用户名: 密码: 验证码:
家蚕转基因载体元件的结构优化及在基因功能分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕既是支撑蚕丝产业的生物基础,又是鳞翅目昆虫研究的典型模式种类,同时,也是开发新一代生物反应器和新型昆虫产业的材料。近几年来对其的科学研究所取得的成果具有较高的学术价值,代表了国际同领域的先进水平,特别是在遗传连锁图谱、家蚕基因组序列与结构等方面,使得结构基因组学开始过渡到了功能基因组学。在家蚕中基因功能的研究方法很多,转基因技术不乏为一个很优秀的手段。本文就有关基因功能研究中的家蚕转基因技术和方法开展了一些研究工作,主要的研究内容和得到的结果如下:
     1、家蚕转基因效率与转座子内部序列的相关分析
     自从基于piggyBac转座子方法的家蚕转基因成功问世以来,越来越多的研究学者利用该项技术来进行家蚕生物反应器和家蚕具有潜在经济性能的功能基因研究。然而该项技术的显微注射费时费力,而且成功率仅在3%~5%之间,不利于它的大规模推广与应用。为了提高家蚕转基因成功率,我们对piggyBac转座子载体进行了改造,敲除了载体中的冗余序列,构建得到了四种不同左右臂长度组合的转座子,分别进行了细胞水平和转基因家蚕水平的检测,其中左臂长333 bp、右臂长179 bp的转座子效率最高,经多次转基因实验证实,此种载体能将家蚕转基因效率提高2-7倍,更有利于开展家蚕转基因的研究。
     2、家蚕hsp70启动子的克隆及功能研究
     通过PCR的方法克隆得到家蚕热激蛋白70基因(Bombyx mori hsp70)的5'侧翼的两个长度分别为538 bp和305 bp的序列hsp70-538和hsp70-305。生物信息分析结果表明这两段序列在TATA序列的上游存在保守的热激元件(Heat Shock Element, HSE) CTnGAAnnTTCnAG。采用双荧光报告基因技术研究表明这两段序列在BmN细胞中都表现出热激活性,转基因家蚕实验证明hsp70-305在家蚕个体中也具有热激活性,可以认为这两个片段具有hsp70热激启动子特性,便于在家蚕中进行条件诱导的研究。
     3. IRES在家蚕表达系统中的应用
     通过化学合成的方法得到了来源于猪脑心肌炎病毒(Encephalomyocarditisvirus, EMCV)和禾谷缢管蚜虫病毒(Rhopalosiphum padi virus,RhPV)的四种不同长度的的内部核糖体进入序列(Internal Ribosome Entry Site, IRES) IRES,并将它们构建到pFastBac双荧光载体中,通过Bac-to-Bac的方法得到了相应的重组病毒后,在细胞及家蚕的3个组织中比较了它们的活性,结果显示IRES593的活性最高,家蚕组织中以中部丝腺的活性最高,其次是脂肪体和后部丝腺。
     4、启动子陷阱在家蚕基因功能研究应用中的技术探讨
     启动子陷阱是一种高通量、既能制造突变体同时又能得到被突变基因序列的研究方法,在陷阱系统的设计上我们综合了如上所述的3点成果,构建得到了两种转基因家蚕,一种是分别由hsp70、A3启动子控制表达转座酶的家蚕pBhsp70transposase3 xP3EGFP和pB A3 transpo sase3 xP3EGFP,另一种是带有检测基因EGFP的启动子陷阱家蚕。根据我们的初步研究结果表明:第一,由组成型启动子A3控制表达的转座酶能更有效地启动家蚕中转座子的再转座;第二,由于转座臂内可能残留有piggyBac转座酶启动子,因此陷阱中报告基因的方向应与原始转座酶的方向相反。
     piggyBac转座子插入位点特性的分析
     为更好的利用piggyBac转座子,本文还分析了piggyBac转座子在转基因家蚕基因组中的整合位点特征,得知有6%插入到内含子,12%插入到外显子,8%插入到基因的5'末端,3%插入到基因的3'末端,18%插入到了重复序列,53%插入到了基因间序列。
     本论文所取得的成果为基因功能研究提供了参考,为家蚕转基因效率的提高提供了技术储备,同时也为基因陷阱研究奠定了一定的研究基础。
The silkworm, Bombyx mori, is not only the biological foundation of the sericulture, but also an important model for Lepidoptera. Moreover, it has been already explored as a new bioreactor and used as the alternative material for new type of insectical industry. Until recently, the research about the silkworm has achieved a higher scholarship value and important realistic meaning, especially the genetical linkage maps, the whole-genome sequence. As a result, the research on functional genome is underway. There are many excellent methods for the study of functional genome, and one of them is the transgenic technology. In our study, we carried out research based on this technology and the results obtained are as follows:
     1. The relationship between the internal sequence of piggyBac and its transgenic efficiency
     Since the transgenic silkworm based on the piggyBac transposon was reported, more and more researchers highlight its use in bioreactor of silkworm and functional analysis on genes of economical value. But this technology is time consuming and laborious, and the transgenic efficiency is relatively low, inhibiting its extensive application. To improve its transgenic efficiency, we have optimized the internal sequences. A series of piggyBac ID synthetic deletion plasmids containing A3EGFP are compared for germline transformation in BmN cells and silkworm. Our analyses have identified a better combination of ID sequence, by which we got a higher transgenic efficiency,2-7 times the original vector. This optimized system can be a potential tool for our future transgenic study.
