chemical Society-Chemical Communications,1995,(1):65~66.
    [7] Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by aphotocatalytic process [J]. Nature,1980,286:474~476.
    [8] Inoue T, Fujishima A, Konishi S, et al. Photoelectrocatalytic reduction ofcarbon dioxide in aqueous suspensions of semiconductor powders [J]. Nature,1979,277:637~638.
    [9]张金龙,陈峰,何斌.光催化[M].上海:华东理工大学出版社,2004.
    [10] Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2surface principles,mechanisms, and selected results [J]. Chemical Reviews,1995,95:735~758.
    [11]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社材料科学与工程出版中心,2002.
    [12] Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of propynewith water on small-particle titania: size quantization effects and reactionintermediates [J]. Journal of Physical Chemistry,1987,91(16):4305~4310.
    [13] Van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The luminescenceof nanocrystalline zno particles: the mechanism of the ultraviolet and visibleemission [J]. Journal of Luminescence,2000,87:454~456.
    [14] Satoh N, Nakashima T, Kamikura K, et al. Quantum size effect in TiO2nanoparticles prepared by finely controlled metal assembly on dendrimertemplates [J]. Nature Nanotechnology,2008,3(2):106~111.
    [15] Schmidt H, Kaiser A, Rudolph M, et al. Science of ceramic chemical processing[J]. Wiley,1986,20:85~87.
    [16] Dislich H, Hinz P. History and principles of the sol-gel process, and some newmulticomponent oxide coatings [J]. Journal of Non-Crystalline Solids,1982,48(1):11~16.
    [17] Dislich H, Hinz P, Kaufmann R. Us-patents3759683and3847583[P].1969.
    [18] Zarzycki J. Gel-glass transformation [J]. Journal of Non-Crystalline Solids,1982,48(1):105~116.
    [19] Takahashi M, Mita K, Toyuki H, et al. Pt-TiO2thin films on glass substrates asefficient photocatalysts [J]. Journal of Materials Science,1989,24(1):243~246.
    [20] Kato K, Tsuzuki A, Torii Y, et al. Morphology of thin anatase coatings preparedfrom alkoxide solutions containing organic polymer, affecting the photocatalyticdecomposition of aqueous acetic acid [J]. Journal of Materials Science,1995,30(3):837~841.
    [21]尹荔松,周歧发,唐新桂,等.溶胶-凝胶法制备纳米TiO2的胶凝过程机理研究[J].功能材料,1999,30(4):72~74.
    [22]万晔,杨龙刚,于欢.溶胶凝胶法制备纳米TiO2薄膜及其性能的研究[J].沈阳建筑大学学报(自然科学版),2009,25(1):139~142.
    [23] Sen S, Mahanty S, Roy S, et al. Investigation on sol-gel synthesized Ag-dopedTiO2cermet thin films [J]. Thin Solid Films,2005,474(1-2):245~249.
    [24] Sonawane R S, Dongare M K. Sol-gel synthesis of Au/TiO2thin films forphotocatalytic degradation of phenol in sunlight [J]. Journal of MolecularCatalysis a-Chemical,2006,243(1):68~76.
    [25] Vinogradov A V, Agafonov A V, Vinogradov V V. Low-temperature sol-gelsynthesis photochromic Cu/TiO2films [J]. Journal of Alloys and Compounds,2012,515:1~3.
    [26]康俊远,李立明,徐勇军.模具材料与表面处理[M].北京:北京理工大学出版社,2007.
    [27]张魁,白雪峰. TiO2薄膜的固定化技术研究进展[J].化学与粘合,2010,32(4):36~40.
    [28]胡昌义,李靖华.化学气相沉积技术与材料制备[J].稀有金属,2001,25(5):364~368.
    [29] Ramke W G. High Temperature Protective Coatings for Graphite. TechnicalReport ML-TDR-64-173.1964:195.
    [30] Macklin B A, Lamar P A. Development of Improved Methods of DepositingIridium Coatings on Graphite. AD843766.1968:67.
    [31] Wooten J R, Lawsaw P T. High-temperature, Oxidation-Resistant ThrusterResearch. NASA CR-185233,1990:282.
    [32] Yoon J G, Oh H K, Kwag Y J. Structural and optical properties of TiO2-SiO2composite films prepared by aerosol-assisted chemical-vapor deposition [J].Journal of the Korean Physical Society,1998,33(6):699~704.
    [33]李喆,张溪文,韩高荣.掺氮二氧化钛薄膜的介质阻挡放电化学气相沉积及其结构性能研究[J].真空科学与技术学报,2008,28(4):318~324.
