用户名: 密码: 验证码:
饱和CO_2地层水驱过程中的水—岩相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用岩芯驱替装置,通过模拟地层条件下(100℃,24MPa)饱和CO_2地层水驱过程中的水—岩相互作用实验,并运用偏光显微镜、扫描电镜、X衍射分析、水溶液离子分析、主—微量元素分析和地球化学数值模拟等技术手段对松辽盆地南部大情字井区适宜CO_2注入层位的储层岩石进行了定量流体—岩石室内实验研究,查明了典型油藏CO_2注入后CO_2—油—水—岩石的地球化学反应规律以及CO_2注入后短时期内储层岩性和物性的变化情况,并对CO_2地质埋存短期和中长期安全性作出了评价。研究结果显示:研究区储层砂岩主要为长石砂岩,属特低孔、特低渗型储层;对CO_2流体敏感的矿物主要由方解石、铁白云石、钾长石和钠长石组成。饱和CO_2地层水驱实验后,长石和碳酸盐类矿物发生了不同程度的溶蚀、溶解作用,但是自生钠长石和微晶石英并未发生明显的溶蚀作用,碳酸盐矿物的反应程度最大,其中,方解石溶解程度最大,片钠铝石次之,铁白云石最弱;在实验过程中还沉淀了少量化学成分上介于碳酸盐和硅酸盐矿物之间的固相物质,这些固相物质的化学成分介于长石和碳酸盐矿物之间,有向碳酸盐矿物转变的趋势。油气流体的存在会减缓CO_2酸性流体与岩芯中矿物的反应速率,与含油实验组相比,硅酸盐矿物(以钾长石为例)的溶蚀速率仅为不含油组的1/5;碳酸盐矿物的溶蚀速率(以Ca离子的产出速率为代表)仅为不含油组的1/4。无论是含油组还是不含油组,在CO_2驱替实验后,组合岩芯的渗透率都低于实验前,下降幅度约在45%左右。数值模拟结果显示:CO_2注入后主要以残余捕获(包含游离的超临界CO_2气体)、溶解捕获和矿物捕获三种形式固定;埋存初期以残余捕获为主,埋存后期以溶解和矿物捕获为主。CO_2注入后,其多相组分对流速率很低,注入的初期也只有10~(-7)m/s,而且在注入后期会在砂—泥界线处生成碳酸盐结壳,对CO_2逸散起到阻滞作用,这对于CO_2地质埋存具有积极意义。
Geological sequestration or underground storage of CO_2in depleted oil and gasreservoirs results in improved oil recovery and reduced net carbon emissions into theatmosphere. CO_2is a special gas that has significantly more influence upon the hostrocks and pore waters than petroleum fluids. After injection of CO_2into depleted oiland gas reservoirs, the initial physico—chemical equilibrium between the salineformation fluid and reservoir rock may be disturbed and triggered chemical reactionsamong the injected CO_2, saline formation fluid, and reservoir rock. Such interactionsmight eventually lead to changes in the physical and chemical properties of thereservoir system. Reservoir permeability might be particularly susceptible to theseinteractions, and a decrease in permeability would have a serious impact on thelong—term CO_2storage capacity, safety, and stability of the reservoir. Therefore,experimental studies of CO_2—brine—rock interactions at simulated reservoir pressure(P) and temperature (T) conditions are an important and elegant way to study theproblem outlined above.
     This contribution investigates the geochemical and hydrodynamic changesduring the CO_2—formation water—feldspar/carbonate interaction induced by massiveinjection of CO_2into feldspar—rich sandstone of the Qingshankou Formation (Qing1reservoir) from the southern Songliao Basin in China during EOR operations, which issimilar to the EnCana Weyburn project.
     The sandstones of Qing1reservoir are moderately well or well sorted, with very fine to fine—grained arkose. The main detrital constituents are monocrystalline quartzgrains, plagioclase and K-feldspars. Authigenic minerals in Qing1reservoirsandstones include quartz, feldspar, illite, calcite and ankerite. Ankerite and calcite arethe main authigenic minerals. Quartz and Feldspar cements, appeared as thin fringeson the edge of quartz or feldspar grains. In addition, quartz and authigentic albitecements occur as microcrystalline porefilling cements. The diagenetic sequence arethe rhombohedral pyrite→plagioclase overgrowth→quartz overgrowth→K-feldsparovergrowth→microcrystal quartz&authgenic albite→grain—coatingpyrite→calcite→dolomite→ankerite→illite. The antigenic minerals that are reactedwith CO_2are manily composed of plagioclase, K-feldspar, calcite and ankerite.
     The original sandstone rock in the study are characterized by higher Na_2O/K_2O.This is the caused by high albitization of feldspar in sandstone. The sandstone unit inthis study have characteristically low weathering and alteration. And, they haveaverage WI(Weathering Index) values of79, and CIA(Chemical Index of Alteration)values of35. In addition, the sandstone unit have no Ce anomalies with δCe averagevalues of1.
