用户名: 密码: 验证码:
三桠苦叶的生物活性成分及指纹图谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     芸香科蜜茱萸属植物三桠苦(Melicope ptelefolia (Champ.ex Benth.) Hartley)始载于《岭南采药录》,现收载于《广东省中药材标准》,既为岭南地区常用中草药,也是广东凉茶的常用配方组分,一般用来治疗跌打损伤、外伤、脓疮、湿疹等病。现已运用该药材开发出三九胃泰、三九感冒灵等多种中成药,销路很好,市场占有率高,创造了很好的经济效益,该药材原植物在广东各地区分布广泛,来源十分丰富,但因其化学成分研究部分相对空白,有效成分不明确,无法对该药材的质量进行有效全面的控制,因而在《中国药典》中未将其收录在内。由于该药材在临床上的药理功效,为了更好的控制该药材的质量,明确该药材的化学成分,寻找其主要有效成分或以其主要有效成分结构母核为基础的药物先导化合物,确定该药材的质量标准,对药材进行二次开发有着十分重要的意义。
     目前,三桠苦的研究主要集中在低极性部位,而对中高极性部位的研究基本空白,传统上是采用三桠苦的水提物,可见三桠苦的活性部位可能在中高极性部位。因此,找出三桠苦叶的抑制一氧化氮活性成分,并建立三桠苦叶的指纹图谱有其重要的意义。
     方法:
     化学成分研究,取三桠苦叶药材粗粉用80%乙醇冷浸24小时,再渗漉,得渗漉液,减压回收溶剂,得提取物浸膏,取160~200目硅胶、硅藻土与浸膏拌匀,装入索氏提取器,依次用石油醚、乙酸乙酯、丙酮、甲醇连续回流提取。所得丙酮部位和甲醇部位,利用硅胶、Sephadex LH-20、反向ODS硅胶等分离技术进行分离纯化,得到单体化合物。综合运用质谱(MS)及核磁共振光谱(1H-NMR,13C-NMR, DEPT,1H-1H-COSY, HSQC, HMBC)等现代光谱和波谱学技术鉴定所得单体化合物的化学结构。
     体外生物活性筛选,小鼠巨噬细胞株RAW264.7,用DMEM完全培养液(含10%胎牛血清,100U·m1-1青霉素及100μg·m1-1链霉素)在37℃、5%CO2培养箱中传代培养3代,取对数生长期细胞用于实验。处于对数生长期时的细胞,用0.25%的胰酶消化细胞,调节细胞浓度为2.5×104个·m1-1,接种于48孔板,250μ1/孔。待细胞80%汇合后,进行分组。分为:空白对照组,LPS组、各种样品组(预处理细胞1h),再用1μg·ml-1LPS刺激细胞24h。24h后,收集上清,并按试剂盒说明书测定NO含量。按公式:NO抑制率求出NO抑制率。
     指纹图谱研究,采用HPLC去对19批三桠苦叶进行指纹图谱构建,运用指纹图谱参数共有峰和相似度进行分析,并采用SPSS软件对19个批次的指纹图谱所得的数据进行聚类分析和主成分分析。
     结果:
     从三桠苦叶丙酮部位和甲醇部位中共分离得到21个化合物,并通过理化性质和光谱解析鉴定了19个化合物。其中,苯乙酮类化合物1个,鉴定为:为1-[2,7-双-(3,4-羟基-四氢呋哺-2-基)-2,4,7-羟基-2,3,7,8-四氢苯并[1,2-b;3,4-b']二呋哺-5-基]-甲酮(化合物1)。黄酮类化合物12个,分别鉴定为:山奈酚-3-O-αt-L-鼠李糖基(1→2)-β-D-半乳糖苷(化合物2)、山奈酚-3-O-β-D-吡喃葡萄糖醛酸甲酯(化合物3),山奈酚-3-O-a-D-葡萄糖基(1→2)-β-D-葡萄吡喃糖苷(化合物4),异鼠李素(化合物5),山奈酚(化合物6),山奈酚-3-O-β-D-吡喃葡萄糖苷(化合物7),山奈酚-3-O-β-D-吡喃葡萄糖醛酸苷(化合物8),槲皮素(化合物9),山奈酚-3-O-α-L-阿拉伯吡喃糖苷(化合物10),3,5,7,3’-四羟基-8,4'-二氧甲基黄酮(化合物11),3,5,3’-三羟基-4'-氧甲基-7-异戊烯氧基黄酮(化合物12),3,5,4’-三羟基-8,3'二氧甲基-7-异戊烯氧基黄酮(化合物13);甾体类化合物2个:p-谷甾醇(化合物15)和胡萝卜苷(化合物16);其它化合物4个:肌醇(化合物14),葡萄糖(化合物17),鼠李糖(化合物18),棕榈酸(化合物19)。
     对三桠苦中分离得到的化合物进行了NO活性筛选,结果显示,异鼠李素、山奈酚、3,5,7,3’-四羟基-8,4'-二氧甲基黄酮、肌醇、槲皮素、谷甾醇Tricosanoic acid tetradecyl ester、香草酸、异鼠李素-3-O-a-L-阿拉伯吡喃糖苷、山奈酚-3-O-芸香糖苷、3,7-二甲氧基山奈酚、3,5,4'-三羟基-8,3’-二甲氧基-7-异戊烯氧基黄酮、3,5,3’-三羟基-4’-甲氧基-7-异戊烯氧基黄酮、3,5,3’-三羟基-8,4'-二甲氧基-7-异戊烯氧基黄酮、赤式-3-(1’,2’,3’-三羟基)异戊基-7-羟基香豆素这十五个化合物在不同浓度下都具有明显的抑制小鼠巨噬细胞释放一氧化氮活性(P<0.05)。而棕榈酸、胡萝卜苷、山奈酚-3-O-p-D-吡喃葡萄糖苷、山奈酚-3-O-β-D-吡喃葡萄糖醛酸甲酯、山奈酚-3-O-α-L-阿拉伯吡喃糖苷、山奈酚-3-O-a-D-葡萄糖基(1→2)-p-D-葡萄吡喃糖苷、山奈酚-3-O-p-D-葡萄糖醛酸、三桠苦丁素、S26、S27的抑制小鼠巨噬细胞释放一氧化氮的活性因浓度的不同而不同,在低浓度时表现出抑制活性,而在高浓度时却无抑制活性。
     建立了三桠苦叶的HPLC指纹图谱,得到了12个共有峰,相似度在0.69-0.98,19批药材聚成3类。
     结论:
     从三桠苦叶丙酮部位中共分离得到21个化合物,并通过理化性质和光谱解析鉴定了19个化合物。其中,苯乙酮类化合物1个,为新化合物;黄酮类化合物12个,甾体类化合物2个,其它化合物4个。化合物2、3、4、6、8、9、11、14、17、18首次从该属中分离得到,化合物19首次从该种中分离得到。
     对三桠苦中分离得到的化合物进行了抑制一氧化氮活性筛选,结果显示,十五个化合物在不同浓度下都具有明显的抑制小鼠巨噬细胞释放一氧化氮活性。十个化合物的抑制小鼠巨噬细胞释放一氧化氮的活性因浓度的不同而不同,在低浓度时表现出抑制活性,而在高浓度时却无抑制活性。
     三桠苦叶的HPLC指纹图谱的构建和化学模式的识别为药材质量控制提供更全面的参考。
Objective
     Melicope ptelefolia (Champ.ex Benth.) Hartley (Rutaeeae) was early recorded in "Lin Nan Cai Yao Lu". Now, this medical plant is recorded in "Guangdong Chinese Medicine Criterion", used as traditional Chinese medicine in the southern region of the People's Republic of China, also named "San-cha-ku". It's a frequently used ingredient of Guang Dong herbal tea; also it serves as a medical herb for the treatment of injury, wounds, fester and eczema. Now, this plant use as the main ingredient in a lot of patent medicine in China, example Sanjiuweitai and Sanjiuganmaoling