用户名: 密码: 验证码:
姜黄素防治增殖性玻璃体视网膜病变的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增殖性玻璃体视网膜病变(proliferative vitreoretinopathy,PVR)是指在视网膜前、后面及玻璃体内形成可以收缩的细胞性膜,进而引起视网膜牵拉、脱离与固定的一种病变,主要在裂孔源性视网膜脱离后形成或为外伤性、血管性、炎症性视网膜病变的结局,是一种常见的难治性致盲性眼病。视网膜色素上皮(retinal pigment epithelial,RPE)细胞是PVR发生、发展的关键细胞之一。目前,临床上治疗PVR的主要方法就是玻璃体切割术,但手术治疗效果并不理想,仍不能解决PVR的复发问题。所以,利用药物抑制RPE细胞增生成为近年来PVR防治研究的热点和主流趋势。药物研究目前较多集中在西药领域,主要有抗代谢药、皮质类固醇、维生素及其衍生物、细胞外基质合成抑制剂和细胞信号转导抑制剂等几类。虽然西药防治PVR研究已有多年,但因为其眼内用药毒副作用较大、药理作用单一、价格昂贵等固有的局限性而导致迄今仍无一种药物能够成功应用于临床。在西药研究无法取得重大突破时,中药防治PVR研究就成为让我们充满期待的新的突破方向。姜黄素是从姜科姜黄属植物根茎中提取的一种中药单体成分,具有抗增生、抗炎症、抗微生物等多种药理作用,其药理活性可以在多方面满足PVR防治药物的条件,并且安全低毒、药源广泛、价格低廉。因此,姜黄素有望成为一种理想的防治PVR的天然药物。本课题将首先观察姜黄素对体外培养的兔眼RPE细胞的抑制作用并探讨其作用机制,进而研究其在兔眼玻璃体腔内的毒副作用和代谢过程,最后观察其对兔眼PVR模型的防治效果,从而全面评价其防治PVR的可行性问题。
     第一部分姜黄素抑制兔视网膜色素上皮细胞增生的体外实验研究
     目的以苏拉明为对照药,对比研究姜黄素和苏拉明对兔RPE细胞增生的抑制作用,并探讨姜黄素抑制RPE细胞增生的作用机制,以期初步评价姜黄素防治PVR的可行性问题。
     方法提取、培养青紫蓝兔RPE细胞,传至第四代并鉴定后,选取生长状态良好的第4代RPE细胞进行实验。设姜黄素组和苏拉明组两组,姜黄素分为20、15、10μg/mL组及空白对照组(10% FBS-DMEM含0.5‰二甲基亚砜(DMSO))等4组;苏拉明分为400、200、100μg/mL组及空白对照组(10% FBS-DMEM)等4组;每组各设6个复孔,共接种4块培养板,加药后24、48、72及96 h时随机抽取1块培养板行,噻唑蓝比色(MTT)法检测两种药物对RPE细胞增生的抑制率。相关回归分析计算各时间点的半数抑制率(IC50)剂量。流式细胞仪(FCM)检测姜黄素(15μg/mL)和苏拉明(200μg/mL)分别作用72 h后对RPE细胞增殖周期的影响。FCM检测姜黄素(15μg/mL)作用24、48、72 h后RPE细胞增生细胞核抗原(PCNA)的表达量。FCM检测姜黄素(15μg/mL)作用8、24、48、72 h后RPE细胞胞质内钙离子(Ca~(2+))和线粒体膜电位(△Ψm)的变化及RPE细胞凋亡率。透射电子显微镜观察姜黄素(15μg/mL)作用48 h后RPE细胞的形态学改变。RT-PCR和Western-blot分别检测姜黄素(15μg/mL)作用8、24、72 h后RPE细胞内凋亡相关基因Bcl-2和P53的mRNA和蛋白表达量的变化。
     结果姜黄素和苏拉明对RPE细胞增生均有明显地抑制作用,呈时间和剂量依赖性,两种药物在各时间点的抑制率与对照组相比均明显升高,差异有统计学意义(P<0.05)。在24、48、72及96 h,姜黄素的IC50分别是29.31、17.50、13.24及10.99μg/mL,苏拉明的IC_(50)分别是974.52、309.11、193.58及116.89μg/mL。姜黄素使RPE细胞阻滞在G_0/G_1期,苏拉明使RPE细胞阻滞在G2/M期。姜黄素(15μg/mL)作用24、48、72 h后,RPE细胞的PCNA表达量分别为(565.04±23.60),(473.61±36.88),(396.15±32.45),与对照组相比明显降低,差异均有统计学意义(P<0.05)。姜黄素(15μg/mL)作用8、24、48、72 h后,RPE细胞凋亡率分别为(2.27±0.49)%,(12.83±0.13)%,(32.27±4.51)%,(56.81±8.67)%,除8h组与对照组相比差异无统计学意义外(P>0.05),其余各组与对照组相比均明显升高,差异有统计学意义(P<0.05);RPE细胞质内Ca2 +分别为( 394.16±22.44 )、( 421.64±24.85 )、( 469.43±25.11 )、(516.67±15.06),与对照组相比均明显升高,差异有统计学意义(P<0.05 ); RPE细胞△Ψm分别为( 660.58±21.61 )、( 594.31±23.22 )、(525.96±32.18)、(397.08±44.27),与对照组相比均明显降低,差异有统计学意义(P<0.05)。姜黄素(15μg/mL)作用48h后,透射电子显微镜观察显示RPE细胞出现典型的凋亡特征:细胞核内染色质边集、分布于核膜下,或凝聚成块,呈不规则形,核仁多消失,细胞外形尚规则,胞膜尚完整。姜黄素(15μg/mL)作用8、24、72后,RPE细胞内Bcl-2的mRNA表达量分别为(0.49±0.09)、(0.39±0.06)、(0.20±0.03),与对照组相比均明显降低,差异有统计学意义(P<0.05);P53的mRNA表达量分别为(0.45±0.05)、(0.62±0.06)、(0.64±0.06),与对照组相比均明显升高,差异有统计学意义(P<0.05);RPE细胞内Bcl-2蛋白的表达量分别为(0.58±0.06)、(0.36±0.04)、(0.25±0.04),与对照组相比均明显降低,差异有统计学意义(P<0.05);P53蛋白的表达量分别为(0.25±0.03)、(0.38±0.04)、(0.59±0.05),与对照组相比均明显升高,差异有统计学意义(P<0.05)。
     结论姜黄素和苏拉明对体外培养的兔眼RPE细胞均有抑制作用,均呈剂量和时间依赖性,姜黄素抑制效果优于苏拉明。姜黄素将RPE细胞增生阻滞在G_0/G_1期,苏拉明将RPE细胞增生阻滞在G2/M期。姜黄素通过细胞核和细胞质两种途径诱导RPE细胞凋亡进而抑制其增生。细胞核途径为上调P53基因的表达,干扰细胞增生周期,影响DNA合成,从而诱导细胞凋亡;细胞质途径为下调Bcl-2基因的表达,使细胞质内Ca~(2+)超载从而造成线粒体内Ca~(2+)超载,而后导致线粒体△Ψm耗散,进而引起细胞凋亡。
     第二部分姜黄素兔眼玻璃体内注射后眼内毒副作用研究
     目的姜黄素对体外培养的兔RPE细胞有明显抑制作用,但防治PVR需要在活体玻璃体内用药,因而眼内用药的安全性问题必须给予高度重视。本部分将观察不同剂量姜黄素在兔眼玻璃体内的毒副作用,寻求玻璃体用药的最大安全剂量。
     方法40只新西兰白兔,其中24只随机分为姜黄素0.05mg/0.1mL组,0.1mg/0.1mL组,0.2mg/0.1mL组及DMSO组(生理盐水中含有终浓度为0.5‰的DMSO)等4组,每组6只。所用实验兔玻璃体注射前,前房穿刺抽出0.1mL房水。随机选取每只兔的一眼为实验眼,在玻璃体内分别注射0.1mL不同剂量的药物及DMSO;对侧眼为对照眼,在玻璃体内注射0.1mL生理盐水,本组兔供电生理检查使用。其余16只兔随机分成上述4组,每组4只,双眼使用方法同上,本组供3d、7d时摘取眼球作组织学检查使用。注射后1d、3d、7d、14d使用裂隙灯显微镜进行眼前节检查、使用间接检眼镜检查眼底情况,使用暗适应视网膜电图(ERG)检查a波和b波振幅的变化;在3d、7d、14d分别摘取2只眼球做光学和透射电子显微镜检查,观察视网膜组织结构的改变。
     结果0.2mg组在注药后3d和7d,实验组眼暗适应ERG a波振幅分别为(129±9)μV和(131±11)μV,与对照组眼的(145±13μV)和(146±11)μV相比明显降低,差异有统计学意义(P<0.05);实验组眼暗适应ERG b波振幅分别为(259±9)μV和(257±7)μV,与对照组眼的(283±13)μV和(276±8)μV相比明显降低,差异有统计学意义(P<0.05)(P<0.05)。14d时a波和b波振幅又恢复正常。其余各组各时间点,实验组眼a波和b波振幅与对照组眼相比差异无统计学意义。各时间点常规眼部检查和视网膜组织学检查正常。
     结论0.2mg以下剂量姜黄素对视网膜功能和组织结构无明显损伤,该剂量范围内姜黄素兔眼玻璃体内注射用药毒副作用较小,安全可行。
     第三部分姜黄素在兔眼玻璃体内的药代动力学研究
     目的姜黄素0.1mg兔眼玻璃体内注射安全可行,本部分将研究该剂量姜黄素在玻璃体内的代谢过程,以期掌握其药代动力学参数,为临床应用提供参考依据。
     方法将36只新西兰白兔随机分为标准及质控组3只兔(6只眼)和实验组33只兔(66只眼)。实验组再随机分为11组,每组3只兔6只眼。标准及质控组动物无需手术操作,实验组动物穿刺抽取玻璃体0.1 mL后玻璃体腔内注入姜黄素0.1 mL(含0.1 mg)。注药后0、1、3、7、12、24、36、48、72、96及120 h分别摘除眼球并制备玻璃体待检样品。应用高效液相色谱技术(HPLC)检测玻璃体腔内药物质量浓度。用DAS软件计算主要的药代动力学参数。
     结果姜黄素与玻璃体内源性物质之间的色谱峰分离良好,姜黄素保留时间为4.4 min。提取回收率约90%,日内和日间变异较小。玻璃体内姜黄素质量浓度在0.01~4μg/mL范围内呈线性关系,标准曲线为y=143 973x+603.32(r= 0.9991)。在注药后0、1、3、7、12、24、36、48、72、96、120 h等时间点测得的清除率分别为1.06%、4.02%、9.44%、19.77%、23.90%、35.44%、57.54%、70.63%、84.65%、91.76%及96.34%。半衰期t_(1/2)=(26.68±2.66)h。