     Unlike standard experiments realised in closed static of flushed vessels,flow—through experiments can reproduce the continuous disequilibrium induced byrenewal of reactants at the reaction surfaces. And, it can reflect the real situationduring the CO_2—formation water—feldspar/carbonate interaction induced by massiveinjection of CO_2into feldspar—rich sandstone reservoir. Minerals such as potassium(K) feldspar, albite, calcite, and ankerite are variably dissolved after the experiments.Calcite is the mineral most affected by dissolution, followed by dawsonite, thirdly byankerite, whereas dissolution of feldspar minerals is minimal. In contrast, authigenicalbite and micro—quartz grains showed no signs of alteration after the experiment.Small amounts of kaolinite and solid phases were generated as a result of theexperiment. The solid phases are presumed to be the transitional products in theformation of carbonate minerals. Core permeability decreased substantiallythroughout the experiment, although core porosity remained unchanged. Thepermeability reduction is the result of precipitation of new mineral phases (e.g., kaolinite and solid phases), and potentially also the presence of clay particles releasedby the dissolution of carbonate cement, which have then been transported in the fluidflow path and accumulated at pore throats.
     The reaction intensity of the interaction between CO_2acid fluid and antigenicminerals in rock cores is sharply decreased by the participation of oil and gas fluid.The oil and gas fluid in the reaction systems mainly affects the dissolution of silicateminerals (represented by K-feldspar) during the late period of the experiment, whichreduces the dissolution rate to the level of equilibrium. Such mixed fluid also hasimpact on the dissolution rate of carbonate minerals in the early period, which lowerits peak of dissolution rate. The dissolution rate of silicate (represented by K-feldspar)is only one fifth of the rate in the oil—free experiments. And the dissolution rate ofcarbonate (represented by the generated rate of Ca ions) is only one fourth of the ratein the oil—free experiments. The permeability of core assemblages are lower than thepre-experimental after CO_2flooding experiment no matter in the oil—contained or theoil—free experiments. The permeanbility reduced about45%after the experiment.
     The simulation with TOUGHREACT shows that, as CO_2injected into thesandstone reservoir, albite and K-feldspar turn to dissolve, while ankerite, dawsonite,kaolinite and quartz turn to be precipitation. Moreover, albite dissolution was morepronounced than K-feldspar. CO_2trapping mechanisms include gas trapping,solubility trapping and mineral trapping after injection. In the CO_2injection period, alarge amount of CO_2remains as a free supercritical phase (gas trapping), and theamount dissolved in the formation water (solubility trapping) gradually increases.Later, gas trapping decrease, solubility trapping increases significantly due to themigration and diffusion of CO_2plume and the convective mixing betweenCO_2—saturated water and unsaturated water, and the amount trapped by carbonateminerals increases gradually with time. CO_2multiphase advection velocity is very lowonly10-7m/s at the early stages of the injected. The new carbonates precipitate at theboundary between sandstone and mudstone, forming a shell enclosing injected CO_2.This results have the positive significance for CO_2geological storage.
     Innovations of this paper lie in four aspects: interactions of CO_2fluid—rocks are successfully achieved by using core flooding equipment, mineral changes after CO_2injection in reservoir sandstones are clarified, reasons responsible for the decrease ofporosity and influencing mechanism of oil and gas fluid acting upon geochemicalreactions of CO_2fluid—rocks are revealed, numerical simulation is engaged inevaluating the safety of CO_2geological sequestration.
引文
[1]蔡杰兴.方解石、白云石、菱铁矿分别与含CO2水溶液反应平衡时的温度和压力[J].矿物岩石,1993,13(2):37–41.
    [2]巢清尘,陈文颖.碳捕获和存储技术综述及对我国的影响[J].地球科学进展,2006,21(3),291–298.
    [3]戴春森,宋岩,孙艳.中国东部二氧化碳气藏成因特点及分布规律[J].中国科学B辑,1995,25(7):764–771.
    [4]戴金星.中国含油气盆地的无机成因气及其气藏[J].天然气工业,1995a,15(3):22–27.
    [5]戴金星,宋岩,戴春森等.中国东部无机成因气及其气藏形成条件[M].北京:科学出版社,1995b,1–11.
    [6]戴金星.中国气藏(田)的若干特征[J].石油勘探与开发,1997,24(2):6–9.
    [7]戴金星,卫延昭.无机成因石油论和无机成因的气田(藏)概略[J].石油学报,2001,22(6):5–10.
    [8]戴金星,胡国艺,倪云燕等.中国东部天然气分布特征.天然气地球科学,2009,20(4):471–487.
    [9]戴启德,纪友亮.油气储层地质学[M].北京:中国石油大学出版社,1995.
    [10]付晓飞,沙威,王磊等.松辽盆地幔源成因CO2气藏分布规律及控制因素.吉林大学学报:地球科学版,2010,40(2):253–263.
    [11]富畅,吴大可,黄旭.临界CO2压缩因子实验数据的新拟合方程[J].贵州工业大学学报(自然科学版),2005,34(6),8–11.