    [34] Jung S C, Imaishi N. Preparation, crystal structure, and photocatalytic activityof TiO2films by chemical vapor deposition [J]. Korean Journal of ChemicalEngineering,2001,18(6):867~872.
    [35] Hitchman M L, Tian F. Studies of TiO2thin films prepared by chemical vapourdeposition for photocatalytic and photoelectrocatalytic degradation of4-chlorophenol [J]. Journal of Electroanalytical Chemistry,2002,538(SI):165~172.
    [36] Jung S C, Kim S J, Imaishi N, et al. Effect of TiO2thin film thickness andspecific surface area by low-pressure metal-organic chemical vapor depositionon photocatalytic activities [J]. Applied Catalysis B-Environmental,2005,55(4):253~257.
    [37] Backman U, Auvinen A, Jokiniemi J K. Deposition of nanostructured titaniafilms by particle-assisted mocvd [J]. Surface&Coatings Technology,2005,192(1):81~87.
    [38]严东生,冯端.材料新星——纳米材料科学[M].长沙:湖南科学技术出版社,1998.
    [39]刘峥,张学会,宋程.水热法制备稀土掺杂纳米TiO2薄膜及光催化降解性能研究[J].稀土,2010,31(2):7~12.
    [40] Huang H, Luo H J, Yao X. A study on TiO2thin films deposited byhydrothermal technique [J]. Acta Physica Sinica,2002,51(8):1881~1886.
    [41]高恩勤,张莉,杨迈之,等.水热法合成纳米TiO2及其在Gr tzel电池中的应用[J].物理化学学报,2001,17(2):177~180.
    [42] Bavykin D V, Savinov E N, Smirniotis P G. Kinetics of the TiO2films growthat the hydrothermal hydrolysis of TiOSO4[J]. Reaction Kinetics and CatalysisLetters,2003,79(1):77~84.
    [43] Ueda M, Uchibayashi Y, Otsuka-Yao-Matsuo S, et al. Hydrothermal synthesisof anatase-type TiO2films on Ti and Ti-Nb substrates [J]. Journal of Alloys andCompounds,2008,459(1-2):369~376.
    [44] Hosono E, Fujihara S, Kakiuchi K, et al. Growth of submicrometer-scalerectangular parallelepiped rutile TiO2films in aqueous TiCl3solutions underhydrothermal conditions [J]. Journal of the American Chemical Society,2004,126(25):7790~7791.
    [45] Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2single crystals with a largepercentage of reactive facets [J]. Nature,2008,453(7195):634~638.
    [46]董祥,陶杰,李莹滢,等.水热法制备三维网状TiO2纳米线薄膜及其光电化学性能[J].物理化学学报,2009,(9):1874~1882.
    [47]张端明,李智华,钟志成,等.脉冲激光沉积动力学原理[M].北京:科学出版社,2011.
    [48]安宁宁,梁齐,饶晓俊,等.脉冲激光沉积制备纳米材料研究进展[J].真空,2010,47(6):10~14.
    [49] Chrisey D B. Pulsed laser deposition of thin films [M]. New York: JohnWiley&Sons,1994.
    [50] Dijkkamp D, Venkatesan T, Wu X D, et al. Preparation of Y-Ba-Cu oxidesuperconductor thin films using pulsed laser evaporation from high Tcbulkmaterial [J]. Applied Physics Letters,1987,51(8):619~621.
    [51] Dai C M, Su C S, Chuu D S. Composition and chemical reactions of titaniumoxide films deposited by laser evaporation [J]. Journal of Applied Physics,1991,69(6):3766~3768.
    [52] Durand H A, Brimaud J H, Hellman O, et al. Excimer laser sputteringdeposition of TiO2optical coating for solar cells [J]. Applied Surface Science,1995,86(1-4):122~127.
    [53] Kim J H, Lee S, Im H S. The effect of target density and its morphology onTiO2thin films grown on Si (100) by PLD [J]. Applied Surface Science,1999,151(1-2):6~16.
    [54] Yamamoto S, Sumita T, Sugiharuto, et al. Preparation of epitaxial TiO2films bypulsed laser deposition technique [J]. Thin Solid Films,2001,401(1-2):88~93.
    [55] Kitazawa S I, Choi Y, Yamamoto S, et al. Rutile and anatase mixed crystal TiO2thin films prepared by pulsed laser deposition [J]. Thin Solid Films,2006,515(4):1901~1904.