     结论HPLC法检测玻璃体内姜黄素含量特异性好。姜黄素在玻璃体内稳定存在,无代谢产物。姜黄素在玻璃体内半衰期较长约为27h,0.1 mg注射后整个代谢过程先为零级动力学代谢,48 h后为一级动力学代谢。
     第四部分兔眼增殖性玻璃体视网膜病变模型的建立
     目的探讨兔眼PVR模型的建立方法,以期为防治PVR研究提供合理可靠的动物模型。
     方法新西兰白兔9只,随机分为A、B、C 3组,每组3只兔6只眼。所用实验兔首先抽取玻璃体液0.1mL,然后A组玻璃体内注入0.1mL生理盐水,B组注入1×10~6 /0.1mL的RPE细胞0.1mL,C组注入2×10~6 /0.1mL的RPE细胞0.1mL。在注入细胞后1、3、7、14、21和28d进行裂隙灯显微镜、间接眼底镜等常规眼科检查;利用眼底照像机进行眼底照像;眼科B超检查玻璃体和视网膜情况。眼后节PVR分级:0级:视网膜在位,玻璃体无混浊;I级:视网膜在位,玻璃体混浊并见增殖条带;II级:玻璃体条带牵拉至髓线抬高,或有局限性视网膜脱离;III级:视网膜全脱离或有漏斗状脱离。II~III级的累计和占总数的百分率为视网膜脱离的发生率。
     结果注射后28d,生理盐水组成模0眼;1×10~6细胞组成模5眼,其中I级眼1只,II级眼3只,III级眼1只;2×10~6细胞组成模6眼,其中II级眼2只,III级眼4只。
     结论兔眼玻璃体内注射2×10~6同种RPE细胞建立PVR模型,符合病变发展规律,而且稳定可靠,成模较快,简单易行。
     第五部分姜黄素防治兔眼增殖性玻璃体视网膜病变的体内实验研究
     目的本课题前期的系列研究发现,姜黄素可以诱导体外培养的兔RPE细胞凋亡,进而抑制其增生;0.1mg姜黄素兔眼玻璃体内注射无毒副作用,并且有效抑制浓度能够维持较长时间;因而本部分将进一步探讨该剂量姜黄素玻璃体内注射对RPE细胞诱导的兔眼PVR模型的防治效果。
     方法新西兰白兔20只,40只眼,所有兔眼玻璃体注射前首先抽取0.2mL玻璃体液,然后所有兔眼玻璃体内注射0.1mL(2×10~6)同种RPE细胞,每只兔的双眼中随机选取1只眼立即注入质量浓度为0.1 mg/0.1 mL的姜黄素0.1mL,此组20只眼作为姜黄素组,另一只眼注入含0.5‰DMSO的生理盐水0.1mL,此组20只眼作为对照组。注药后1、3、7、14、21和28d使用裂隙灯显微镜观察角膜、房水、晶状体是否清亮,前节炎症反应情况;使用间接检眼镜、眼底彩色照像和B超检查玻璃体视网膜情况。眼后节PVR分级:0级:视网膜在位,玻璃体无混浊;I级:视网膜在位,玻璃体混浊并见增殖条带;II级:玻璃体条带牵拉至髓线抬高,或有局限性视网膜脱离;III级:视网膜全脱离或有漏斗状脱离。II~III级的累计和占总数的百分率为视网膜脱离的发生率。以视网膜脱落率为判断标准,评价姜黄素的防治效果。
     结果注药后1、3d所有兔眼前节可见中度至轻度的炎症反应,玻璃体轻、中度混浊,眼底隐约可见,未见增殖条带,未见视网膜脱离。注药后7d,所有兔眼前节炎症反应基本消退,对照组75%眼玻璃体出现增殖条带,姜黄素组10%眼玻璃体内出现增殖条带,两组均未见视网膜脱离。注药后14d,对照组55%眼出现视网膜脱离,姜黄素组10%眼出现视网膜脱离,明显低于对照组,差异有统计学意义(P<0.05)。注药后21d,对照组80%眼出现视网膜脱离,姜黄素组15%眼出现视网膜脱离,明显低于对照组,差异有统计学意义(P<0.05)。注药后28d,对照组95%眼出现视网膜脱离,姜黄素组15%眼出现视网膜脱离,明显低于对照组,差异有统计学意义(P<0.05)。
     结论姜黄素玻璃体腔内注射可以有效抑制RPE细胞诱导的兔眼实验性PVR的发生、发展。
     基于上述研究结果可以得出以下结论:姜黄素可以诱导体外培养的兔RPE细胞凋亡,进而抑制其增生;兔眼玻璃体内注射毒副作用较小,半衰期和维持有效抑制浓度的时间较长,并且可以有效抑制兔眼实验性PVR的发生、发展。因此,姜黄素有望成为较为理想的防治PVR的天然药物,值得进一步研究、开发和利用。
Proliferative vitreoretinopathy (PVR),following the rhegmatogenous retinal detachment or the termination of traumatic disease,vascular disease and inflamed disease, is a common blind-grown oculopathy.It is characterized by the formation of fibrous epiretinal membranes at the vitreoretinal interface in the vitreous cavity. These membranes result from inappropriate proliferation, migration, and differentiation of several cell types, retinal pigment epithelial(RPE) cells is the main one, and may cause tractional retinal detachment. At the current time, the management of proliferative vitreoretinopathy still remains a surgical skill. After successful vitreoretinal surgery, the functional prognosis remains poor in retinal detachment complicated with PVR. Vitreoretinal surgery is also a common inducement of PVR. So pharmaceutical prevention and treatment are being evaluated to be the practical and promising methods.The reasearchs of western medicine for prevention and treatment of PVR have been done for many years,but there is no clinically safe and effective drug as yet.Curcumin,which have been separated and extracted from curcuma,is a simple substance of the traditional Chinese medicine,has significant anti-proliferation,anti-inflamation and anti-microorganism effect.Its pharmacal activity can satisfy the requests for prevention and treatment of PVR from several aspects. Therefore,curcumin may be a good natural durg in the prevention and treatment of PVR.This study is to evaluate the potential possibility of curcumin from several aspects: inhibition effect on RPE cells in vitro and PVR model in vivo, and toxicity and pharmacokinetics in vitreous
     PartⅠInhibition effect of curcumin on proliferation of rabbit retinal pigment epithelial cells in vitro
     Objective The heat research of prevention and treatment of PVR was to use durg to inhibit RPE cells proliferation at present. In this study, inhibition effect of curcumin on proliferation of rabbit retinal pigment epithelial cells in vitro and its mechanism were studied, and the value of curcumin in the prevention and treatment of PVR was investigated. Methods The RPE cells were isolated and collected from the