etc. The patent medicine including "Sanchaku" have good perspective marketing. The original plant of "Sanchaku" is distributed widespread in Guangdong province, China. However, Pharmacopoeia of the People's Republic of China hadnot been recorded this plant. The main reason is this plant was lacked of the chemical constituents or biological active constituents were unclear. So could not control the quality of this medicinal material. In order to better control the quality of the medicinal material because this medicinal material in clinical pharmacological effect, clearly labeled with the chemical composition and to find its main active ingredient or the nucleus of its main active ingredient structure-based drug lead compounds to determine the quality standard of medicine, the intensive research and development of this plant is value and meaningful.
     Currently, the study of Melicope ptelefolia mainly concentrated in the low polar fractions, but on the high polar parts of the basic blank. The water extracts of Melicope ptelefolia was used in traditional. So the bioactive part should be at high polarity part of the extracts from Melicope ptelefolia. Therefore, to find the inhibited nitric oxide active constituents of leaves from Melicope ptelefolia, and established the fingerprint of leaves from Melicope ptelefolia have important significance.
     Methods
     Aspects of chemical constituents:The powder of dried leaves of Melicope ptelefolia been roomtemperature immersion24hours with80%ethanol, and then diacolation, vacuum solvent, and then get extract. Mixing160-200mesh silica gel, the diatomite and the extract, followed by continuous reflux extraction with petroleum ether, ethyl acetate, acetone and methanol. Acetone part were separated and purified by silica gel, Sephadex LH-20, reverse the ODS silica gel separation technology to obtain monomeric compound. The chemical structure of the monomers were identification by ultraviolet spectroscopy (UV), infrared spectroscopy (IR), mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (~1H-NMR and~(13)C-NMR, DEPT,1H-1H-COSY, HSQC, HMBC) and other modern spectroscopy and spectroscopic techniques.
     Aspects of biological activity in vitro study, the RAW264.7were cultured3generation with DMEM complete medium (containing10%fetal bovine serum,100U· ml~(-1) penicillin and100μg ml~(-1) streptomycin) at37℃,5%CO_2incubator, whichever is the logarithmic growth phase cells used in the experiment. In cells in the logarithmic growth phase, with0.25%trypsin digestion and cells, regulates cell concentration of2.5X104ml~(-1), inoculated in48well plates,250μl/hole. When the cells to80%confluence after grouping. Divided into:blank control group, LPS group, a variety of sample group (cells pretreated for1h), and then1μg-ml~(-1) of LPS stimulation the cells for24h. After24h, supernatant was collected, according to the kit instructions to determine NO content. Then NO inhibition rate calculated by the formula: NO inhibition rate (%)=100×
     Aspects of fingerprints:The fingerprints were establish of19batches of leaves of Melicope ptelefolia by HPLC, and the use of fingerprint parameters common peaks and similarity analysis, and the map were analysis with the cluster analysis and principal component analysis.