    [56] Dzibrou D, Grishin A M, Kawasaki H. Pulsed laser deposited TiO2films:tailoring optical properties [J]. Thin Solid Films,2008,516(23):8697~8701.
    [57]吕珂.脉冲激光沉积PLD技术及其应用[J].科技广场,2009,(5):131~133.
    [58] Giri A K, Chowdary K M, Humfeld K D, et al. AC magnetic properties of FeConanocomposites [J]. Magnetics, Ieee Transactions On,2000,36(5):3026~3028.
    [59] Wang H Y, Wang T M, Xu P. Effects of substrate temperature on themicrostructure and photocatalytic reactivity of TiO2films [J]. Journal ofMaterials Science-Materials in Electronics,1998,9(5):327~330.
    [60] Dimitrov D B, Koprinarova J, Pazov J, et al. Conductivity of micro-porousmagnetron-sputtered thin TiO2films [J]. Vacuum,2000,58(2-3):344~350.
    [61] Stamate M D. Dielectric properties of TiO2thin films deposited by a dcmagnetron sputtering system [J]. Thin Solid Films,2000,372(1-2):246~249.
    [62] Anpo M. Preparation, characterization, and reactivities of highly functionaltitanium oxide-based photocatalysts able to operate under UV-Visible lightirradiation: approaches in realizing high efficiency in the use of visible light [J].Bulletin of the Chemical Society of Japan,2004,77(8):1427~1442.
    [63] Matsuoka M, Kitano M, Takeuchi M, et al. Photocatalysis for new energyproduction: Rrecent advances in photocatalytic water splitting reactions forhydrogen production [J]. Catalysis Today,2007,122(1-2):51~61.
    [64] Kikuchi H, Kitano M, Takeuchi M, et al. Extending the photoresponse of TiO2to the visible light region: photoelectrochemical behavior of TiO2thin filmsprepared by the radio frequency magnetron sputtering deposition method [J].Journal of Physical Chemistry B,2006,110(11):5537~5541.
    [65] Chen D Y, Tsao C C, Hsu C Y. Photocatalytic TiO2thin films deposited onflexible substrates by radio frequency (RF) reactive magnetron sputtering [J].Current Applied Physics,2012,12(1):179~183.
    [66] Liu B S, Zhao X J, Zhang N Z, et al. Photocatalytic mechanism of TiO2-CeO2films prepared by magnetron sputtering under UV and visible light [J]. SurfaceScience,2005,595(1-3):203~211.
    [67] Kitano M, Funatsu K, Matsuoka M, et al. Preparation of nitrogen-substitutedTiO2thin film photocatalysts by the radio frequency magnetron sputteringdeposition method and their photocatalytic reactivity under visible lightirradiation [J]. Journal of Physical Chemistry B,2006,110(50):25266~25272.
    [68] Chen P, Tan X, Yu T. Fabrication and photocatalytic activities of TiO2nano-films deposited at different Ar/O2flow ratios by dc magnetron sputtering[J]. Advanced Materials Research,2012,(391-392):1291~1295.
    [69]赖发春,林丽梅,瞿燕.反应磁控溅射制备TiO2和Nb2O5混合光学薄膜[J].光子学报,2006,35(10):1551~1554.
    [70]朱蕾,崔晓莉,沈杰,等.直流反应磁控溅射方法制备碳掺杂TiO2薄膜及其可见光活性[J].物理化学学报,2007,23(11):1662~1666.
    [71]刘亚丽,吴奎,胡毅,等.磁控溅射制备纳米TiO2半导体薄膜的工艺研究与晶型分析[J].真空,2008,45(5):38~41.
    [72]丁万昱,王华林,巨东英,等. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响[J].物理学报,2011,60(2):734~741.
    [73] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCBs in thePresence of Titanium Dioxide in Aqueous Suspension [J]. Bulletin EnvironmentContamination Toxicology,1976,16:697~701.
    [74] Ollis D F, Pelizzetti E, Serpone N. Photocatalyzed destruction of watercontaminants [J]. Environmental Science and Technology,1991,25(9).
    [75] Bandala E R, Gelover S, Leal M T, et al. Solar photocatalytic degradation ofaldrin [J]. Catalysis Today,2002,76(2-4):189~199.
    [76] Cristina Yeber M, Freer J, Duran N, et al. Photocatalytic degradation ofcellulose bleaching effluent by supported TiO2and ZnO [J]. Chemosphere,2000,41(8):1193~1197.