    [12]郭莹莹.松辽盆地南部姚家组沉积体系分析[D].长春:吉林大学地球学学院,2007.
    [13]郭巍.松辽盆地南部白垩纪构造沉积演化与成藏动力学研究[D].长春:吉林大学地球学学院,2007.
    [14]侯启军,赵志魁,王立武.火山岩气藏-松辽盆地南部大型火山岩气藏勘探理论与实践[M].北京:科技出版社,2009:269–271.
    [15]胡一蓉,彭伟川.应对全球气候变化-碳捕获与封存技术介绍[J].江苏科技信息,2009,9,4–6.
    [16]洪丽云,朱兵,周文戟等.实物期权理论在能源技术经济评价中的应用[J].化学工业,2009,27(11),27–30.
    [17]姜在兴.沉积学[M].北京:石油工业出版社,2003.
    [18]刘娜.砂岩对CO2的矿物捕获能力–来自松辽盆地南部红岗地区含片钠铝石砂岩的约束[D].长春:吉林大学地球学学院,2011.
    [19]刘子良.吉林油田低渗透砂岩油藏流体识别[D].北京:中国地质大学,2005.
    [20]李伟.松辽盆地白垩系岩相古地理研究[D].青岛:山东科技大学,2010.
    [21]刘一江,刘积松,黄忠桥,赵卫兵.聚合物和二氧化碳驱油技术[M].北京:中国石化出版社,2001.
    [22]苗长盛.松辽盆地南部扶新地区扶余油层成岩作用与岩性圈闭关系研究[D].长春:吉林大学地球学学院,2008.
    [23]毛超林.松辽盆地南部长岭凹陷高台子油层三角洲前缘砂体储层特征评价[D].北京:中国地质大学,2006.
    [24]屈伟平.洁净煤发电的CCS和IGCC联产技术[J].上海电气技术,2010,3(1),55–62.
    [25]裘译楠,陈子琪.油藏描述[M].北京:石油工业出版社,1994.
    [26]邱家骧.岩石化学[M].北京:地质出版社,1991.
    [27]曲希玉. CO2流体—砂岩相互作用的实验研究及其在CO2气储层中的应用[D].长春:吉林大学地球学学院,2007.
    [28]任秉琛.新疆库姆塔格菱铁矿床形成富集条件及成因探讨[J].西北地质科学,1983,1,59–69.
    [29]王佳琪,刘贵荣,薛松. CO2地质存储基础概述[J].化学工程与装备,2011,7,161–162.
    [30]王永春,康伟力,毛超林.吉林探区油气勘探理论与实践[M].石油工业出版社,2007:3–43.
    [31]胥蕊娜,陈文颖,吴宗鑫等.电厂中CO2捕集技术的成本及效率[J].清华大学学报(自然科学版),2009,49(9),1542–1545.
    [32]许圣传.乾146区块储层流动单元划分及应用[D].长春:吉林大学地球学学院,2008.
    [33]许志刚,陈代钊,曾荣树等.我国吉林油田大情字井区块CO2地下埋存试验区地质埋存格架[J].地质学报,2009,83(6),875–884.
    [34]许天福,金光荣,岳高凡等.地下多组分反应溶质运移数值模拟:地质资源和环境研究的新方法[J].吉林大学学报(地球科学版),2012,42(5),1410–1425.
    [35]杨光,赵占银,张伟.松辽盆地南部无机CO2成藏机理与分布[J].吉林大学学报(地球科学学版),2010,40(4):932–938.
    [36]杨会东.松南无机成因CO2与常规油气的耦合差异成藏研究[D].长春:吉林大学地球学学院,2009.
    [37]闫丽萍.松辽盆地南部泉四段沉积体系分析[D].长春:吉林大学地球学学院,2007.
    [38]杨桂芳,卓胜广,牛奔.松辽盆地白垩系砂岩长石碎屑的钠长石化作用[J].地质论评,2003,49(2):155–161.
    [39]应凤祥.中国含油气盆地碎屑岩储集层成岩作用于成岩数值模拟[M].北京:石油工业出版社,2004.
    [40]闫志为,刘辉利,张志卫.温度及CO2对方解石、白云石溶解度影响特征分析[J].中国岩溶,2009,28(1):7–10.
    [41]于炳松,赖兴运.成岩作用中的地下水碳酸体系与方解石溶解度[J].沉积学报,2006,24(5):627–634.
    [42]於俊杰,郝郑平,朱玲等.文发达国家温室气体减排现状及对我国的启示[J].环境工程学报,2008,2(9),1281–1288.
    [43]张英魁,刘斌,古武等.利用多元回归方法确定岩石压缩系数[J].油气井测试.2001,10(1,2):7–9.
    [44]邹才能,陶士振,张有瑜.松辽南部岩性地层油气藏成藏年代研究及其勘探意义[J].科学通报,2007,52(19):2319–2329.
    [45]卓胜广,周书欣,姜耀俭.松辽盆地白垩系砂岩成岩作用[J].地质科学,1992,27(增刊):216–225.