     Results
     19compounds were isolation and identification from acetone part of leave of Melicope ptelefolia. Among them,1acetophenones were identified as:1-[2,7-Bis-(3,4-dihydroxy-tetrahydro-furan-2-yl)-2,4,7-trihydroxy-2,3,7,8-tetrahydro-benzo[1,2-b;3,4-b']difuran-5-yl]-ethanone (compound1);12flavonoids were identified as:Kaempferol-3-O-alpha-L-rha-mnosyl(1→2)-beta-D-galactopyranoside (compound2), kaempferol-3-O-beta-D-pyran-glu-curonic acid methyl ester (compound3), kaempferol-3-O-alpha-D)-glucosyl(1→2)-beta-D-glucopyranoside (compound4), isorhamnetin (compound5), kaempferol (compound6), kaempferol-3-O-beta-D-glucopyranoside (compound7), Kaempferol-3-O-beta-D-pyran-gl-ucuronic acid (compound8), quercetin (compound9), kaempferol-3-O-α-L-arabinopyran-oside (compound10),3,5,7,3'-tetrahydroxy-8,4'-dimethoxy flavone (compound11),3,5,3'-trihydroxy-4'-methoxy-7-prenyloxycoumarin flavonoids (compounds12),3,5,4'-trihydro-xy-8,3'-dimethoxy-7-prenyloxycoumarin flavonoids (compounds13);2steroidal were identified as:P-sitosterol (compound15) and daucossterol (compounds16);4other compounds were identified as:inositol (compound14), glucose (compound17), rhamnose (compounds18), palmitic acid (compound the19).
     The compounds from Melicope ptelefolia were screened on inhibition nitric oxide activity. The results showed that fifteen compounds had significant inhibit murine macrophages to release nitric oxide at1μg·ml~(-1) and10μg·ml~(-1)(P<0.05). These compounds including:isorhamnetin, kaempferol,3,5,7,3'-tetrahydroxy-8,4'-dimethoxy flavones. inositol, quercetin, β-sitosterol, Tricosanoic acid tetradecyl ester, vanillic acid. Isorhamnetin-3-O-α-L-arabinopyranoside, kaempferol-3-O-rutinoside,3,7-dimethoxyl kae-mpferol,3,5,4'-trihydroxy-8,3'-dimethoxy-7-(3-methylbut-2-enyloxy)flavones,3,5,3'-trihy-droxy-4'-methoxy-7-(3-methylbut-2-enyloxy)flavones,3,5,3'-trihydroxy-8,4'-dimethoxy-7-(3-methylbut-2-enyloxy)flavones, erythro-3-(1',2',3'-trihydroxy)isopenthl-7-hydroxycoum-arin. Seven compounds had significant inhibit murine macrophages to release nitric oxide at1(μg-ml"1(P<0.05). These compounds including palmitic acid, daucossterol, kaempferol-3-O-(3-D-glucopyranoside, kaempferol-3-O-beta-D-pyran-glucuronic acid methyl ester, kaempferol-3-O-a-L-arabinopyranoside, kaempferol-3-O-alpha-L)-glucosyl-(1→2)-beta-D-glucopyranoside, Kaempferol-3-O-beta-D-pyran-glucuronic acid, pteleifolosin D, S26, S27.
     HPLC fingerprint of leaves of Melicope ptelefolia were established and obtained12common peaks and similarity0.69-0.98.19batches of medicinal materials were clustered3classes.
     Conclusion
     19compounds were isolation and identification from acetone part of leave of Melicope ptelefolia by physicochemical properties and spectrum analysis. Among them,1acetophenones,12flavonoids,2steroids,4other compounds. Compound1is a new compound. Compound2,3,4,6,8,9,11,14,17,18were isolated from Melicope genus for the first time. Compound19were isolated from this species for the first time.
     The compounds from Melicope ptelefolia were screened on inhibition nitric oxide activity. The results showed that fifteen compounds had significant inhibit murine macrophages to release nitric oxide at1μg-ml"1and10μg-ml"1. Ten compounds had significant inhibit murine macrophages to release nitric oxide at1μg-ml~(-1).
     HPLC fingerprint and chemical pattern recognition of leaves of Melicope ptelefolia were established, and provide more competed reference for control quality of the medicinal materials.
引文
[1]中国科学院中国植物志编辑委员会flora of China[M]北京:科学出版社,2008.
    [2]南京中医药大学.中药大辞典(第二版)[M].上海:上海科学技术出版社,2006:78.
    [3]G H T. Arevision of the genus Tetradium(Rutaeeae)[J]. Garden Bull,1981,34:91-131.
    [4]广‘东省食品药品监督管理局.广东省中药材标准(第一册)[M].广州:广东科技出版社,2004:7-9.
    [5]钟希文,梅全喜,高玉桥,等.三丫苦泡茶的抗炎、镇痛及解热作用[J].中药材,2001,24(09):664-665.
    [6]Wu Z Y, Yang Q E, Hong D Y. Flora of China[M]. Beijing; St. Louis.Science Press; Missouri Botanical Garden Press,2008:70-73.
    [7]Williams C A, Renee J G. Anthocyanins and other flavonoids[J]. Natural Product Reports,2004,21: 539-573.
    [8]Sultana N, Hartley T G, Waterman P G. Two novel prenylated flavones from the aerial parts of Melicope micrococca[J]. Phytochemistry,1999,50(7):1249-1253.
    [9]H M, Yoshikawa M, S Y, et al. Flavonoid constituents of Melicope triphylla Merr.[J]. Yakugaku Zasshi, 1987,107(12):954-958.
    [10]H M, O T, O K, et al. Flavonoid constituents of Melicope triphylla Merr. Ⅱ [J]. Yakugaku Zasshi,1990, 110(11):822-827.
    [11]Zhu S H, Gao Y H, Wei Z X, et al. A New Phenylated Flavone from Melicope pteleifolia[J]. Chinese Herbal Medicines,2011(02):81-83.
    [12]Abdurzag A A, Pgw T G H. Distribution of flavonoids, alkaloids, acetophenones and phloroglucinols in the genus Bosistoa (Rutaceae)[J]. Biochemical Systematics and Ecology,1997,25(7):611-617.