    [77]马轩. TiO2光催化技术降解废水有机物的研究[J].安徽农业科学,2009,(8):3739~3742.
    [78] Yoneyama H, Torimoto T. Titanium dioxide/adsorbent hybrid photocatalystsfor photodestruction of organic substances of dilute concentrations [J]. CatalysisToday,2000,58(2-3):133~140.
    [79]常学森.基于磁控溅射方法制备二氧化钛薄膜及其亲水特性研究[D].沈阳:东北大学,2007.
    [80] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature,1997,388:431~432.
    [81] Parkin I P, Palgrave R G. Self-cleaning coatings [J]. Journal of MaterialsChemistry,2005,15(17):1689~1695.
    [82]关凯书,尹衍升,姜秋鹏. TiO2-SiO2复合薄膜光催化活性与亲水性关系的研究[J].硅酸盐学报,2003,31(3):219~223.
    [83]王君安,王浩,薛双喜,等.反应磁控溅射制备超亲水性SiO2/TiO2多层膜的研究[J].真空科学与技术学报,2006,26(2):110~113.
    [84] Fujishima A, Zhang X T. Titanium dioxide photocatalysis: present situation andfuture approaches [J]. Comptes Rendus Chimie,2006,9(5-6):750~760.
    [85]黄汉生.日本二氧化钛光催化剂环境净化技术开发动向[J].现代化工,1998,(12):41~44.
    [86] Yang Y, Li J X, Wang H, et al. An electrocatalytic membrane reactor withself-cleaning function for industrial wastewater treatment [J]. AngewandteChemie-International Edition,2011,50(9):2148~2150.
    [87] Watanabe T, Fukayama S, Miyauchi M, et al. Photocatalytic activity andphoto-induced wettability conversion of TiO2thin film prepared by sol-gelprocess on a soda-lime glass [J]. Journal of Sol-Gel Science and Technology,2000,19(1-3):71~76.
    [88]叶勤,吴奎,阮广富.反应溅射掺碳二氧化钛TiO2-xCx薄膜可见光激发的亲水性和光催化特性研究[J].功能材料,2006,37(10):1572~1574.
    [89] Nejand B A, Sanjabi S, Ahmadi V. The effect of sputtering gas pressure onstructure and photocatalytic properties of nanostructured titanium oxideself-cleaning thin film [J]. Vacuum,2010,85(3):400~405.
    [90]祖庸,雷闰盈,李晓娥,等.纳米TiO2——一种新型的无机抗菌剂[J].现代化工,1999,19(8):46~48.
    [91] Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilizationof microbial cells by semiconductor powders [J]. Fems Microbiology Letters,1985,29(1-2):211~214.
    [92] Lee J H, Kang M, Choung S J, et al. The preparation of TiO2nanometerphotocatalyst film by a hydrothermal method and its sterilization performancefor giardia lamblia [J]. Water Research,2004,38(3):713~719.
    [93] Yu J C, Ho W K, Yu J G, et al. Efficient visible-light-induced photocatalyticdisinfection on sulfur-doped nanocrystalline titania [J]. Environmental Science&Technology,2005,39(4):1175~1179.
    [94] Liu Y, Wang X L, Yang F, et al. Excellent antimicrobial properties ofmesoporous anatase TiO2and Ag/TiO2composite films [J]. Microporous andMesoporous Materials,2008,114(1-3):431~439.
    [95] Akhavan O. Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2nanocomposite thin film photocatalysts under solar light irradiation [J]. Journalof Colloid and Interface Science,2009,336(1):117~124.
    [96] Kang M K, Moon S K, Kim K M, et al. Antibacterial effect andcytocompatibility of nano-structured TiO2film containing Cl [J]. DentalMaterials Journal,2011,30(6):790~798.
    [97]包春磊,符新,王江,等.锐钛矿型纳米二氧化钛的制备方法及其在抗菌材料中的应用[J].热带农业科学,2003,23(6):68~74.
    [98]景盛翱,戴海夏,钱华.光催化技术及其在室内空气净化方面研究现状[J].上海环境科学,2010,29(1):21~25.
    [99] Ismail A A, Bahnemann D W. Metal-free porphyrin-sensitized mesoporoustitania films for visible-light indoor air oxidation [J]. Chemsuschem,2010,3(9):1057~1062.
    [100] Yao N, Yeung K L. Investigation of the performance of TiO2photocatalyticcoatings [J]. Chemical Engineering Journal,2011,167(1):13~21.