    [46] Assayag, N. J. Matter, M. Ader, et al. Water—rock interactions during a CO2injectionfield—test: Implications on host rock dissolution and alteration effects[J]. Chemical Geology,2009,265(1–2):227–235.
    [47] Andreani, M., Luquot, L., Gouze, Ph., Godard, M., Hoise, E., Gibert, B. Experimental studyof carbon sequestration reactions controlled by the percolation of CO2—rich brine throughperidotites[J]. Environmental Science and Technology,2009,43,1226–1231.
    [48] Benson, S. Overview of geological storage of CO2[J]. Carbon Dioxide Capture for Storage inDeep Geological Formations,2005,2,665–672.
    [49] Bachu S, Gunter W D, Perkins E H. Aquifer disposal of CO2: hydrodynamic and mineraltrapping[J]. Energy Conversion and Management,1994,35(4):269–279.
    [50] Baines, S. J., Worden, R. H. The long term fate of CO2in the subsurface: natural analoguesfor CO2storage[J]. Geological Society,2004,233,59–85.
    [51] Bowker, K.A., Shuler, P.J. Carbon dioxide injection and resultant alteration of the Webersandstone, Rangely Field, Colorado [J]. The American Association of Petroleum GeologistsBulletin,1991,75,1489–1499.
    [52] Bertier, P., Swennen, R., Laenen, B., Lagrou, D., Dreesen, R. Experimental identification ofCO2–water–rock interactions caused by sequestration of CO2in Westphalia andBuntsandstein sandstones of the Campine Basin (NE-Belgium)[J]. Journal of GeochemicalExploration,2006,89,10–14.
    [53] Bacci, G., Korre, A., Durucan, S. An experimental and numerical investigation into the impactof dissolution/precipitation mechanisms on CO2injectivity in the wellbore and far fieldregions[J]. International Journal of Greenhouse Gas Control,2010,5,579–588.
    [54] Bénézeth, P., Palmer, D. A., Anovitz, L. M., Horita, J. Dawsonite synthesis and reevaluationof its thermodynamic properties from solubility measurements: implications for mineraltrapping of CO2[J]. Geochim. Cosmochim. Acta,2007,71(18),4438–4455.
    [55] Bailey J. C. Geochemical criteria for a refined tectonic discrimination of orogenicandesites[J]. Chemical Geology,1981,32:139–154.
    [56] Bolton, E.W., Lasaga, A. C., Rye, D.M. Long-term flow/chemistry feedback in a porousmedium with heterogenous permeability: Kinetic control of dissolution and precipitation[J].American Jounal of Science,1999,299,1–68.
    [57] Cole, B. S. An Equation of State for Multiphase CO2and Water[R]. New Mexico Institute ofMining and Technology,1999.
    [58] Cantucci, B., Mont egrossi, G., Vaselli, O., Tassi, F., Quattrocchi, F., Perkins, E. H.Geochemical modeling of CO2storage in deep reservoirs: The Weyburn Project (Canada)case study[J]. Chemical Geology,2009,265,181–197.
    [59] Carroll, S. A., Knauss, K. G. Dependence of labradorite dissolution kinetics on CO2(aq), Al(aq) and temperature[J]. Chemical Geology,2005,217,213–225.
    [60] Corey A T. The interrelation between gas and oil relative permeabilities[J]. Prod. Mon.,1954,19(1):38–41.
    [61] Casey W. H., Westrich H.R.. Arnold G.W. Suface chemistry of labradorite feldspar reactedwith aqueous at pH=2.3and12[J]. Geochimica et Cosmochimica Acta,1988,52,2795–2807.
    [62] Druckenmiller, M.L., Maroto-Valer, M.M. Carbon sequestration using brine of adjusted pH toform mineral carbonates[J]. Fuel Processing Technology,2005,86,1599–1614.
    [63] Duan, Z. H., Sun, R. An improved model calculating CO2solubility in pure water andaqueous NaCl solutions from273to533K and from0to2000bar[J]. Chemical Geology,2003,193,257–271.
    [64] Engesgaard, P., Kipp, K L. A geochemical transport model for redox-controlled movement ofmineral fronts in groundwater flow system: A case of nitrate removal by oxidation ofpyrite[J]. Water Resources Research,1992,28,2829–2843.
    [65]Fischer, S., Liebscher, A., Wandrey, M., the CO2SINK Group,2010.CO2–brine–rockinteraction—First results of long-term exposure experiments at in situ P–Tconditions of the Ketzin CO2reservoir. Chemie der Erde70,155–164.
    [66] Flukiger, F., Bernard, D. A new numerical model for pore scale dissolution of calcite due toCO2saturated water flow in3D realistic geometry: Principles and first results[J]. ChemicalGeology,2009,265,171–180.
    [67] Fabrizio Gherardi, Tianfu Xu, Karsten Pruess. Numerical modeling of self-limiting andself-enhancing caprock alteration induced by CO2storage in a depleted gas reservoir[J].Chemical Geology,2007,244,103–129.