    [13]Islam S K N, Gray A I, Waterman P G, et al. Screening of eight alkaloids and ten flavonoids isolated from fours species of the genus Boronia (Rutaceae) for antimicrobial activities against seventeen clinical microbial strains[J]. Phytotherapy Research,2002,16(7):672-674.
    [14]Girard C, Frederic M, Francoise B, et al. Polyoxygenated Flavones from the leaves of Comptonella mictocarpa[J]. Jounral of Natural Products,1999,62(8):1188-1189.
    [15]Amaral D F, Arruda M S P, Arruda A C, et al. Flavones from the leaves of Ficus gomelleira[J]. Journal of the Brazilian Chemical Society,2011,12:538.
    [16]Sritularak B, Likhitwitayawuid K, Conrad J, et al. New Flavones from Millettia erythrocalyx[J]. Journal of Natural Products,2002,65(4):589-591.
    [17]Chung L Y, Yap K F, Goh S H, et al. Muscarinic receptor binding activity of polyoxygenated flavones from Melicope subunifoliolata[J]. Phytochemistry,2008,69(7):1548-1554.
    [18]Simonsen H T, Larsen M D, Nielsen M W, et al. Methylenedioxy-and methoxyflavones from Melicope coodeana syn. Euodia simplex[J]. Phytochemistry,2002,60(8):817-820.
    [19]Muyard F, Bissoue A N, Bevalot F, et al. Acetophenones and other constituents from the roots of Melicope erromangensis[J]. Phytochemistry,1996,42(4):1175-1179.
    [20]Ian-Lih T, Shwu-Jen W, Ishikawa T, et al. Evomerrine from Melicope semecarpifolia[J]. Phytochemistry,1995,40(5):1561-1562.
    [21]Hung Ho S, Wang J, Sim K Y, et al. Meliternatin:a feeding deterrent and larvicidal polyoxygenated flavone from Melicope subunifoliolata[J]. Phytochemistry,2003,62(7):1121-1124.
    [22]Simonsen H T, Adsersen A, Smitt U W, et al. Methoxyflavones from Melicope borbonica and M. obscura (Rutaceae)[J]. Biochemical Systematics and Ecology,2003,31(3):327-330.
    [23]Sheng-Hua Z, You-Heng G, Zhi-Xiong W, et al. A New Phenylated Flavone from Melicope pteleifolia[J]. Chinese Herbal Medicines,2011,3(02):81-83.
    [24]Adsersen A, Smitt U W, Simonsen H T, et al. Prenylated acetophenones from Melicope obscura and Melicope obtusifolia ssp. obtusifolia var. arborea and their distribution in Rutaceae[J]. Biochemical Systematics and Ecology,2007,35(7):447-453.
    [25]Kumar V, Karunaratne V, Sanath M R, et al. Two fungicidal phenylethanones from Euodia lunu-ankenda root bark[J]. Phytochemistry,1990,29(1):243-245.
    [26]Chan J A, Shultis E A, Carr S A, et al. Novel phloroglucinols from the plant Melicope sessiliflora (Rutaceae)[J]. J. Org. Chem,1989,54:2098-2103.
    [27]Lin L C, Chou C J, Chen K T, et al. Two new acetophenones from fruits of Evodia merrillii[J]. J. Nat. Prod,1993,56:926-928.
    [28]Chou C J, Lin L C, Chen K T, et al. Novel acetophenones from fruits of Evodia merrillii[J]. J. Nat. Prod, 1992,55:795-799.
    [29]Balgir B S, Mander L N, Mander S T K. A revision of the structures proposed for the Melicope extractives, melicopol and methylmelicopol[J]. Aust. J. Chem,1973,26:2459-2472.
    [30]Ritchie E, Taylor W C, Vautin S T K. The constituents of Melicope broadbentiana F.M. Bail. The structures of melibentin, melicopol and methylmelicopol[J]. Aust. J. Chem,1965,18:2021-2034.
    [31]Muyard F, Bissoue A N, Bevalot F, et al. Acetophenones and other constituents from the roots of Melicope erromangensis[J]. Phytochemistry,1996,42:1175-1179.
    [32]Goh S H, Chung V C, Sha C K, et al. Monoterpenoid phloroacetophenones from Euodia latifolia[J]. Phytochemistry,1990,29:1704-1706.
    [33]Kirby K D, Sutherland M D. Some naturally occurring dimethylchromenes. Ⅱ. Alloevodione[J]. Aust. J. Chem,1956,9:411-415.
    [34]Briggs L H, Locher R H. Chemistry of New Zealand Melicope species. Part Ⅳ. Constituents of the bark of Melicope simplex[J]. J. Chem. Soc.,1950:2376-2379.
    [35]Manandhar M D, Hussaini F A, Kapil R S, et al. Bacteriostatic heterocycles from Euodia lunu-ankenda [J]. Phytochemistry,1985,24:199-200.
    [36]Michael J P. Quinoline, quinazoline and acridone alkaloids[J]. Nat Prod Rep,2004,21(5):650-668.
    [37]Michael J P. Quinoline, quinazoline, and acridone alkaloids[J]. Nat Prod Rep,1994,11(2):163-172.
    [38]Michael J P. Quinoline, quinazoline, and acridone alkaloids[J]. Nat Prod Rep,1992,9(l):25-35.
    [39]Grundon M F. Quinoline, quinazoline, and acridone alkaloids[J]. Nat Prod Rep,1988,5(3):293-307.
    [40]Grundon M F. Quinoline, quinazoline, and acridone alkaloids[J]. Nat Prod Rep,1987,4(3):225-236.