    [101]古政荣,陈爱平,戴智铭,等.活性炭-纳米二氧化钛复合光催化空气净化网的研制[J].华东理工大学学报,2000,26(4):367~371.
    [102]李汝南,夏天,杨学昌.纳米二氧化钛等离子体放电催化杀菌的试验研究[J].电工电能新技术,2004,23(02):77~80.
    [103]李汝南,杨学昌,柯锐.纳米TiO2等离子体放电催化空气净化技术的研究[J].高压电器,2004,40(01):3~4.
    [104] Ramirez A M, Demeestere K, De Belie N, et al. Titanium dioxide coatedcementitious materials for air purifying purposes: preparation, characterizationand toluene removal potential [J]. Building and Environment,2010,45(4):832~838.
    [105] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables [J].Progress in Photovoltaics:Research and Applications,2009,17(1):85~94.
    [106]戴松元,王孔嘉,邬钦崇,等.纳米晶体化学太阳电池的研究[J].太阳能学报,1997,(2):117~121.
    [107] Matsumura M, Nomura Y, Tsubomura H. Dye-sensitization on the photocurrentat zinc oxide electrode in aqueous electrolyte solution [J]. Bulletin of theChemical Society of Japan,1977,50(10):2533~2537.
    [108] Willig F, Eichberger R, Sundaresan N S, et al. Experimental time scale ofgerischer's distribution curves for electron-transfer reactions at semiconductorelectrodes [J]. Journal of the American Chemical Society,1990,112(7):2702~2707.
    [109] Regan B O, Gr tzel M. High efficiency solar cell based on dye-sensitizedcolloidal TiO2films [J]. Nature,1991,353:737~739.
    [110] Boucle J, Ackermann J. Solid-state dye-sensitized and bulk heterojunction solarcells using TiO2and zno nanostructures: recent progress and new concepts atthe borderline [J]. Polymer International,2012,61(3):355~373.
    [111]孙旭辉,包塔娜,张凌云,等.染料敏化太阳能电池的研究进展[J].化工进展,2012,(1):47~52.
    [112] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity bycis-x2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (ii) charge-transfersensitizers (x=cl-, br-, i-, cn-, and scn-) on nanocrystalline titanium dioxideelectrodes [J]. Journal of the American Chemical Society,1993,115(14):6382~6390.
    [113] Gr tzel M. Dye-sensitized solar cells [J]. Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,2003,4(2):145~153.
    [114] Shi D, Pootrakulchote N, Li R Z, et al. New efficiency records for stabledye-sensitized solar cells with low-volatility and ionic liquid electrolytes [J].Journal of Physical Chemistry C,2008,112(44):17046~17050.
    [115] Bai Y, Cao Y M, Zhang J, et al. High-performance dye-sensitized solar cellsbased on solvent-free electrolytes produced from eutectic melts [J]. NatureMaterials,2008,7(8):626~630.
    [116] Lin C J, Yu W Y, Chien S H. Transparent electrodes of ordered opened-endTiO2-nanotube arrays for highly efficient dye-sensitized solar cells [J]. Journalof Materials Chemistry,2010,20(6):1073~1077.
    [117]王鹏.长期光热稳定的染料敏化太阳电池[J].中国基础科学,2009,(2):18~20.
    [118]姜恩永,刘玉光,李华,等.多用对向靶溅射仪,中国专利, CN86204865,1987-12-05.
    [119] Bai H L, Jiang E Y, Wu P, et al. Soft X-ray optical multilayer mirrors; Study ofCN films synthesized by facing target sputtering [J]. Chinese Science Bulletin;Journal of Vacuum Science&Technology a-Vacuum Surfaces and Films,1999,44;17(12;6):1057~3308.
    [120]李微,孙云,敖建平,等.中频对向靶磁控溅射制备超薄ZnO薄膜及其在太阳电池中的应用[J].人工晶体学报,2007,36(3):584~588.
    [121] Ren Evan Grieken, Andrzej Markowicz. Handbook of X-ray spectrometry:methods and techniques [M]. New York: Marcel Dekker,1993.
    [122] Cullity B D, Stock S R. Elements of x-ray diffraction [M]. Upper Saddle River,NJ: Prentice Hall,2001.
    [123]莫志深,张宏放,张吉东.晶态聚合物结构和X射线衍射[M].北京:科学出版社,2010.
    [124]毛宏志,印志磊,许效红. X射线粉末衍射仪在实验教学中的应用[J].实验技术与管理,2006,23(11):30~32.