    [68] Gherardi F., Xu T. F., Pruess K, et al. Numerical modeling of self-limiting and self-enhancingcaprock alteration induced by CO2storage in a depleted gas reservoir. Chemical Geology,2007,244(1–2):103–129.
    [69] Groment L. P., Dymerk R. F., Haskin L. A., Korotev R. L. The “North American ShaleComposite”: its compilation, major and trace element characteristics[J]. Geochim Acta,1984,48,2469–2482.
    [70] Gaus, I. Role and impact of CO2–rock interactions during CO2storage in sedimentaryrocks[J]. International Journal of Greenhouse Gas Control,2010,4,73–89.
    [71] Hitchon B, Gunter W D, Gentzis T,et al. Sedimentary basins and greenhouse gases: aserendipitous association[J]. Energy Conversion&Management,1999,40:825–843.
    [72] Hugh R. Rollison. Using Geochemical Data: Evalution, Presentation, Interpretation[M]. NewYork: Longman Group UK Ltd,1993.
    [73] Helgeson Harold C., David H. Kirkham, George C. Flowers. Theoretical prediction of thethermodynamic behavior of aqueous electrolytes by high pressures and temperatures; VI,Calculation of activity coefficients, osmotic coefficients, and apparent molal and standardand relative partial molal properties to600degrees C and5kb[J]. American Journal ofScience,1981,281(10):1249–1516.
    [74] Hangx, J. T., Christopher J. Spiers. Reaction of plagioclase feldspars with CO2underhydrothermal conditions[J]. Chemical Geology,2009,265,88–98.
    [75] Holdren, Jr, G.R., Speyer, P.M. pH dependent changes in rates and stouchiometry ofdissolution of an alksli feldspar at room temperature[J]. Am, J, Sci,1985,285,994–1026.
    [76] Intergovernmental Panel on Climate Change. Climate change2007: Mitigation Contributionof Working group III to the Fourth Assessment Report of the Intergovernmental Panel onClimate Change. Cambridge University Press, Cambridge, United Kingdom and New York,NY, USA,2007.
    [77] Intergovernmental Panel on Climate Change. Contribution of Working Group I to the ThirdAssessment Report of the Intergovernmental Panel on Climate Change Climate change.Synthesis Report, Summary for policy makers, Cambridge University Press, Cambridge,New York, NY, USA,2001.
    [78] Intergovernmental Panel on Climate Change. Special Report on Carbon Dioxide Capture andStorage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge, United Kingdom/New York, USA,2005, pp.442–431.
    [79] Kaszuba, J.P., Janecky, D.R., Snow, M.G. Carbon dioxide reaction processes in a model brineaquifer at200°C and200bars: implications for geologic sequestration of carbon[J]. AppliedGeochemistry,2003,18(7),1065–1080.
    [80] Kirste, D.M., Watson, M.N., Tingate, P.R..Geochemical modelling of CO2—water—rockinteraction in the Pretty Hill formation, Otway Basin[C]. In: Boult, P.J., Johns, D.R., Lang,S.C.(Eds.), Eastern Australasian basins symposium II. Special publication19–22. PetroleumExploration Society of Australia, Adelaide, South Australia,2004, pp.403–411.
    [81] Ketzer, J.M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R., Lima V. Water–rock–CO2interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numericalmodeling studies of the Rio Bonito Formation (Permian), southern Brazil[J]. AppliedGeochemistry,2009,24,760–767.
    [82] Kaiser W. R. Predieting Reservoir Quality and Diagenetic History in the Frlo Formation(Oligocene) of Texas. Clastic Diagenesis, AAPG Memoir,1984,37:207–212
    [83]Kjoller, C., Weibel, R., Bateman, K., Laier, T., Nielsen, L. H., Frykman, P., Springer, N.Geochemical impacts of CO2storage in saline aquifers with various mineralogy–resultsfrom laboratory experiments and reactive geochemical modeling. Energy Procedia,2010,4,4724–4731.
    [84] Luquot, L., M.,Andreani, M., P.,Gouze, P., P.,Camps, P. CO2percolation experiment throughchlorite/zeolite—rich sandstone (Pretty Hill Formation–Otway Basin–Australia)[J].Chemical Geology,2012,294–295,75–88.
    [85] Law, H. S. Bachu, S. Hydrological and Numerical Analysis of CO2disposal in deep aquifersystems in the Alberta sedimentary basin[J]. Ener. Convers,1966,37,1167–1174.
    [86] Loueks R. G., Riehmann D. L., Milliken K. L. Factors controlling reservoir quality in Tertialsandstones and their significance to geopressured geothermal production[J]. Austin,University of Texas, Bureau of Economic Geology Report of Investigations,1981,111,41.
    [87] Lichtner, P. C. The quasi-stationary state approximation to coupled mass transport andfluid—rock interaction in a porous medium[J]. Geochimica et Cosmochimica Acta,1988,52,143–165.