     pigmented rabbit and cultured and passaged in 10%FBS-DMEM and identified by anti-human keratin. Cultured RPE cells were divided into 20, 15, 10μg/mL curcumin group and 400, 200, 100μg/mL suramin group and blank control group according to the utilization of drug. The MTT assay was used to evaluate the inhibition effect of different doses of curcumin and suramin in different time. The IC50 value of curcumin and suramin in different time were analyzed by Linear Regression. Cell cycle, proliferating cell nuclear antigen(PCNA), mitochondrial transmembrane potential(△Ψm), Ca2 + and apoptosis of RPE cells cultured with 15μg/mL curcumin were detected using flow cytometry in defferent time. Expression of mRNA and protein of Bcl-2 and P53 of RPE cells cultured with 15μg/mL curcumin were detected with RT-PCR and Western-blot in defferent time.
     Results RPE cells were significantly inhibited by curcumin and suramin in a dose-dependent and time-dependent manner,there was significant difference comparied with control group(P<0.05). The IC50 value in curcumin groups in 24, 48, 72 and 96 hours was 29.31μg/mL, 17.50μg/mL, 13.24μg/mL and 10.99μg/mL respectively, showing the significantly reduced level in comparison with suramin groups(974.52μg/mL, 309.11μg/mL, 193.58μg/mL and 116.89μg/mL). Cell cycel analysis indicated that curcumin blocked cultured RPE cells in G0/G1 phase, while the cells in suramin were in G2/M phase(P<0.05). The PCNA in curcumin groups in 24, 48 and 72 hours was (565.04±23.60),(473.61±36.88) and (396.15±32.45) respectively, showing the significantly reduced level in comparison with control group(P<0.05). The apoptosis rate of RPE cells was (2.27%±0.49%),(12.83%±0.13%), (32.27%±4.51%) and (56.81%±8.67%) respectively at 8, 24, 48 and 72 hours after cultured with 15μg/mL of curcumin, except for the group in 8 hours,there was significant difference comparied with control group(P<0.05), however, no apoptotic PRE cell was found in the group cultured with suramin. Ca~(2+) was (394.16±22.44),(421.64±24.85),(469.43±25.11) and (516.67±15.06) at 8,24,48 and 72 hours after cultured with 15μg/mL of curcumin, significantly increased than that of control group respectively(P<0.05).△Ψm was (660.58±21.61), (594.31±23.22),(525.96±32.18) and (397.08±44.27) significantly decreased than that of the control group respectively(P<0.05).Under transmission electron microscope,RPE cells showed apoptosis at 48 hours after cultured with 15μg/mL of curcumin. At 8,24 and 72 hours after cultured with 15μg/mL of curcumin, mRNA and protein expression of Bcl-2 in RPE cells was (0.49±0.09),(0.39±0.06),(0.20±0.03) and (0.58±0.06),(0.36±0.04),(0.25±0.04) respectively, showing the significantly reduced level in comparison with control group(P<0.05). At 8,24 and 72 hours, mRNA and protein expression of P53 was (0.45±0.05),(0.62±0.06),(0.64±0.06) and (0.25±0.03), (0.38±0.04),(0.59±0.05) respectively, showing the significantly increased level in comparison with control group(P<0.05).
     Conclusion RPE cells can be significantly inhibited by curcumin and suramin in a dose-dependent and time-dependent manner,inhibition effect of curcumin is better than that of suramin. Curcumin can block cultured RPE cells in G_0/G_1 phase, while the cells in suramin are in G2/M phase. RPE cells apoptosis induced by curcumin may pass through two pathway:nuclear pathway and cytoplasmic pathway.To elevate the expression of P53,block cell cycle and inhibit DNA production is the nuclear pathway.To degrade the expression of Bcl-2,and leading to Ca~(2+) overloading in intracytoplasm,and resulting in Ca~(2+) overloading in mitochondrion fellowing△Ψm dissipation, apoptosis of RPE cell occurs,this is the cytoplasmic pathway.
     PartⅡThe study on intraocular toxicity and side effect of curcumin after intravitreal injection in adult rabbits
     Objective To study the pharmacal toxicities and side effects to rabbits’eyes received by intravitreal injection of various dose of curcumin.
     Methods 40 rabbits were randomly divided into 4 groups,10 eyes in each group were intravitreal injected curcumin at different concentration (0.05mg/0.1ml,0.1mg/0.1ml,0.2mg/0.1ml) and 0.5‰DMSO in 0.1 ml respectively,10 control eyes were intravitreal injected 0.9% salt water 0.1 ml. Ophthalmoscopy and ERG were performed on 1d,3d,7d and 14d after injection respectively.Additionally,on 3d,7d and 14d after injection, 2 eyeballs of each group were removed for the examination of light microscope and transmission electron microscope.