    [125] Jimmy C Y, Ho W, Lin J, et al. Photocatalytic activity, antibacterial effect, andphotoinduced hydrophilicity of TiO2films coated on a stainless steel substrate[J]. Environmental Science&Technology,2003,37(10):2296~2301.
    [126] Wantala K, Laokiat L, Khemthong P, et al. Calcination temperature effect onsolvothermal Fe-TiO2and its performance under visible light irradiation [J].Journal of the Taiwan Institute of Chemical Engineers,2010,41(5):612~616.
    [127] Ford R V, Spurr C L, Moyer J H. The comparative potency of mercurialdiuretics using human bio-assay techniques [J]. American Heart Journal,1957,54(6):887~893.
    [128] Vermeulen J P. New developments in FESEM technology [J]. AdvancedMaterials&Processes,2005,163(8):33.
    [129] Huang J Y. HRTEM and EELS studies of defects structure and amorphous-likegraphite induced by ball-milling [J]. Acta Materialia,1999,47(6):1801~1808.
    [130] Popovici I C, Girtu M, Chirila E, et al. Hrtem study of nano-TiO2powder [J].Revista De Chimie,2008,59(4):413~416.
    [131] Li Y, Maynor B W, Liu J. Electrochemical AFM "dip-pen'' nanolithography [J].Journal of the American Chemical Society,2001,123(9):2105~2106.
    [132] Fotiadis D, Scheuring S, Muller S A, et al. Imaging and manipulation ofbiological structures with the AFM [J]. Micron,2002,33(4):385~397.
    [133] Agrell H G, Lindgren J, Hagfeldt A. Degradation mechanisms in adye-sensitized solar cell studied by UV-Vis and IR spectroscopy [J]. SolarEnergy,2003,75(2):169~180.
    [134] Murphy A B. Modified Kubelka-Munk model for calculation of the reflectanceof coatings with optically-rough surfaces [J]. Journal of Physics D: AppliedPhysics,2006,39:3571.
    [135] Floro J A, Chason E, Cammarata R C, et al. Physical origins of intrinsic stressesin Volmer-Weber thin films [J]. Mrs Bulletin,2002,27(1):19~25.
    [136]张瑛,杨俊峰,方前锋.物理气相沉积法制备薄膜的内应力形成机理及测量方法[J].科技创新导报,2009,(34):108~110.
    [137] Koch R, Hu D Z, Das A K. Compressive stress in polycrystalline volmer-weberfilms [J]. Physical Review Letters,2005,94(14):146101.
    [138] Lee J, Lee D, Lim D, et al. Structural, electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell applications [J].Thin Solid Films,2007,515(15):6094~6098.
    [139] Kim C, Kim S, Lee C. Effects of rf power and substrate temperature during rfmagnetron sputtering on crystal quality of zno thin films [J]. Japanese Journalof Applied Physics Part1-Regular Papers Brief Communications&ReviewPapers,2005,44(12):8501~8503.
    [140] Matsuoka M, Kitano M, Takeuchi M, et al. Preparation and characterization ofthe visible light responsive TiO2thin film photocatalysts prepared by magnetronsputtering method and their photocatalytic activities for the water splittingreactions [J]. Materials Science Forum,2005,(486-487):81~84.
    [141] Song P K, Irie Y, Shigesato Y. Crystallinity and photocatalytic activity of TiO2films deposited by reactive sputtering with radio frequency substrate bias [J].Thin Solid Films,2006,496(1):121~125.
    [142] Sato Y, Akizuki H, Kamiyama T, et al. Transparent conductive Nb-doped TiO2films deposited by direct-current magnetron sputtering using a TiO2-xtarget [J].Thin Solid Films,2008,516(17):5758~5762.
    [143]李国科.多晶二氧化钛薄膜的制备、结构和光学性质[D].天津大学,2006.
    [144] Nair P B, Justinvictor V B, Daniel G P, et al. Effect of RF power and sputteringpressure on the structural and optical properties of TiO2thin films prepared byrf magnetron sputtering [J]. Applied Surface Science,2011,257(24):10869~10875.
    [145] Meng L, Li C, Dos Santos M P. Effect of annealing temperature on TiO2nanorod films prepared by dc reactive magnetron sputtering for dye-sensitizedsolar cells [J]. Journal of Inorganic and Organometallic Polymers andMaterials,2011:1~7.
    [146] Hou Y Q, Zhuang D M, Zhang G, et al. Influence of annealing temperature onthe properties of titanium oxide thin film [J]. Applied Surface Science,2003,218(1-4):97~105.