    [88] Liu, C. W., Narasimhab, T N. Redox-controlled multiple species reactive chemical transport,1. Model development[J]. Water Resources Research,1989,25,869–882.
    [89] Luquot L., Gouze P. Experimental determination of porosity and permeability changesinduced by injection of CO2into carbonate rocks[J]. Chemical Geology,2009,265,148–159.
    [90] Marchetti, C. On Geoengineering and the CO2problem[J]. Climate Change,1977,1,59–68.
    [91] Michael, K. A. Golab, V. Shulakova, et al. Geological storage of CO2in saline aquifers—Areview of the experience from existing storage operations[J]. International Journal ofGreenhouse Gas Control,2010,4(4):659–667.
    [92] McLennen S. M. Rare earth elements in sedimentary rocks:influence of provenance andsedimentary process[J]. In: Lipin B R. and McKay G A (eds), Geochemistry and mineralogyof rare earth elements. Rev. Mineral.,1989,21, pp.169–200.
    [93] Murakami, T., Kogure, T., Kadohara, H., Ohnuki, T. Formation of secondary minerals and itseffect on anorthite dissolution[J]. Am. Mineral,1998,83,1209–1219.
    [94] Nesbitt, H.W., Young, G.M. Early Proterozoic climates and plate motions inferred from majorelement chemistry of lutites[J]. Nature,1982,299,715–717.
    [95] Nesbitt, H. W., Young, G. M., Bosman, S.A. Major and trace element geochemistry andgenesis of supracrustal rocks of the North Spirit Lake Greenstone belt, NW Ontario,Canada[J]. Precambrian Research,2009,174,16–34.
    [96] Nienhuis, P., Appelo, C A T., Willemsen, A. Program PHREEQM, Modified from PHREEQEfor use in mixing cell flow tube[D]. The Netherlands:Amsterdam Free University,1991.
    [97] Narasimhan T N, Witherspoon P A. An integrated finite difference method for analyzing fluidflow in porous media[J]. Water Resources Research,1976,12:57–64.
    [98] Omole O, Osoba J S. Carbon dioxide±dolomite rock interaction during CO2floodingprocess[C]. Petrol. Soc. Canadian Inst. Min. Metal.1–13, Banff Alberta,1983.
    [99] Okuyama Y., Sasaki M., Nakanishi S., et al. Geochemical CO2trapping in open aquiferstorage—the Tokyo Bay model[J]. Energy Procedia,2009:3253–3258.
    [100] Ortoleva, P., Merino, E., Chadam, J. Geochemical self-organization,2. Reaction-transportfeedbacks and modeling approach[J]. American Journal of Science,1987,287,979–1007.
    [101] Okuyama Y, Sasaki M, Nakanishi S, et al. Geochemical CO2trapping in open aquiferstorage—the Tokyo Bay model[J]. Energy Procedia,2009:3253–3258.
    [102] Preston, C., et al. IEA GHG Weyburn CO2monitoring and storage project[J]. FuelProcessing Technology,2005,86,1547–1568.
    [103] Pearce, S. Holloway, H. Wacker, et al. Natural occurrences as analogues for the geologicaldisposal of carbon dioxide[C]//Pierce W.F. Riemer, Andrea Y. Smith. Energy Conversion andManagement: Proceedings of the International Energy Agency Greenhouse Gases: MitigationOptions Conference, London, U.K., August22–25,1995. Elsevier Science Ltd.,1996,37(6–8):1123–1128.
    [104] Pruess K., Oldenburg C., Moridis G. TOUGH2user’s guide, version2.0.Lawrence BerkeleyLaboratory Report–43134, Berkeley, California,1999.
    [105] Potts P. J., Webb P. C., Watson J. S. Exploiting energy dispersive X-ray fluorescenceseptrometry for the determination of trace elements in grological samples[J]. Anal.Proc,1990,27,67–70.
    [106] Parkhurst, D.L., Appelo, C.A.J. User’s guide to PHREEQC (Version2)—A computerprogram forspeciation, batch-reaction, one-dimensional transport, and inversegeochemicalcalculations: U.S.Geological Survey Water—ResourcesInvestigations Report[R],1999,99–4259.
    [107] Parkhurst D L, Kipp K L, Engesgaard P. PHAST—A Program for SimulatingGround—Water Flowand Multicomponent Geochemical Reactions[J]. Developments inWater Science,2002,47:711–718.
    [108] Ryoji Shiraki, Thomas L. Dunn. Experimental study on water—rock interactions duringCO2flooding in the Tensleep Formation, Wyoming, USA[J]. Applied Geochemistry,2000,15(3):265–279.
    [109] Ross, G.D., Todd, A.C., Tweedie, J.A., Will, A.G.S. The dissolution effects of CO2-brinesystems on the permeability of U.K. and North Sea calcareous sandstones[C]. Proc.3rd JointSPE/DOE Symp. Enhanced Oil Recovery,1982,149–162.(SPE/DOE10685).