     Results The a-wave amplitudes of dark adaptation ERG were reduced in 0.2mg group(129μV±9μV,131μV±11μV) than those of control group(145μV±13μV,146μV±11μV) on 3d and 7d respectively,there was significant difference(P<0.05). The b-wave amplitudes were reduced in 0.2mg group (259μV±9μV, 257μV±7μV) than those of control group(283μV±13μV,276μV±8μV) on 3d and 7d respectively,there was significant difference(P<0.05). But the a-wave and b-wave amplitudes recovered at 14d.In other groups, the a-wave and b-wave amplitudes were no significant difference compared with control group on all stages. The ophthalmic examination and the retinal tissue structure examined by light microscope and transmission electron microscope were normal on all stages.
     Conclusion It is safe that curcumin is injected into the rabbit vitreous if the dose less than 0.2mg.
     PartⅢPharmacokinetics of curcumin in vitreous of rabbit
     Objective Researches have showed that curcumin presents a antiproliferation, antitumor and antiinflammation effect. Our previous in vitro study also demonstrated that curcumin can induce the apoptosis of retinal pigment epithelial cells and further inhibit the proliferative vitreoretinopathy. This study was to observe the pharmacokinetical process and determine the clearance rate and halflife time of curcumin in the vitreous of rabbit.
     Methods Thirty-six healthy and mature New Zealand albino rabbits were randomly divided into standard and quality control group (3 rabbits, 6 eyes) and experimental group (33 rabbits, 66 eyes). Rabbits in experimental group were subdivided into 11 groups and 6 eyes of 3 animals for each. 0.1 mL curcumin(containing 0.1 mg) were injected into the vitreous of experimental rabbits and drug did not be administrated in the standard and quality control group. The both eyes from experimental animals were enucleated at the 0,1, 3, 7, 12, 24, 36, 48, 72, 96 and 120 hours after injection of curcumin respectively. The vitreous specimens were collected immediately for the detection of curcumin concentration by high performance liquid chromatography(HPLC). The main parameters of pharmacokinetics were calculated through DAS pharmacokinetics software.
     Results The chromatographic peak of curcumin and endogenous substance were separated well with the lasting time 4.4 min. The extract recovery of curcumin was 90%, and the relative standard difference (RSD) of intra-day and inter-day was low. The calibration curve of curcumin presented linear through 0.01μg/mL to 4μg/mL with a regression formation as follow: y=143973x+603.32(r=0.9991). The total eliminated amount of curcumin was 1.06%, 4.02%, 9.44%, 19.77%, 23.90%, 35.44%, 57.54%, 70.63%, 84.65%, 91.76% and 96.34% at 0, 1, 3, 7, 12, 24, 36, 48, 72, 96 and 120 hours after injection respectively, showing a halflife time of 26.68±2.66 hours.
     Conclusion 0.1mg curcumin has an effective mass concentration for a long-standing time after its intravitreal injection. The pharmacokinetical process is zero-order kinetics in the early stage and first-order kinetics 48 hours later.
     PartⅣEstablishment of proliferative vitreoretinopathy in rabbit eye
     Objective To establish an animal model of proliferative vitreoretinopathy(PVR) in rabbit eyes.
     Methods The retinal pigment epithelial(RPE) cells were dissociated from rabbit eyes and cultured.18 rabbit eyes were divided randomly into 3 groups,0.1ml normal saline, 1×10~6 cells(0.1ml )and 2×10~6 cells(0.1ml )were injected into the vitreous of 3 groups respectively.All eyes were examined by slit–lamp biomicroscope,indirect ophthalmoscope,fundus color camera and B ultrasonograph at different stages.
     Results On 28d after cells injection,0 PVR eye was found in normal saline group,5 PVR eyes were found in 1×10~6 cells group included 1eye in stage I,3 eyes in stage II and 1eye in stage III, and 6 PVR eyes in 2×10~6 cells group included 2 eyes in stage II and 4 eyes in stage III.
     Conclusion This PVR model established by the 2×10~6 homogeneity RPE cells injection into rabbit vitreous is consistent with PVR clinical process.It is found in short time, with good stablity and facility.
     PartⅤExprimental study on the effect of curcumin in inhibition of proliferative vitreoretinopathy in rabbit eye
     Objective Our previous in vitro study demonstrated that curcumin can induce the apoptosis of retinal pigment epithelial(RPE) cells. 0.1mg curcumin is safe and has an effective mass concentration for a long-standing time after its intravitreal injection. In this part, the effectiveness of curcumin on the prevention and treatment of experimental proliferative vitreoretinopathy(PVR) in rabbit eyes was evaluated.
     Methods The PVR model was induced by injection of 0.1mL(containing 2×10~6)RPE cells into vitreous cavity of 20 healthy and mature New Zealand albino rabbits(40 eyes). 0.1mL curcumin(containing 0.1mg) was injected into one eye of each rabbit at random after injection of RPE cells,this group was curcumin containing 20 eyes. 0.1mL normal sodium(containing 0.5‰DMSO) was injected into the other eye of each rabbit,this group was taken as control group containing 20 eyes. On 1, 3, 7, 14, 21 and 28d after injection,the changes of cornea, aqueous humor, lens, vitreous and fundus were examined and recorded by slit lamp biomicroscope, indirect ophthalmoscope, fundus color camera and B ultrasonograph.The effectiveness of curcumin was evaluated by the incidence rate of retinal detachment of the two group.
     Results On 1d and 3d after injection, inflammatory reaction was found in anterior chamber of all rabbits’eyes, misty opacity of vitreous occurred, fundus may be seen indistinctly,and there was no proliferative strap and retinal detachment. On 7d after injection, inflammatory reaction was extinct in anterior chamber of all eyes, proliferative strap occurred in 75% eyes of control group and in 10% eyes of curcumin grpup,no retinal detachment occurred in the two group. On 14,21 and 28d after injection,the incidence rate of retinal detachment of control group and curcumin group were 55%,80%, 95% and 10%,15%,15% respectively, there was significant statistical difference between the two group on the 3 time-points(P<0.05).
     Conclusion Injection of curcumin into vitreous cavity can effectively inhibit the occurrence and development of PVR induced by RPE cells in rabbit model.
     According to the researches in those five parts above, it is concluded that curcumin can inhibit the proliferation of RPE cells by induce its apoptosis,have slighter toxicity to retina and longer time with effective drug concentration after intravitreal injection, and can inhibit the occurrence and development of experimental PVR.Therefore curcumin may be a good natural durg in the prevention and treatment of PVR,and deserve further study,exploitation and application.
引文
1 Hooymans JM,De Lavalette VW,Oey AG.Formation of proliferative vitreoretinopathy in primary rhegmatogenous retinal detachment.Doc Ophthalmol,2000,100(1):39-42.
    2黄秀榕,祁明信,康可人.姜黄素诱导牛晶状体上皮细胞凋亡的机制.中华眼科杂志,2006,42(7):649-653.
    3 Adams BK,Cai J,Armstrong J,et al.EF24,a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redoxdependent mechanism. Anticancer Drugs,2005,16(3):263-275.
    4 Rashmi R, Kumar S, Karunagaran D. Human colon cancer cells lacking Bax resist curcumin-induced apoptosis and Bax requirement is dispensable with ectopic expression of Smac or downtegulation of Bcl-XL.Carcinogenesis, 2005,26(4):713-723.
    5 Stec L, Hartzer M, Hassan TS, et al. Effects of suramin on cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 1994, 35(12):1768-1783.