     2. Clonning and functional analysis of the Bombyx mori hsp70 promoter
     We have got two PCR fragments named hsp70-538 (538bp) and hsp70-305 (305bp) directly upstream of Bombyx mori hsp 70 gene. By comparing analysis, these two fragments possess the consensus of HSE (Heat Shock Element) CTnGAAnnTTCnAG in the upstream sequence. Applying the transient expression assay in BmN cells using the dual-luciferase vector, these two fragments exhibited the heat shock ability. We also validated it in silkworm by transgenic analysis. So these two fragments can be recognized as the heat-induced promoter. This information can be used for biological analysis of gene function.
     3. The application of IRES on expression system in silkworm
     IRES can induce a cap-independent translation and has been greatly used in genetic engineering. To investigate its possible use in genetic research of silkworm, we have got four fragments of IRES by chemical synthesis or PCR amplification and reconstructed them into pFastBac donor plasmid containing dual luciferase genes. Through Bac-to-Bac we got these four kinds of recombinant baculoviruses. Quantization by fluorescence spectrophotometry of the luciferase proteins produced in Sf9 cells and silkworm indicated that the IRES593 has the higher activity than others'and highest in the middle silk gland, higher in the fat body and high in the post silk gland. These results suggested that the IRES can be used in the development of expression vectors for production of multiprotein complexes in silkworm.
     4. The promoter trap studies of gene function in the silkworm
     Promoter trap system is a highly throughput method. It can creat mutants and also be a tag for the disrupted gene. Combined the above results, we constructed two kinds of transgenic silkworm. One is supposed to provide the transposase steadily. Owing to the low remobilization rates observed with hsp70 inducible transposase, we reengineered the transposase with a constitutive promoter A3. With this construct, we observed somatic excision. The other kind of transgenic silkworm is designed to harbor the non-autonomous transposon with a promoterless EGFP gene. There may exist a piggyBac transposase promoter in the left hand, so we choose another vector, whose direction is opposite to the transposase gene as the potential promoter trap.
     5. Insertion site analysis of piggyBac transposon in silkworm
     For the better use of piggyBac transposon, we investigated the insertion site in the transgenic silkworm by amplifying the flanking sequences through inverse PCR method. The results showed that 6% of the insertion sites happened in the intron,12% in the exon,8% in the 5'end, 3% in the 3'end, 18% in the repetitive sequence, and 53% in the intergenic region.
     All of the results described above including an optimized transposon, a heat-induced promoter, the application of IRES in expression system and the relevant technology about the promoter trap system have been useful for promoting the transgenic research, and elucidating functional genome based on promoter trap analysis.