    [41]Grundon M F. Quinoline, quinazoline, and acridone alkaloids[J]. Nat Prod Rep,1985,2(5):393-400.
    [42]Kamperdick C, Van N H, Sung T V, et al. Bisquinolinone alkaloids from Melicope ptelefolia[J]. Phytochemistry,1999,50(1):177-181.
    [43]Latip J, Hartley T G, Waterman P G. Lignans and coumarins metabolites from Melicopehayesii[J]. Phytochemistry,1999,51(1):107-110.
    [44]Latif Z, Hartley T G, Rice M J, et al. Isobutylamides and Coumarins from Melicope melanophloia[J]. Biochemical Systematics and Ecology,1998,26(4):467-468.
    [45]高幼衡,朱盛华,魏志雄,等.三叉苦中一个新的香豆素类化合物[J].中草药,2009,40(12):1860-1862.
    [46]Chung L Y, Yap K F, Goh S H, et al. Muscarinic receptor binding activity of polyoxygenated flavones from Melicope subunifoliolata[J]. Phytochemistry,2008,69(7):1548-1554.
    [47]Latif Z, Hartley T G, Rice M J, et al. Isobutylamides and Coumarins from Melicope melanophloia[J]. Biochemical Systematics and Ecology,1998,26(4):467-468.
    [48]Johnson A J. Kumar R. A, Rasheed S A, et al. Antipyretic, analgesic, anti-inflammatory and antioxidant activities of two major chromenes from Melicope lunu-ankenda[J], Journal of Ethnophannacology,2010, 130(2):267-271.
    [49]Abas F, Shaari K, Israf D A, et al. LC-DAD-ESI-MS analysis of nitric oxide inhibitory fractions of tenggek burung (Melicope ptelefolia Champ. ex Benth.)[J]. Journal of Food Composition and Analysis,2010, 23(1):107-112.
    [50]O Donnell F, Ramachandran V N, Smyth T J P, et al. An investigation of bioactive phytochemicals in the leaves of Melicope vitiflora by electrospray ionisation ion trap mass spectrometry[J]. Analytica Chimica Acta,2009,634(1):115-120.
    [51]Hung Ho S, Wang J, Sim K Y, et al. Meliternatin:a feeding deterrent and larvicidal polyoxygenated flavone from Melicope subunifoliolata[J]. Phytochemistry,2003,62(7):1121-1124.
    [52]Abas F, Lajis N H, Israf D A, et al. Antioxidant and nitric oxide inhibition activities of selected Malay traditional vegetables[J]. Food Chemistry,2006,95(4):566-573.
    [53]Barrows L R, Powan E, Pond C D, et al. Anti-TB activity of Evodia elleryana bark extract[J]. Fitoterapia,2007,78(3):250-252.
    [54]Cambie R C, Pan Y J, Bowden B F. Flavonoids of the barks of Melicope simplex and Melicope ternata[J]. Biochemical Systematics and Ecology,1996,24(5):461-462.
    [55]杨卫丽,毛彩霓,刘明生,等.三叉苦生药学研究[J].中国热带医学,2008,8(05):851-853.
    [56]毕和平,韩长日,韩建萍.三叉苦叶挥发油的化学成分分析[J].中草药,2005,36(05):663-664.
    [57]刁远明,高幼衡.广东产三叉苦叶挥发性成分的气相色谱-质谱联用分析[J].时珍国医国药,2008,19(03):708.
    [58]梁粤,郭丽冰.气相色谱-质谱法分析三叉苦茎的挥发油成分[J].现代中药研究与实践,2009,22(06):29-30.
    [59]李国林,朱大元.三个新2,2-二甲基苯并二氢毗喃类化合物的分离与鉴定[J].Acta Botanica Sinica,1997,39(07):670-674.
    [60]李国林,曾佳烽,朱大元.4个新2,2-二甲基色烯类化合物的分离和鉴定[J].药学学报,1997,32(09):682-684.
    [61]Li G, Zeng J, Song C, et al. CHROMENES FROM EVODIA LEPTA [J]. Phytochemistry,1997, 44(6):1175-1177.
    [62]Li G, Zeng J, Zhu D. Chromans From Evodia Lepta[J]. phytochemistry,1998,47(1):101-104.
    [63]Li G, Zhu D. Two Chromenes From Evodia Lepta[1]. phytochemistry,1998,48(6):1051-1054.
    [64]Li G L, Zhu D Y. Two New Dichromenes from Evodia lepta[J]. J Nat Prod,1998,61(3):390-391.
    [65]Van N H, Kamperdick C, VAN Sung T, et al. BENZOPYRAN DIMERS FROM MELICOPE PTELEFOLIA[J]. phytochemistry,1998,48(6):1055-1057.
    [66]Kamperdick C, Nguyen H V, Tran V S, et al. Benzopyrans from Melicopeptelefolialeaves[J]. Phytochemistry,1997,45(5):1049-1056.
    [67]刁远明,高幼衡,彭新生.三叉苦化学成分研究(Ⅰ)[J].中草药,2004,35(10):24-25.
    [68]刁远明,高幼衡,彭新生,等.三叉苦化学成分研究(Ⅱ)[J].中草药,2006,37(09):1309-1311.
    [69]李硕果,叶文才,江仁望HPLC法测定市售三桠苦中吴茱萸春的含量[J].亚太传统医药,2011,7(04):33-35.
    [70]刁远明,高幼衡,蔡鸿飞,等RP-HPLC法测定三叉苦中吴茱萸春[J].中草药,2008,39(01):126-127.
    [71]Kamperdicka C, Nguyen H V, Tran V S, et al. Bisquinolinonealkaloids from Melicopeptelefolia[J]. Phytochemistry,1999,50(1):177-181.