    6唐仕波,朱晓波,罗燕,等.苏拉明对体外培养的人眼视网膜色素上皮细胞增生抑制作用的时效性研究.中华眼底病杂志,2005,21(1)25-27.
    7许东晖,王胜,金晶,等.姜黄素的药理作用研究进展.中草药,2005,36(11):1737-1740.
    8戴旭峰,刘晓玲.大鼠玻璃体内注射二甲基亚砜对视网膜电图的影响.眼视光学杂志,2007,9(1):51-53.
    9 Chen YC, Kuo JC,Lin Shiau SY, el al.Induction of HSIP70 gene expression by modulation of Ca(+2) ion and cellular P53 protein by curcumin in colorectal carcinoma cells. Mol Carcinog, 1996, 17(3): 224-229.
    10王嘉宁,郭宁.细胞凋亡的检测技术与方法.中国药理学与毒理学杂志,2005,19(6):466-470.
    11黄秀榕,祁明信,康可人.姜黄素诱导牛晶状体上皮细胞凋亡的机制.中华眼科杂志,2006,42(7):649-653.
    12 Hu Y, Zou Y, Dietrich H,et al. Inhibition of neointima hyperplasia of mouse vein grafts by locally applied suramin.Circulation,1999,100(8):861-868.
    13 Mancini F,Toro CM,Mabilia M, et al. Inhibition of tumor necrosis factor-alpha(TNF-alpha)/TNF-alpha receptor binding by structural analogues of suramin. Biochem Pharmacol, 1999, 58(5):851-859.
    14 Clarke AR, Purdie CA,Harrison DJ, eta.l Thymocyte apoptosis induced by P53-dependent and independent pathways. Nature, 1993, 362(6423):849-852.
    15 Ohta Y,Ichimura K. Proliferation markers,proliferatiing cell nuclear antigen,Ki67,5-bromo-2-deoxyuridine,and cyclin D1 in mouse olfactory epithelium.Ann Otol Rhinol Laryngol,2000,109(11):1046-1048.
    16 Shenker BJ, Pankoeki L, Zekavat A, et al. Mercury-induced apoptosis in human lymphocytes: caspase activation is linkced to redox status. Antioxid Redox Signal, 2002,4(5):379-389.
    17 Groenendyk J, Lynch J, MichalakM. Calreticulin, Ca2+, and cacineurin-signaling from the endoplasmic reticulum.Mol Cells,2004,7(3):383-389.
    18张凤妍,陆道炎,王丽天,等.IL-1和TNF-α对晶体上皮细胞增殖及胞浆内游离Ca2+浓度的影响.中华眼科杂志,1998,34(2):106-108.
    19 Castedo M , Ferri K ,Roumier T.Quantitation of mitochondrial alterations associated with apoptosis.J Immunol Methods, 2002,265(1):39-47.
    20 RizzutoR, Pinton P, FerrariD, et a.l Calcium and apoptosis: facts and hypotheses.Oncogene,2003,22(53):8619-8627.
    21 Demaurex N,Distelhorst C.Cell biology.Apoptosis-the calcium connection.Science,2003,300(5616):65-67.
    1 Hooymans JM,De Lavalette VW,Oey AG.Formation of proliferative vitreoretinopathy in primary rhegmatogenous retinal detachment.Doc Ophthalmol,2000,100(1):39-42.
    2 Khawly JA,Saloupis P, Hatchell DL,et al.Daunomycin treatment in a refined experimental model of proliferative vitreoretinopathy.Graefes Arch Clin Exp Ophthalmol,1991,229(5):464-467.
    3 Steinhorst UH,Hatchell DL,Chen EP,et al.Ocular toxicity of daunomycin:effects of subdivided dose on the rabbit retina after vitreous gas compression. Graefes Arch Clin Exp Ophthalmol,1993,231(10):591-594.
    4 Robin AL,Ramakrishnan R,Krishnadas R,et al.A long term dose–response study of mitomycin in glaucoma filtration surgery.Arch Ophthalmol,1997,115(6):969-974.
    5夏晓波,蒋幼芹,黄佩刚,等.丝裂霉素C对兔眼睫状体无色素上皮细胞的毒性作用.中华眼科杂志,1998,34(3):190-193.
    6 Moritera T,Ogura Y,Yoshimura N,et al.Biodegradable microspheres containing adriamycin in the treatment of proliferative vitreoretinopathy.Invest Ophthalmol Vis Sci,1992,33(11):3125-3130.
    7刘瑜玲,张强,陈改清,等.植入型阿霉素释药装置防治增殖性玻璃体视网膜病变的实验研究.眼科研究.1999,17(1):28-30.
    8毕宏生,崔彦,张建华,等5-氟尿嘧啶聚乳酸微球防治增生性玻璃体视网膜病变的效果观察.中华眼科杂志,2006,42(1):37-41.
    9 Cardillo JA,Farah ME,Mitre J,et al. An intravitreal biodegradable sustained release naproxen and 5-fluorouracil system for the treatment of experimental post-traumatic proliferative vitreoretinopathy.Br J Ophthalmol,2004,88(9):1201-1205.
    10 Hueber A,Weller M,Welsandt G,et al. Characterization of daunorubicin-induced apoptosis in retinal pigment epithelial cells:modulation by CD95L.Invest Ophthalmol Vis Sci,2003,44(7):2851-2857.
    11杜红俊,王雨生,惠延年.增生性玻璃体视网膜病变的药物治疗进展[J].眼科新进展,2005,25(1):70-74.
    12戴旭峰,刘晓玲.大鼠玻璃体内注射二甲基亚砜对视网膜电图的影响.眼视光学杂志,2007,9(1):51-53.
    13 Moragoda L, Jaszewski R, Majumdar AP. Curcumin induced modulation of cellcycle and apoptosis in gastric and colon cancer cells. Anticancer Res, 2001,21(2A):873-878.
    14 Han SS, Keum YS, Seo HJ, et al. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol, 2002,35(3):337-342.
    15龚凌,姜德咏,朱晓华,等.姜黄素对培养的人胚胎视网膜色素上皮细胞增殖活性的影响.眼科学报,2004,20(4):246-248.
    16胡艳红,祁明信,黄秀榕,等.姜黄素对晶状体上皮细胞增殖的抑制作用.眼科研究,2006,24(2):122-124.
    17吴乐正,吴德正,主编.临床视觉电生理.北京,科学技术出版社,1999,16-20.
    18 Jonathan H,Talamo AB,Donald JD.The influence of aminoglycoside antibiotics.Am J Ophthalmol,1985,100(7):840-847.
    1 Hooymans JM, de Lavalette VW, Oey AG. Formation of proliferative vitreoretinopathy in primary rhegmatogenous retinal detachment. Doc Ophthalmol, 2000, 100(1):39-42
    2 Charteris DG, Sethi CS, Lewis GP, et al. Proliferative vitreoretinopathy-developments in adjunctive treatment and retinal pathology. Eye, 2002,16(4):369-74.
    3 Asaria RH, Charteris DG. Proliferative vitreoretinopathy: developments in pathogenesis and treatment. Compr Ophthalmol Update. 2006,7(4):179-85.
    4戴旭峰,刘晓玲.大鼠玻璃体内注射二甲基亚砜对视网膜电图的影响.眼视光学杂志,2007,9(1):51-53.