    [147] Li G K, Shen J J, Mi W B, et al. Fabrication and characterization offacing-target reactive sputtered polycrystalline TiO2films [J]. Applied SurfaceScience,2006,253(2):425~431.
    [148] Asanuma T, Matsutani T, Liu C, et al. Structural and optical properties oftitanium dioxide films deposited by reactive magnetron sputtering in pureoxygen plasma [J]. Journal of Applied Physics,2004,95(11Part1):6011~6016.
    [149] Baroch P, Musil J, Vlcek J, et al. Reactive magnetron sputtering of TiOxfilms[J]. Surface&Coatings Technology,2005,193(1-3):107~111.
    [150] Miyamura A, Kaneda K, Sato Y, et al. Effects of internal stress onphotocatalytic properties of TiO2films [J]. Thin Solid Films,2008,516(14):4603~4608.
    [151] Li J G, Ishigaki T, Sun X D. Anatase, brookite, and rutile nanocrystals via redoxreactions under mild hydrothermal conditions: Phase-selective synthesis andphysicochemical properties [J]. Journal of Physical Chemistry C,2007,111(13):4969~4976.
    [152] Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira M E, et al.Phase-pure TiO2nanoparticles: anatase, brookite and rutile [J]. Nanotechnology,2008,19(14):145605.
    [153]梁继然,胡明,陈涛,等.对向靶磁控溅射纳米氧化钒薄膜的热氧化处理[J].天津大学学报,2009,42(8):721~726.
    [154] Vale A, Chaure N, Simonds M, et al. Sputtered rutile stoichiometric TiO2nanocrystalline films [J]. Journal of Materials Science-Materials in Electronics,2006,17(10):851~855.
    [155] Domaradzki J, Kaczmarek D, Prociow E L, et al. Microstructure and opticalproperties of TiO2thin films prepared by low pressure hot target reactivemagnetron sputtering [J]. Thin Solid Films,2006,513(1-2):269~274.
    [156] Murphy A B. Band-gap determination from diffuse reflectance measurements ofsemiconductor films, and application to photoelectrochemical water-splitting [J].Solar Energy Materials and Solar Cells,2007,91(14):1326~1337.
    [157] Desario P A, Chen L, Graham M E, et al. Effect of oxygen deficiency on thephotoresponse and reactivity of mixed phase titania thin films [J]. Journal ofVacuum Science&Technology A,2011,29(3):31508.
    [158] Serio S, Jorge M, Maneira M, et al. Influence of O2partial pressure on thegrowth of nanostructured anatase phase TiO2thin films prepared by DC reactivemagnetron sputtering [J]. Materials Chemistry and Physics,2011,126(1-2):73~81.
    [159]郭玉宝,杨儒.金红石型纳米TiO2(110)表面原子结构和电子结构的理论研究[J].北京化工大学学报(自然科学版),2004,31(5):64~68.
    [160]叶志镇,唐晋发.直流反应磁控溅射淀积氧化物光学薄膜和成膜过程的反应动力学[J].激光与红外,1988,(8):28~32.
    [161] Ma Q B, Ye Z Z, He H P, et al. Influence of Ar/O2ratio on the properties oftransparent conductive ZnO: Ga films prepared by DC reactive magnetronsputtering [J]. Materials Letters,2007,61(11-12):2460~2463.
    [162] Dodd R, You S D, Bryant P M, et al. Negative ion density measurements in areactive dc magnetron using the eclipse photodetachment method [J]. PlasmaSources Science&Technology,2010,19(1):15021.
    [163] Naik V M, Haddad D, Naik R, et al. Optical properties of anatase, rutile andamorphous phases of TiO2thin films grown at room temperature by rfmagnetron sputtering [J]. Solid-state Chemistry of Inorgnic Materials.2003,755:413~418.
    [164]曹永强,龙绘锦,陈咏梅,等.金红石/锐钛矿混晶结构的TiO2薄膜光催化活性[J].物理化学学报,2009,25(6):1088~1092.
    [165] Xin Y J, Liu H L, Han L, et al. Comparative study of photocatalytic andphotoelectrocatalytic properties of alachlor using different morphology TiO2/Tiphotoelectrodes [J]. Journal of Hazardous Materials,2011,192(3):1812~1818.