    [72]朱盛华.三桠苦的化学成分及茎叶成分的比较研究[D].广州:广州中医药大学,2009.
    [73]刁远明.三桠苦活性成分的研究[D].广州:广州中医药大学,2005.
    [74]李硕果,杨茵,叶文才,等.三桠苦的化学成分研究[J].中草药,2010,41(7):1052-1056.
    [75]刁远明,高幼衡,彭新生,等.三叉苦化学成分研究(Ⅱ)[J].中草药,2006(9):1309-1311.
    [76]张军锋,于文辉,窦智峰,等.ICP-MS法测定三丫苦中微量元素的研究[J].海南大学学报(自然科学版),2009,27(03):256-258.
    [77]魏娜,赖伟勇,张俊清,等.牛耳枫等五种药材重金属元素含量分析[J].中外医疗,2008(23):85-86.
    [78]赖伟勇,杨卫丽,刘明生,等.辣蓼等四种黎药药材重金属元素含量研究[J].中国热带医学,2011,11(05):579-581.
    [79]许泳吉,汤志方,袁瑾,等.野生植物三桠苦的营养成分[J].光谱实验室,2005,22(2):354-355.
    [80]赖伟勇,谭银丰,杨卫丽,等.三种黎药的急性毒性研究[J].海南医学院学报,2010,16(04):411-412.
    [81]李硕果,叶文才,江仁望.三桠苦的化学成分及抗前列腺癌活性[C].中国山东济南:2010.
    [82]邓琪,黄美景,郭丽冰,等.三丫苦抗炎镇痛作用及机制研究[J].中国实验方剂学杂志,2011,17(04):125-128.
    [83]毕和平,张立伟,韩长日,等.三叉苦提取物抗氧化作用的研究[J].食品科学,2007,28(07):57-60.
    [84]庞辉,玉艳红,汤桂芳.三叉苦提取物对小鼠实验性肝损伤的保护作用[J].广西医科大学学报,2006,23(06):961-962.
    [85]梁粤.三叉苦抗炎镇痛作用及脂溶性化学成分研究[D].广州:广东药学院,2010.
    [86]范文昌,梅全喜,欧秀华,等.12种广东地产清热解毒药材的抗炎作用研究[J].中国药业,2011,20(08):28-29.
    [87]范文昌,梅全喜,高玉桥.12种广东地产清热解毒药的镇痛作用实验研究[J].今日药学,2010,20(02):12-15.
    [88]Banskota A H, Tezuka Y, Tran K Q, et al. Methyl quadrangularates A-D and related triterpenes from Combretum quadrangulare[J]. Chem Pharm Bull (Tokyo),2000,48(4):496-504.
    [89]Banskota A H, Tezuka Y, Adnyana I K, et al. Hepatoprotective effect of Combretum quadrangulare and its constituents[J]. Biol Pharm Bull,2000,23(4):456-460.
    [90]Ishitsuka H, Ohsawa C, Ohiwa T, et al. Antipicornavirus flavone Ro 09-0179[J]. Antimicrob Agents Chemother,1982,22(4):611-616.
    [91]Sandoval I V, Carrasco L. Poliovirus infection and expression of the poliovirus protein 2B provoke the disassembly of the Golgi complex, the organelle target for the antipoliovirus drug Ro-090179[J]. J Virol,1997,71 (6):4679-4693.
    [92]Lee K H, Kwak J H, Lee K B, et al. Prolyl endopeptidase inhibitors from caryophylli flos[J]. Arch Pharm Res,1998,21(2):207-211.
    [93]Hyun S K, Jung H A, Chung H Y, et al. In vitro peroxynitrite scavenging activity of 6-hydroxykynurenic acid and other flavonoids from Gingko biloba yellow leaves[J]. Arch Pharm Res,2006,29(12):1074-1079.
    [94]Ling S K, Pisar M M, Man S. Platelet-activating factor (PAF) receptor binding antagonist activity of the methanol extracts and isolated flavonoids from Chromolaena odorata (L.) King and Robinson[J]. Biol Pharm Bull,2007,30(6):1150-1152.
    [95]Lee T, Chiang Y, Chen C, et al. A new flavonol galloylrhamnoside and a new lignan glucoside from the leaves of Koelreuteria henryi Dummer[J]. J Nat Med,2009,63(2):209-214.
    [96]Morikawa T, Imura K, Miyake S, et al. Promoting the effect of chemical constituents from the flowers of Poacynumhendersonii on adipogenesis in 3T3-L1 cells[J]. J Nat Med,2012,66(1):39-48.
    [97]Xu X, Gao X, Jin L, et al. Antiproliferation and cell apoptosis inducing bioactivities of constituents from Dysosma versipellis in PC3 and Bcap-37 cell lines[J]. Cell Div.2011.6(1):14.
    [98]Waki T, Nakanishi I, Matsumoto K, et al. Key role of chemical hardness to compare 2.2-diphenyl-l-picrylhydrazyl radical scavenging power of flavone and flavonol O-glycoside and C-glycoside derivatives[J]. Chem Pharm Bull (Tokyo),2012,60(1):37-44.
    [99]Han J T, Bang M H, Chun O K, et al. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities [J]. Arch Pharm Res,2004,27(4):390-395.
    [100]Kim M S, Kim S H. Inhibitory effect of astragalin on expression of lipopolysaccharide-induced inflammatory mediators through NF-kappaB in macrophages[J]. Arch Pharm Res,2011.34(12):2101-2107.
    [101]Park H Y, Kim H K, Jeon S H, et al. Aldose reductase inhibitors from the leaves of Salix hulteni[M] Volume 52, Number 5,52:Volume 52, Number 5,493-497, DOI:10.3839/jksabc.2009.084,493-497.