    5 Vinod PS, Kamol KM, Shrikant D, et al. Analytical methods validation: bioavailability, bioequavalence, and pharmacokinetic studies. J Pharmaceutical Sciences, 1992, 81(4):309-312.
    6 Adams BK, Cai J, Armstrong J, et al. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redoxdependent mechanism. Anticancer Drugs, 2005, 16(3):263-275.
    7胡艳红,祁明信,黄秀榕,等.姜黄素对晶状体上皮细胞增生的抑制作用.眼科研究, 2006, 24(2):122-124.
    8 Yan C, Jamaluddin MS, Aggarwal B, et al. Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Ther, 2005, 4(3):233-241.
    9仲明远,全山从,胡晋红.姜黄素制剂学研究进展.中成药, 2007, 29(3):255-258
    10曾水清,吕源淑,胡出椿,等.丁胺卡那霉素在兔眼玻璃体内的药代动力学研究.中华眼底病杂志, 1995,11(1):28-30.
    11朱晓波,唐仕波,李加青,等.苏拉明在兔眼玻璃体内的药物代谢过程研究.眼科研究, 2005, 23(6):600-603.
    12梁厚成,惠延年,蔡用舒.道诺霉素脂质体玻璃体内代谢及视网膜的毒性.眼科研究, 1993, 11(2):87-89.
    13 Jaffe GJ, Green GD, Mckay BS, et al. Intravitreal clearance of tissue plasminogen activator in the rabbit. Ophthalmology, 1988, 106(7):969-972.
    14 Hassan TS, Hartzer MK, Cheng M, et al. Anti-angiogenic effects, ocular toxicity and vitreous clearance of suramin in vivo. Invest Ophthalmol Vis Sci, 1994, 35(10): 1374-1381.
    15 Steinhorst UH,Hatchell DL,Chen EP,et al.Ocular toxicity of daunomycin:effects of subdivided dose on the rabbit retina after vitreous gas compression. Graefes Arch Clin Exp Ophthalmol,1993,231(10):591-594.
    16 Tano Y, Sugita G, Abrams G, et al. Inhibition of intraocular proliferations with intravitreal corticosteroids. Am J Ophthalmol, 1980,89(1):131-136.
    1 Pastor JC. Proliferative vitreoretinopathy: An overview. Surv Ophthalmol, 1998,43(1):3-18.
    2 Charteris DG,Hiscott P,Grierson I,et al.Proliferative vitreoretinopathy:pathobiology,surgical management and adjunctive treatment.Br J Ophthalmol,1995,79(10):953-958.
    3阎晓然,董晓光,陈楠,等.兔眼玻璃体腔植入维甲酸缓释系统防治增殖性玻璃体视网膜病变的药效学研究.中华眼科杂志,2003,39(10):621-625.
    4 Hui YN,Liang HC,Cai YS,et al.Corticosteroids and daunomycin in the prevention of experimental proliferative vitreretinopathy induced by macrophages.Graefes Arch Clin Exp Ophthalmol,1993,231(1):109-114.
    5 Nakagawa M,Refojo MF.Retinoc acid in silicone and silicone-fluoro silicone copolymer oils in a rabbit model of proliferative vitreretinopathy.Invest Ophthalmol Vis Sci.1995,36(12):2388-2395.
    6 Ozerdem U,Mach-Hofacre B,Keefe K,et al. The effect of prinomastat (AG3340),a synthetic inhibitor of matrix metalloproteinases,on posttraumatic proliferative vitreoretinopathy.Ophthalmic Res,2001,33(1):20-23.
    7 Goldaracena MB,Garcia-Layana A,Pastor JC,et al.The role of retinotomy in an experimential rabbit model of proliferative vitreretinopathy.Curr Eye Res 1997,16(5):422-427.
    8 Hooymans JM,De Lavalette VW,Oey AG.Formation of proliferative vitreoretinopathy in primary rhegmatogenous retinal detachment.Doc Ophthalmol,2000,100(1):39-42.
    9齐世欣,李筱荣.玻璃体腔注射台盼蓝对兔视网膜组织学的影响.眼科研究,2007,25(7):506-509.
    10郑建秋,滕岩,宋晗,等.兔眼孔源性视网膜脱离手术复位后视功能以及超微结构的变化.中国实验动物学报,2006,14(4):255-258.
    11孙红,袁志兰,袁孝如,等.氩激光光凝建立兔视网膜静脉阻塞模型及其评价.中国实验动物学报,2006,14(3):198-200.
    1 Charteris DG.Proliferative vitreoretinopathy: pathobiology,surgical management and adjunctive treatment.Br J Ophthalmol,1995,79(10):953-960.
    2 Mietz H, Heimann K.Onset and recurrence of proliferative vitreoretinopathy in various vitreoretinal disease. Br J Ophthalmol,1995,79(10):874-877.
    3戴旭峰,刘晓玲.大鼠玻璃体内注射二甲基亚砜对视网膜电图的影响.眼视光学杂志,2007,9(1):51-53.
    4张秀兰,吕林,高汝龙.牵引性视网膜脱离.国外医学眼科分册, 1993,17(5):361-364.
    5 Baudouin C, Khosrzvi E, Pisella PJ, et al. Inflammation measurement and immunocharacterization of cell proliferation in an experimental model of proliferative vitreoretinopathy. Ophthalmic Res, 1998,30(6):340-350.
    6 Machemer R. Proliferative Vitreoretinopathy(PVR):A personal account of its pathogenesis and treatment. Invest Ophthalmol Vis Sci, 1998,29(12):1771-1783.
    7 Yasushi Ikuno, Fee–Lai Leong, Andrius Kazlauskas, et al. Attenuation of Experimental Proliferative Vitreoretinopathy by Inhibiting the Platelet-Derived Growth Factor Receptor. Invest Ophthalmol Vis Sci, 2000, 41(10):3017-3116.
    8 Charteris DG, Sethi CS, Lewis GP, et al. Proliferative vitreoretinopathy-developments in adjunctive treatment and retinal pathology. Eye,2002,16(4):369-74.
    9 Cardillo JA,Farah ME,Mitre J,et al. An intravitreal biodegradable sustained release naproxen and 5-fluorouracil system for the treatment of experimental post-traumatic proliferative vitreoretinopathy.Br J Ophthalmol,2004,88(9):1201-1205.
    10 Hueber A,Weller M,Welsandt G,et al. Characterization of daunorubicin-induced apoptosis in retinal pigment epithelialcells:modulation by CD95L.Invest Ophthalmol Vis Sci,2003,44(7):2851-2857.
    11杜红俊,王雨生,惠延年.增生性玻璃体视网膜病变的药物治疗进展.眼科新进展,2005,25(1):70-74.
    12 Yasukawa T,Kimura H,Tabata Y,et al.Sustained release of cis-hydroxyproline in the treatment of experimental proliferative vitreoretinopathy in rabbits.Graefes Arch Clin Exp Ophthalmol,2002,240(8):672-678.
    13 Yasukawa T,Kimura H,Dong J,et al.Effect of tranilast on proliferation,collagen gel contraction,and transforming growth factor beta secretion of retinal pigment epithelial cells and fibroblasts.Ophthalmic Res,2002,34(4):206-212.
    14 Wagner M,Benson MT,Rennie IG,et al.Effect of pharmacological modulation of intracellular signaling systems on retinal pigment epithelial cells attachment to extracellular matrix protein.Curr Eye Res,1996,15(4):373-381.
    15 de Souza OF,Sakamoto T,Kimura H,et al.Inhibition of experimental proliferative vitreoretinopathy in rabbits by suramin. Ophthalmologica,1995,209(3)212-216.