    [110] Ross G D, Todd A C, Tweedie J A. The effect of simulated CO2flooding on the permeabilityof reservoir rocks[C]. In: Proc.3rd European Symp. Enhanced Oil Recovery,1981,351–366.
    [111] Reid B. Grigg. Laboratory and Model Tests at Reservoir Conditions forCO2—Brine—Carbonate Rock Systems Interactions[C]. Second Annual CarbonSequestration Conference,2003, Washington, D.C.
    [112] Rosenbauer, R.J., Koksalan, T., Palandri, J.L. Experimental investigation ofCO2—rine—rock interactions at elevated temperature and pressure: implications for CO2sequestration in deep-saline aquifers[J]. Fuel Processing Technology,2005,86,1581–1597.
    [113] Richard A. Robie, Bruce S. Hemingway, James R. Fisher. Thermodynamic properties ofminerals and related substances at298.15K and1Bar (105Pascals) pressure and at highertemperatures: U.S. Geological Survey Bulletin1452[M]. Washington, D.C: United StatesGovernment Printing Office,1978:452–456.
    [114] Reed M H. Calculation of multicomponent chemical equilibria and reaction processes insystems involving minerals, gases and aqueous phase[J]. Geochim. Cosmochim. Acta.1982,46:513–528.
    [115] Stuart M.V. Gilfillan, Chris J. Ballentine, Greg Holland, et al. The noble gas geochemistry ofnatural CO2gas reservoirs from the Colorado Plateau and Rocky Mountain provinces,USA[J]. Geochimica et Cosmochimica Acta,2008,72(4):1174–1198.
    [116] Sayegh, S.G., Krause, F.F., Girard, M., DeBree. Rock/fluid interactions of carbonated brinesin a sandstone reservoir: Pembina Cardium, Alberta, Canada[C]. SPE Formation Eval,1990.5,399–405.
    [117] Steefel, C.I., Depaolo, D.J., Lichtner, P.C. Reactive transport modelling: an essentialtool anda new research approach for the earth sciences[J]. Earth and Planetary Science Letters,2005,240,539–558.
    [118] Sun, S. S., McDonough, W. F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. In: Saunders, A.D., Norry, M.J.(Eds.),Magmatism in Ocean Basins: Geological Society of Special Publication, London,1989,42,pp.313–345.
    [119] Simunek, J., Suares, D. L. Two-dimensional transport model for variably saturated porousmedia with major ion chemistry[J]. Water Resources Research,1994,30,1115–1133.
    [120] Steefel, C. I., Lasaga, A. C. A coupled model for transport of multiple chemical species andkinetic precipitation/dissolution reactions with applications to reactive flow in single phasehydrothermal system[J]. American Jounal of Science,1994,294,529–592.
    [121] Steefel, C.I., MacQuarrie, K.T.B. Approaches to modeling of reactive transport in porousmedia[J]. Mineralogical Society of America, Reviews in Mineralogy,1996,34,83–129.
    [122] Sun, Y., Petersen, J.N., Clement, T.P., Hooker, B.S. Effect of reaction kinetics on predictedconcentration profiles during subsuiface bioremediation[J]. Journal of ContaminantHydrology,1998,31,395–372.
    [123] Stephen A. Rackely. Carbon Capture and Storage[M]. England, Butterworth-Heinemann,2009.
    [124] Till R. Statistical methods for the each scientist: an introduction[M]. Oxford, Macmillan,1974.
    [125] Vitaly A. Kudryavtseva, Neil J.C. Spooner, Jon Gluyas, Cora Fung, Max Coleman.Monitoring subsurface CO2emplacement and security of storage using muon tomography [J].International Journal of Greenhouse Gas Control,2012,11,21–24.
    [126] Van Der Meer, L.G.H.The Conditions Limiting CO2Storage in Aquifers[J]. Ener. Convers,1993,37,959–966.
    [127] Viswanathan, H.S. Modification of the finite element heat and mass transfer code (FEHM)to model multicomponent reactive transport[R]. Los Alamos, New Mexico, Los AlamosNational Laboratory Report LA–13167–T,105p,1996.
    [128] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity ofunsaturated soils[J]. Soil Sci. Soc. Am. J.,1980,44:892–898.
    [129] Weir, G. J., Reservoir Storage and Contaminant of Greenhouse Gases[J]. Transport in porousmedia,1996,23,37–60.
    [130] Wigand, M.J.W. Carey, H. Schütt, et al. Geochemical effects of CO2sequestration insandstones under simulated in situ conditions of deep saline aquifers[J]. AppliedGeochemistry,2008,23(9):2735–2745.
    [131] Weibel, R.C. Kj ller, K. Bateman, et al. Mineral changes in CO2experiments—Examplesfrom Danish onshore saline aquifers[C]//John Gale, Chris Hendriks, Wim Turkenberg.Energy Procedia:10th International Conference on Greenhouse Gas Control Technologies,GHGT-10, Amsterdam, Netherlands, September19–23,2010. Elsevier Science Ltd.,2011,4:4495–4502.