    [102]Inaba H, Tagashira M, Honma D, et al. Identification of hop polyphenolic components which inhibit prostaglandin E2 production by gingival epithelial cells stimulated with periodontal pathogen[J]. Biol Pharm Bull,2008,31(3):527-530.
    [103]Phan V K, Nguyen T M, Minh C V, et al. Two new C-glucosyl benzoic acids and flavonoids from Mallotus nanus and their antioxidant activity[J]. Arch Pharm Res,2010,33(2):203-208.
    [104]Yang Z, Zhang D, Ren J, et al. Skimmianine, a furoquinoline alkaloid from Zanthoxylum nitidum as a potential acetylcholinesterase inhibitorspringerlink,2011.
    [105]Zhao W, Wolfender J L, Hostettmann K, et al. Antifungal alkaloids and limonoid derivatives from Dictamnus dasycarpus[J]. Phytochemistry,1998,47(1):7-11.
    [106]Guo N, Yu L, Meng R, et al. Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine[J]. Yeast,2008,25(9):631-641.
    [107]Randrianarivelojosia M, Rasidimanana V T, Rabarison H, et al. Plants traditionally prescribed to treat tazo (malaria) in the eastern region of Madagascar[J]. Malar J,2003,2:25.
    [108]Akhmedzhanova V I, Angenot L, Shakirov R S. ALKALOIDS FROM Haplophyllum leptomerum [J]. Chemistry of Natural Compounds,2010,46(3):502-503.
    [109]Henriques JAP, Moreno P R H, VON Poser G L, et al. GENOTOXIC EFFECT OF ALKALOIDS[J]. Mem. Inst. Oswaldo Cruz, Rio de Janeiro,1991,86(11):71-74.
    [110]Olila D, Olwa-Odyek, Opuda-Asibo J. Antibacterial and antifungal activities of extracts of Zanthoxylum chalybeum and Warburgia ugandensis, Ugandan medicinal plants[J]. Afr Health Sci,2001, 1(2):66-72.
    [111]Yang G, Chen D. Alkaloids from the roots of Zanthoxylum nitidum and their antiviral and antifungal effects[J]. Chem Biodivers,2008,5(9):1718-1722.
    [112]Ostan I, Saglam H, Limoncu M E, et al. In vitro and in vivo activities of Haplophyllum myrtifolium against Leishmania tropica[J]. New Microbiol,2007,30(4):439-445.
    [113]Olila D, Olwa-Odyek, Opuda-Asibo J. Screening extracts of Zanthoxylum chalybeum and Warburgia ugandensis for activity against measles virus (Swartz and Edmonston strains) in vitro[J]. Afr Health Sci,2002, 2(1):2-10.
    [114]Sackett T E, Towers G H N, Isman M B. Effects of furoquinoline alkaloids on the growth and feeding of two polyphagous lepidopterans[J]. Chemoecology,2007,Volume 17, Number 2,97-101, DOI: 10.1007/s00049-007-0367-y(2):97-101.
    [115]Nam K, Je K, Shin Y, et al. Inhibitory effects of furoquinoline alkaloids from Melicope confusa and Dictamnus albus against human phosphodiesterase 5 (hPDE5A) in vitro[J]. Archibes Pharmacal Research, 2005, Volume 28(6):675-679.
    [116]Wansi J D, Hussain H, Tcho A T, et al. Antiplasmodial activities of furoquinoline alkaloids from Teclea afzelii[J]. Phytother Res,2010,24(5):775-777.
    [117]Cui B, Chai H, Dong Y, et al. Quinoline alkaloids from Acronychia laurifolia[J]. Phytochemistry,1999, 52(1):95-98.
    [118]Zhang M, Long Y, Sun Y, et al. Evidence for the complementary and synergistic effects of the three-alkaloid combination regimen containing berberine, hypaconitine and skimmianine on the ulcerative colitis rats induced by trinitrobenzene-sulfonic acid[J]. Eur J Pharmaco1,2011,651(1-3):187-196.
    [119]Chen I S, Lin Y C, Tsai I L, et al. Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium[J]. Phytochemistry,1995,39(5):1091-1097.
    [120]Dos S R, Batista J J, Rosa S I, et al. Leishmanicidal effect of Spiranthera odoratissima (Rutaceae) and its isolated alkaloid skimmianine occurs by a nitric oxide dependent mechanism[J]. Parasitology,2011, 138(10):1224-1233.
    [121]Chen J J, Wang T Y, Hwang T L. Neolignans, a coumarinolignan, lignan derivatives, and a chromene: anti-inflammatory constituents from Zanthoxylum avicennae[J]. J Nat Prod,2008,71(2):212-217.
    [122]Prakash C V, Schilling J K, Miller J S, et al. New cytotoxic alkaloids from the wood of Vepris punctata from the Madagascar rainforest[J]. J Nat Prod,2003,66(4):532-534.
    [123]Liu Z L, Chu S S, Jiang G H. Feeding deterrents from Zanthoxylum schinifolium against two stored-product insects[J]. J Agric Food Chem,2009,57(21):10130-10133.
    [124]Zhang D J, Huang S L, Chen N N, et al. [Growth-inhibiting effect of psoralen plus ultraviolet-A light therapy on K562 cells][J]. Zhong Xi Yi Jie He Xue Bao,2005,3(6):480-483.
    [125]Chen N N, Huang S L, Xiang Y, et al. [Effects of psoralen plus long-wave ultraviolet-A on apoptosis of HL-60 leukemia cells][J]. Zhong Xi Yi Jie He Xue Bao,2008,6(8):852-855.