    16 Rashmi R, Kumar S, Karunagaran D. Human colon cancer cells lacking Bax resist curcumin-induced apoptosis and Bax requirement is dispensable with ectopic expression of Smac or downtegulation of Bcl-XL.Carcinogenesis, 2005,26(4):713-723.
    17 He YJ,Shu JC,Lu X,et al.Prophylactic effect of curcumin on hepatic fibrosis and its relationship with activated hepatic stellate cells.Chin J Hepatol,2006,14(5):337-340.
    18黄秀榕,祁明信,康可人.姜黄素诱导牛晶状体上皮细胞凋亡的机制.中华眼科杂志,2006,42(7):649-653.
    19许东晖,王胜,金晶,等.姜黄素的药理作用研究进展.中草药,2005,36(11):1737-1740.
    1 Punithavathi D, Venkatesan N, Badu M. Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. Br J Pharmacol, 2000,131(2):169-172
    2周刚,王继峰,牛建昭,等.姜黄素抗肺纤维化大鼠细胞外基质过度形成的实验研究.中国中药杂志,2006,31(7):570-573
    3 Kang HC, Nan JX, Park PH, et al. Curcumin inhibits collagen synthesis and hepatic stellate cell activation in-vivo and in-vitro. J Pharm Pharmacol, 2002,54(1):119-126
    4黄映红,刘晓城,黄征宇,等.姜黄素对大鼠糖尿病肾的实验研究.中国现代医学杂志,2004,14(7):94-97
    5唐春兰,杨和平.姜黄素抗肿瘤作用的分子生物学机制研究进展.重庆医学,2006,35(6):555-557
    6 Chun KS, Keum YS, Han SS,et al. Curcumin inhibits phorbol ster-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis. 2003,24(9):1515-1519
    7 Han SS, Keum YS, Seo HJ, et al. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol, 2002,35(3):337-342
    8 Plummer SM, Holloway KA, Manson MM, et al. Inhibition of cyclooxygenase-2 expression of in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signaling complex. Oncogene,1999,18(44):6013-6018
    9 Pan MH, Chang WL, Lin-Shiau SY ,et al. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem. 2001,49(3):1464-1470
    10 Bush JA, Cheung KJ, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res, 2001,271(2):305-310
    11 Anto RJ,Mukhopadhyay A,Denning K,et al.Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID, cleavage and cytochrome c release: its suppression by ectopic expression of bcl-2 and bcl-xl. Carcinogenesis, 2002,23(1):143-147
    12 Wu Y, Chen Y, Xu J, et al. Anticancer activities of curcumin on human Burkitt’s lymphoma. Zhonghua Zhong Liu Za Zhi, 2002,24(4):348-352
    13 Moragoda L, Jaszewski R, Majumdar AP.Curcumin induced modulation of cellcycle and apoptosis in gastric and colon cancer cells. Anticancer Res, 2001,21(2A):873-878
    14 Santibanez JF, Quintanilla M, Martinez J. Genistein and curcumin block TGF-beta 1-induced u-PA expression and migratory and invasive phenotype in mouse epidermal keratinocytes. Nutr Cancer, 2000,37(1):49- 54
    15 Literat A,Su F,Norwicki M, et al.Regulation of pro-inflammatory cytokine expression by curcumin in hyaline membrane disease( HMD). Life Sci,2001,70(3):253-257
    16 Joe B, Lokesh BR. Effect of curcumin and capsaicin on arachidonic acidmetabolism and lysosomal enzyme secretion by rat peritoneal macrophages. Lipids, 1997,32(11):1173-1177
    17 Banerjee M, Tripathi LM, Srivastava VM, et al. Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol Immunotoxicol, 2003, 25 (2):213-217
    18 Sanjay Kumar, Upma Narain, Snehlata Tripathi, et al. Syntheses of Curcumin Bioconjugates and Study of Their Antibacterial Activities againstβ-Lactamase -Producing Microorganisms. Bioconjugate Chem. 2001, 12(5):464-469
    19陈宏,张振书.姜黄的药理作用研究概况.国外医学中医中药分册,1996,18(6):3-7
    20盛柳青,颜继忠,梁万根.姜黄素的研究进展及应用概况.中国西部科技,2006,4(1):14-15
    21李霞,王晓华,杨保华.姜黄的研究进展.药学实践杂志,2003,21(5):298-302
    22边芳,张名昌.姜黄素抑制翼状胬肉成纤维细胞增生的研究.临床眼科杂志,2005,13(3):198-201
    23 Arbiser JL, Klauber N, Rohan R, et al.Curcumin is an in vivo inhibitor of angiogenesis. Mol Med, 1998,4(6):376-383
    24 Mrudula T, Suryanarayana P, Srinivas PN,et al. Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina.Biochem Biophys Res Commun,2007,361(2):528-532
    25 Suryanarayana P, Krishnaswamy K, Reddy GB. Effect of curcumin on galactose-induced cataractogenesis in rats. Mol Vis, 2003,9(3):223-230
    26 Pandya U, Sain MK,Jin GF,et al.Dietary curcumin prevents ocular toxicity of naphthalene in rats. Toxicol Lett, 2000,115(3):195-204
    27 Awasthi S, Srivatava SK, Piper JT, et al. Curcumin protects against 4-hydroxy-2-trans-nonenal-induced cataract formation in rat lenses. Am J Clin Nutr, 1996,64(5) :761-766.