    [132] Wandrey, M., Fischera, S., Zemkea, K., Liebschera, A., Scherfb, A.K., Hillebrandb, A.V.,Zettlitzerc, M., Würdemann, H. Monitoring petrophysical, mineralogical, geochemical andmicrobiological effects of CO2exposure–Results of long-term experiments under in situconditions[J]. Energy Procedia,2011,4,3644–3650.
    [133] Wigand, M., Carey, J.W., Schütt, H., Spangenberg, E., Erzinger, J. Geochemical effects ofCO2sequestration in sandstones under simulated in situ conditions of deep saline aquifers[J].Applied Geochemistry,2008,28,2735–2745.
    [134] Wilkinson, M., Haszeldine, R.S., Fallick, A.E., Odling, N., Stoker, S.J. Gatliff, R.W.,.CO2—mineral reaction in a natural analogue for CO2storage–implications for modeling[J].Journal of Sedimentary Research,2009,79,486–494.
    [135] White S. P., Allis R. G., Moore J., et al. Simulation of reactive transport of injected CO2onthe Colorado Plateau, Utah, USA[J]. Chemical Geology,2005,217:387–405.
    [136] Wigley, M., Kampman, N., Dubacq, B., Bickle, M. Fluid—mineral reactions and tracemetal mobilization in an exhumed natural CO2reservoir, Green River, Utah[J]. GeologicalSociety of America,2012,40(6):55–558.
    [137] Wolery T. J. EQ3/6: software package for geochemical modeling of aqueous systems:package overview and installation guide (version7.0). Lawrence Livermore NationalLaboratory Report UCRL–MA–210662PT I. Livermore, California,1992.
    [138] Walter, A. L., Frind, E. O., Blowes, D. W., Ptacek, C. J., Molson, J. W. Modeling ofmulticomponent reactice transport in groundwater,1, Model development and evalution[J].Water Resources Research,1994,30,3137–3148.
    [139] White, S. P. Multiphase non-isothermal transport of systems of reacting chemicals[J]. WaterResources Research,1995,31,1761–1772.
    [140] Wolery T J. EQ3/6: software package for geochemical modeling of aqueous systems:package overview and installation guide (version7.0). Lawrence Livermore NationalLaboratory Report UCRL–MA–210662PT I. Livermore, California,1992.
    [141] Wei Zhang, Yilian Li, Tianfu Xu. Long-term variations of CO2trapped in differentmechanisms in deep saline formations: A case study of the Songliao Basin, China[J].International Journal of Greenhouse Gas Control,2009,3.161–180.
    [142] Xu T F, Apps J A, Pruess K. Mineral sequestration of carbon dioxide in a sandstone-shalesystem[J]. Chemical Geology,2005,217:295–318.
    [143] Xu T F, Apps J. A, Pruess K. Numerical simulation of CO2disposal by mineral trapping indeep aquifers[J]. Applied Geochmistry,2004,19:917–936.
    [144] Xu T. F., Pruess K. On fluid flow and mineral alteration in fractured caprock of magmatichydrothermal systems[J]. J.Geophys. Res.106,2001,2121–2138.
    [145] Xu T. F., Apps J. A., Pruess K. Numerical modeling of injection and mineral trapping of CO2with H2S and SO2in a sandstone formation[J]. Chemical Geology,2007,242:319–346.
    [146] Xu T F, Sonnenthal E L, Spycher N, et al. TOURGHREACT: a simulation program fornon-isothermal multiphase reactive geochemical transport in variably saturated geologicmedia[J]. Computers&Geosciences,2006,32:145–165.
    [147] Xu T. F., Samper C, Ayora C., et al. Modeling of non-isothermal multi-component reactivetransport in field-scale porous media flow system[J]. Journal of Hydrology,1999,214:144–164.
    [148] Xu T. F., Kharaka Y. K., Doughty C., et al. Reactive transport modeling to study changes inwater chemistry induced by CO2injection at the Frio–I Brine Pilot[J]. Chemical Geology,2010,271(3–4):153–164.
    [149] Yeh, G. T., Tripathi, V. S. A model for simulating transport of reactive multispeciescomponents:model development and demonstration[J]. Water Resources Research,1991,27,3075–3094.
    [150] Zhichao Yu., LiLiu.,Siyu Yang.,et al. An experimental study of CO2—brine—rockinteraction at in situ pressure–temperature reservoir conditions[J]. Chemical geology,2012,326–327,88–101.
    [151] Zemke, K., Liebscher, A., Wandrey, M., the CO2SINK Group. Petrophysical analysis toinvestigate the effects of carbon dioxide storage in a subsurface saline aquifer at Ketzin,Germany (CO2SINK)[J]. Int.J.Greenhouse Gas Control, doi:10.1016/j.ijggc.2010.04.008.
    [152] Zerai, B., Saylor, B.Z., Matisoff, G. Computer simulation of CO2trapped through mineralprecipitation in the Rose Run Sandstone[J]. Ohio Applied Geochemistry,2006,21,223–240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700