    [126]Bian Q, Huang J H, Yang Z, et al. [Effects of active ingredients in three kidney-tonifying Chinese herbal drugs on gene expression profile of bone marrow stromal cells from a rat model of corticosterone-induced osteoporosis][J]. Zhong Xi Yi Jie He Xue Bao,2011,9(2):179-185.
    [127]Guo B F, Liu S, Ye Y Y, et al. [Inhibitory effects of osthole, psoralen and aconitine on invasive activities of breast cancer MDA-MB-231BO cell line and the mechanisms][J]. Zhong Xi Yi Jie He Xue Bao, 2011,9(10):11 10-1117.
    [128]Xu Q, Pan Y, Yi L T, et al. Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test[J]. Biol Pharm Bull,2008,31(6):1109-1114.
    [129]Lee S J, Nam K W, Mar W. Effects of psoralen from Psoralea corylifolia on quinone reductase, ornithine decarboxylase, and JB6 cells transformation promotion[J]. Arch Pharm Res,2011,34(1):31-36.
    [130]Wang Y, Hong C, Zhou C, et al. Screening Antitumor Compounds Psoralen and Isopsoralen from Psoralea corylifolia L. Seeds[J]. Evid Based Complement Alternat Med,2009.
    [131]Toyooka T, Ibuki Y. Histone deacetylase inhibitor sodium butyrate enhances the cell killing effect of psoralen plus UVA by attenuating nucleotide excision repair[J]. Cancer Res,2009,69(8):3492-3500.
    [132]庞声航.壮药咽喉灵饮片[J].广西中医药,2004,27(06):41.
    [133]防治感冒新方剂——“感冒灵”冲服剂[J].新医药通讯,1972(03):33.
    [134]广州市感冒灵治疗协作组.“复方感冒灵”治疗感冒300例的疗效观察[J].新医药通讯,1973(04):17-20.
    [135]李东海,李勇,齐庆,等.复方二藤洗剂治疗掌跖脓疱病疗效观察[J].陕西中医,2010,31(12):1626-1627.
    [136]吕丽雅,周礼卿.三桠苦组方治疗118例上呼吸道感染疗效观察[J].医学信息,2007,20(05):827-828.
    [137]广州中医学院攻克老年慢性气管炎小组.三敏感冒片临床疗效初步观察[J].新医学,1972(04): 31-32.
    [138]三九胃泰运用研究[C].中国广州深圳:2009.
    [139]广东番禺县人民医院外科.三桠苦治疗腹胀、便秘57例疗效观察[J].新医学.1978(08):封三-封四.
    [140]黄冬玲,钟鸣,黄琳芸.壮药调气通路膏抗炎镇痛药效学及毒理学试验报告[J].中国民族医药杂志,2002,,8(03):31-32.
    [141]Su C, Kuo P, Wang M, et al. Acetophenone derivatives from Acronychia pedunculata[J]. J Nat Prod, 2003,66(7):990-993.
    [142]Bias B, Zapp J, Becker H. ent-Clerodane diterpenes and other constituents from the liverwort Adelanthus lindenbergianus (Lehm.) Mitt.[J]. Phytochemistry,2004,65(1):127-137.
    [143]Muyard F, Bissoue A N, Bevalot F, et al. Acetophenones and other constituents from the roots of Melicope erromangensis[J]. Phytochemistry,1996,42(4):1175-1179.
    [144]Glatter E, Zviely M. Reaction of 3-Hydroxycholesta-4,6-dienes with m-Chloroperbenzoic acid[J]. Journalof the Chemical Society, Perkin Transactions 1,1984:2345-2349.
    [145]郭启雷,杨峻山,刘建勋.掌叶覆盆子的化学成分研究[J].中国药学杂志,2007,42(15):1141-1143.
    [146]吴斌,林文辉.昙花化学成分的研究[J].中国药学杂志,2010,45(7):496--499.
    [147]于德泉,杨峻山.分析化学手册(第二版)(第七分册)[M].北京:化学工业出版社,1998.
    [148]郑莹.三七茎叶黄酮类成分的研究[D].长春:吉林大学,2004.
    [149]Mahmoud 11, Moharram F A, Marzouk M S, et al. Polyphenolic constituents of Callistemon lanceolatus leaves[J].Pharmazie,2002,57(7):494-496.
    [150]谢周涛.水红花子化学成分及其质量分析研究[D].武汉:湖北中医学院,2006.
    [151]Nagarajan G R, Seshadri T R. Flavonoid components of the hearrwood of Prunus domestica linn.[J]. Phytochemistry,1964,3(4):477-484.
    [152]Zhu S H, Gao Y H, Wei Z X, et al. A New Phenylated Flavone from Melicope pteleifolia[J]. Chinese Herbal Medicines,2011(02):81-83.
    [153]Sultana N, Hartley T G, Waterman P G. Two novel prenylated flavones from the aerial parts of Melicope micrococca[J]. Phytochemistry,1999,50(7):1249-1253.
    [154]于德泉,杨峻山.分析化学手册(第二版)(第七分册)[M].北京:化学工业出版社,1999:909.
    [155]代英辉,崔征,王东,等.苍耳子的化学成分[J].沈阳药科大学学报,2008(8):630-632.
    [156]于德泉,杨峻山.分析化学手册(第二版)(第七分册)[M].北京:化学工业出版社,2005:495-901.
    [157]于德泉,杨峻山.分析化学手册(第二版) (第七分册)[M].北京:化学工业出版社,2005:902.
    [158]黄建设,李庆欣,吴军,等.粗吻海龙化学成分的研究[J].中草药,2004(5):9-11.
    [159]Geng Y, Hansson G K, Holme E. Interferon-gamma and tumor necrosis factor synergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells[J]. Circ Res,1992, 71(5):1268-1276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700