    [166] Leng W H, Zhang Z, Zhang J Q, et al. Investigation of the kinetics of a TiO2photoelectrocatalytic reaction involving charge transfer and recombinationthrough surface states by electrochemical impedance spectroscopy [J]. TheJournal of Physical Chemistry B,2005,109(31):15008~15023.
    [167]付姚,曹望和,田莹. TiO2纳米薄膜电极中光生载流子传输特性研究[J].化学学报,2006,64(17):1761~1764.
    [168] Takahashi T, Prabakar K, Nezuka T, et al. Sputtering pressure dependentphotocatalytic properties of TiO2thin films [J]. Journal of Vacuum Science&Technology A,2006,24(4):1161~1165.
    [169] Song P K, Irie Y, Sato Y, et al. Crystal structure and photocatalytic activity ofTiO2films deposited by reactive sputtering using Ne, Ar, Kr, or Xe gases [J].Japanese Journal of Applied Physics Part2-Letters&Express Letters,2004,43(3A): L358~L361.
    [170] Song P K, Shigesato Y, Kamei M, et al. Electrical and structural properties oftin-doped indium oxide films deposited by dc sputtering at room temperature [J].Japanese Journal of Applied Physics Part1-Regular Papers Short Notes&Review Papers,1999,38(5A):2921~2927.
    [171] Lee H C, Kim G H, Hong S K, et al. Influence of sputtering pressure on themicrostructure evolution of AlN thin films prepared by reactive sputtering [J].Thin Solid Films,1995,261(1):148~153.
    [172] Nejand B A, Sanjabi S, Ahmadi V. Sputter deposition of high transparentTiO2-xNx/TiO2/ZnO layers on glass for development of photocatalyticself-cleaning application [J]. Applied Surface Science,2011,257(24):10434~10442.
    [173] Zywitzki O, Modes T, Frach P, et al. Effect of structure and morphology onphotocatalytic properties of TiO2layers [J]. Surface&Coatings Technology,2008,202(11):2488~2493.
    [174]吴世伟,曾令民,张丽萍,等.对向靶反应溅射制备AlN薄膜的结构及物性[J].广西大学学报(自然科学版),1998,23(2):131~134.
    [175] Vildozo D, Ferronato C, Sleiman M, et al. Photocatalytic treatment of indoor air:optimization of2-propanol removal using a response surface methodology(RSM)[J]. Applied Catalysis B-Environmental,2010,94(3-4):303~310.
    [176] Kochi J K. Free Radicals [M]. John Wiley&Sons: New York,1973.
    [177] Ohko Y, Hashimoto K, Fujishima A. Kinetics of photocatalytic reactions underextremely low-intensity UV illumination on titanium dioxide thin films [J]. TheJournal of Physical Chemistry A,1997,101(43):8057~8062.
    [178] Xu W, Raftery D. Photocatalytic oxidation of2-propanol on TiO2powder andTiO2monolayer catalysts studied by solid-state NMR [J]. The Journal ofPhysical Chemistry B,2001,105(19):4343~4349.
    [179] Hern A Ndez-Alonso M D, Tejedor-Tejedor I, Coronado J M, et al. Operandoftir study of the photocatalytic oxidation of acetone in air over TiO2-ZrO2thinfilms [J]. Catalysis Today,2009,143(3-4):364~373.
    [180] Arsac F, Bianchi D, Chovelon J M, et al. Experimental microkinetic approachof the photocatalytic oxidation of isopropyl alcohol on TiO2. Part1. Surfaceelementary steps involving gaseous and adsorbed C3HxO species [J]. TheJournal of Physical Chemistry A,2006,110(12):4202~4212.
    [181] Harvey P R, Rudham R, Ward S. Photocatalytic oxidation of liquid2-Propanolby titanium dioxide [J]. J. Chem. Soc., Faraday Trans.1,1983,79(6):1381~1390.
    [182]丁延伟,张仕定,陈韦,等.纳米TiO2光催化氧化异丙醇和丙酮反应的研究[J].环境化学,2003,22(6):555~559.
    [183] Kim S B, Hong S C. Kinetic study for photocatalytic degradation of volatileorganic compounds in air using thin film TiO2photocatalyst [J]. AppliedCatalysis B: Environmental,2002,35(4):305~315.
    [184] Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2nanotubearrays in dye-sensitized solar cells [J]. Nano Letters,2006,6(2):215~218.
    [185] Palomares E, Clifford J N, Haque S A, et al. Slow charge recombination indye-sensitised solar cells (DSSC) using Al2O3coated nanoporous TiO2films [J].Chemical Communications,2002,(14):1464~1465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700