    28黄秀榕,祁明信,康可人.姜黄素诱导牛晶状体上皮细胞凋亡的机制.中华眼科杂志,2006,42(7):649-653
    29龚凌,姜德咏,朱晓华,等.姜黄素对培养的人胚胎视网膜色素上皮细胞增殖活性的影响.眼科学报,2004,20(4):246-248
    30 Bian ZM, Elner VM, Yoshida A, et al. Signaling pathways for glycated human serum albumin-induced IL-8 and MCP-1 secretion in human RPE cell. Invest Ophthalmol Vis Sci, 2001,42(7):1660-1668
    1 Pastor JC. Proliferative vitreoretinopathy: An overview. Surv Ophthalmol, 1998,43(1):3-18
    2 Charteris DG.Proliferative vitreoretinopathy:pathobiology,surgical management and adjunctive treatment.Br J Ophthalmol,1995,79(10):953-960
    3 Mietz H, Heimann K.Onset and recurrence of proliferative vitreoretinopathy in various vitreoretinal disease. Br J Ophthalmol,1995,79(10):874-879
    4 Baudouin C, Khosrzvi E, Pisella PJ, et al. Inflammation measurement and immunocharacterization of cell proliferation in an experimental model of proliferative vitreoretinopathy. Ophthalmic Res, 1998,30(6):340-350
    5 Machemer R. Proliferative Vitreoretinopathy(PVR):A personal account of its pathogenesis and treatment. Invest Ophthalmol Vis Sci, 1998,29(12):1771-1783
    6 Yasushi Ikuno, Fee–Lai Leong, Andrius Kazlauskas, et al. Attenuation of Experimental Proliferative Vitreoretinopathy by Inhibiting the Platelet-Derived Growth Factor Receptor. Invest Ophthalmol Vis Sci, 2000, 41(10):3017-3116
    7 Sobaci G, Mutliu FM, Vayer A, et al. Deadly weapon-related open-globe injuries:outcome assessment by the ocular trauma classification system. Am J Ophthalmol, 2000,129(1):47-43
    8 Velikay M,Stolba U,Wedrich A,et al.Irradiation pretreatment before fibroblast implantation in experimental proliferative vitreoretinopathy.Int Ophthalmol,1993,17(4):191-193
    9 Algvere PV,Hallnas K,Dafgard E,et al.Panretinal photocoagulation aggravates experimental proliferative vitreoretinopathy.Graefes Arch Clin Exp Ophthalmol,1990,28(5):461-466
    10 Yoshimura N, Kuriyama S, Ohuchi T,et al.Hyterthemia reduces the occurrence of proliferative vitreoretinopathy in a rabbit model. Invest Ophthalmol Vis Sci, 1992, 33(2):404-409
    11 Sakamoto T,Kimura H,Scuric Z,et al.Inhibition of experimental proliferative vitreoretinopathy by retroviral vector-mediated transfer of suicide gene,can proliferative vitreoretinopathy be a target of gene therapy?Ophthalmology,1995,102(10):1417-1424
    12 Cardillo JA,Farah ME,Mitre J,et al. An intravitreal biodegradable sustained release naproxen and 5-fluorouracil system for the treatment ofexperimental post-traumatic proliferative vitreoretinopathy.Br J Ophthalmol,2004,88(9):1201-1205
    13 Hueber A,Weller M,Welsandt G,et al.Characterization of daunorubicin-induced apoptosis in retinal pigment epithelial cells:modulation by CD95L.Invest Ophthalmol Vis Sci,2003,44(7):2851-2857
    14许东晖,王胜,金晶,等.姜黄素的药理作用研究进展.中草药,2005,36(11):1737-1740
    15盛柳青,颜继忠,梁万根.姜黄素的研究进展及应用概况.中国西部科技,2006,4(1):14-15
    16边芳,张名昌.姜黄素抑制翼状胬肉成纤维细胞增生的研究.临床眼科杂志,2005,13(3):198-201
    17龚凌,姜德咏,朱晓华,等.姜黄素对培养的人胚胎视网膜色素上皮细胞增殖活性的影响.眼科学报,2004,20(4):246-248
    18胡艳红,祁明信,黄秀榕,等.姜黄素对晶状体上皮细胞增殖的抑制作用.眼科研究,2006,24(2):122-124
    19黄秀榕,祁明信,康可人.姜黄素诱导牛晶状体上皮细胞凋亡的机制.中华眼科杂志,2006,42(7):649-653
    20 Chun KS, Keum YS, Han SS,et al. Curcumin inhibits phorbol ster-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis. 2003,24(9):1515-1519
    21 Han SS, Keum YS, Seo HJ, et al. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol, 2002,35(3):337-342
    22 Pan MH, Chang WL, Lin-Shiau SY ,et al. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem. 2001,49(3):1464-1470
    23 Bush JA, Cheung KJ, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent ofp53. Exp Cell Res, 2001,271(2):305-310
    24 Anto RJ,Mukhopadhyay A,Denning K,et al.Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID, cleavage and cytochrome c release: its suppression by ectopic expression of bcl-2 and bcl-xl. Carcinogenesis, 2002,23(1):143-147
    25 Wu Y, Chen Y, Xu J, et al. Anticancer activities of curcumin on human Burkitt’s lymphoma. Zhonghua Zhong Liu Za Zhi, 2002,24(4):348-352
    26 Moragoda L, Jaszewski R, Majumdar AP.Curcumin induced modulation of cellcycle and apoptosis in gastric and colon cancer cells. Anticancer Res, 2001,21(2A):873-878
    27 Rashmi R, Kumar S, Karunagaran D. Human colon cancer cells lacking Bax resist curcumin-induced apoptosis and Bax requirement is dispensable with ectopic expression of Smac or downtegulation of Bcl-XL.Carcinogenesis, 2005,26(5):713-723
    28孙晓东,张皙.细胞外基质及其调控与增殖性玻璃体视网膜病变.中国实用眼科杂志,1997,15(12):706-711
    29 Yang WF,Chen HC,Li L.Effect of Curcumin on proliferation and extracelldar matrix secretion of rat hepatic stellate cells in vitro. Chin J Clini Hepatol ,2004,20(3):142-143
    30周刚,王继峰,牛建昭等.姜黄素抗肺纤维化大鼠细胞外基质过度形成的实验研究.中国中药杂志,2006,31(7):570-573
    31叶敏利,李庆平.姜黄素对心脏压力过负荷大鼠主动脉细胞外基质的影响.中国临床药理学与治疗学,2003,8(2):125-128
    32郭浩轶,宋绣雯.增殖性玻璃体视网膜病变中的生长因子.眼科研究,1996,14(2):141-144
    33黄映红,刘晓城,黄征宇,等.姜黄素对大鼠糖尿病肾的实验研究.中国现代医学杂志,2004,14(7):94-97
    34 Santibanez JF,Quintanilla M,Martinez J.Genistein and curcumin block TGF-beta1-induced u-PA expression and migratory and invasive phenotype in mouse epidermal keratinocytes. Nutr Cancer, 2000,37(1):49- 54
    35 Mrudula T, Suryanarayana P, Srinivas PN,et al. Effect of curcumin onhyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina.Biochem Biophys Res Commun,2007,361(2):528-532
    36 Arbiser JL, Klauber N, Rohan R, et al.Curcumin is an in vivo inhibitor of angiogenesis. Mol Med, 1998,4(6):376-383
    37石一宁,惠延年.增殖性玻璃体视网膜病变发病的免疫机制.国外医学眼科学分册,1995,19(4):239-245
    38 Kobayashi T,Hashimoto S, Horie T. Curcumin inhibition of dermatophagoides farines-induced interleukin-5(IL-5) and granulocyte macrophage-colony stimulating factor(GM-CSF) production by lymphocytes from bronchial asthmatics.Biochem Pharmacol, 1997, 54(7): 819-824
    39 Literat A,Su F,Norwicki M, et al.Regulation of pro-inflammatory cytokine expression by curcumin in hyaline membrane disease( HMD). Life Sci,2001,70(3):253-257
    40 Joe B, Lokesh BR. Effect of curcumin and capsaicin on arachidonic acid metabolism and lysosomal enzyme secretion by rat peritoneal macrophages. Lipids, 1997,32(11):1173-1177
    41 Banerjee M, Tripathi LM, Srivastava VM, et al. Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol Immunotoxicol, 2003, 25 (2):213-217
    42陈秀,李作孝,佟琳,等.姜黄素对脑出血大鼠血肿周边炎性细胞因子水平的影响.脑与神经疾病杂志,2005,13(2):123-125
    43 Sanjay Kumar, Upma Narain, Snehlata Tripathi, et al. Syntheses of Curcumin Bioconjugates and Study of Their Antibacterial Activities againstβ-Lactamase -Producing Microorganisms. Bioconjugate Chem. 2001, 12(5):464-469
    44陈宏,张振书.姜黄的药理作用研究概况.国外医学中医中药分册,1996,18(6):3-7
    45 Mazumder A, Raghavan K, Weinstein J,et al. Inhibition of humanimmunodeficiency virus type-1 integrase by curcumin.Biochem Pharmacol,1995, 49(8): 1165-1170
    46 Hergenhahn M, Soto U, Weninger A,et al. The chemopreventive compound curcumin is an efficient inhibitor of epstein-barr virus BZLF1 transcription in Raji DR-LUC cells.Mol Carcinog, 2002, 33(3): 137-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700