引文
1 Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 2004,306:1937-1940
    2 The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology 2008,38:1036-1045
    3 Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 2009, 326:433-436
    4 Xiang H, Zhu J, Chen Q, Dai F, Li X, Li M, Zhang H, et al. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol,28:516-520
    5 Xia QY, Cheng DJ, Duan J, Wang GH, Cheng TC, Zha XF, Liu C, et al. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biology 2007,8:162
    6强承魁,风舞剑,赵虎,苏新林,周保亚.家蚕多聚泛素基因的电子克隆、序列分析及表达谱预测.基因组学与应用生物学2010,29:783-790
    7钟伯雄,余迎扑,徐豫松,俞鸿,鲁兴萌,缪云根,杨君,et al.家蚕五龄幼虫后部丝腺细胞EST的测定和基因表达谱分析.中国科学(C辑:生命科学)2004,5:436-443
    8 Li JY, Chen X, Fan W, Moghaddam SH, Chen M, Zhou ZH, Yang HJ, et al. Proteomic and bioinformatic analysis on endocrine organs of domesticated silkworm, Bombyx mori L. for a comprehensive understanding of their roles and relations. J Proteome Res 2009, 8:2620-2632
    9 Li J, Hosseini Moghaddam SH, Chen X, Chen M, Zhong B. Shotgun strategy-based proteome profiling analysis on the head of silkworm Bombyx mori. Amino Acids 2010,39: 751-761
    10 Yang H, Zhou Z, Zhang H, Chen M, Li J, Ma Y, Zhong B. Shotgun proteomic analysis of the fat body during metamorphosis of domesticated silkworm(Bombyx mori). Amino Acids 2009,38:1333-1342
    11 Li JY, Moghaddam SH, Chen JE, Chen M, Zhong BX. Shotgun proteomic analysis on the embryos of silkworm Bombyx mori at the end of organogenesis. Insect Biochem Mol Biol,40:293-302
    12 Li JY, Chen X, Hosseini Moghaddam SH, Chen M, Wei H, Zhong BX. Shotgun proteomics approach to characterizing the embryonic proteome of the silkworm, Bombyx mori, at labrum appearance stage. Insect Molecular Biology 2009,18:649-660
    13 Zhou ZH, Yang HJ, Chen M, Lou CF, Zhang YZ, Chen KP, Wang Y, et al. Comparative Proteomic Analysis between the Domesticated Silkworm (Bombyx mori) Reared on Fresh Mulberry Leaves and on Artificial Diet. Journal of Proteome Research 2008,7: 5103-5111
    14 Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000,403:623-627
    15 Greene EA, Codomo CA, Taylor NE. Henikoff JG, Till BJ, Reynolds SH, Enns LC. et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 2003,164:731-740
    16 Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, et al. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biology 2004, 4:12
    17 Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biology 2007,7:
    18 Winkler S, Schwabedissen A, Backasch D, Bokel C, Seidel C, Bonisch S, Furthauer M, et al. Target-selected mutant screen by TILLING in Drosophila. Genome Research 2005, 15:718-723
    19 Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RHA, Cuppen E. Efficient target-selected mutagenesis in zebrafish. Genome Research 2003,13:2700-2707
    20林英,陈冬妹,杨瑜,王艳霞,杨从文,夏庆友TILLING技术应用于家蚕化学诱导突变检测的体系优化.蚕学通讯2009,29
    21 Dai H, Jiang R, Wang J, Xu G, Cao M, Wang Z, Fei J. Development of a heat shock inducible and inheritable RNAi system in silkworm. Biomol Eng 2007,24:625-630
    22 Isobe R, Kojima K, Matsuyama T, Quan GX, Kanda T, Tamura T, Sahara K, et al. Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms. Archives of Virology 2004,149:1931-1940
    23 Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, et al. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnology 2000,18:559-559
    24 Stanford WL, Epp T, Reid T, Rossant J. Gene trapping in embryonic stem cells. Methods Enzymol 2006,420:136-162
    25 Horn C, Offen N, Nystedt S, Hacker U, Wimmer EA.piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 2003, 163:647-661
    26 Uchino K, Sezutsu H, Imamura M, Kobayashi I, Tatematsu K, Iizuka T, Yonemura N, et al. Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochemistry and Molecular Biology 2008,38: 1165-1173
    27 Friedrich G, Soriano P. Promoter traps in embryonic stem cells:a genetic screen to identify and mutate developmental genes in mice. Genes & Development 1991,5:1513-1523
    28 Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 2004,7:133-144
    29 Lukacsovich T, Hamada N, Miyazaki S, Kimpara A, Yamamoto D. A new versatile gene-trap vector for insect transgenics. Arch Insect Biochem Physiol 2008,69:168-175
    30 Schnutgen F, Ehrmann F, Poser I, Hubner NC, Hansen J, T. F, deVries I. et al. Resources for proteomics in mouse embryonic stem cells. Nat Methods 2011,8:103-104
    31 Obrochta DA, Handler AM. Mobility of P Elements in Drosophilids and Nondrosophilids. Proceedings of the National Academy of Sciences of the United States of America 1988,85:6052-6056
    32 Garza D, Medhora M, Koga A, Hartl DL. Introduction of the Transposable Element Mariner into the Germline of Drosophila-Melanogaster. Genetics 1991,128:303-310
    33 Lozovsky ER, Nurminsky D, Wimmer EA, Hartl DL. Unexpected stability of mariner transgenes in Drosophila. Genetics 2002,160:527-535
    34 Hacker U, Nystedt S, Barmchi MP, Horn C, Wimmer EA. piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 2003,100: 7720-7725
    35 Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 1988,118:461-470
    36 Domier LL, McCoppin NK. In vivo activity of Rhopalosiphum padi virus internal ribosome entry sites. J Gen Virol 2003,84:415-419
    37 Woolaway KE, Lazaridis K, Belsham GJ, Carter MJ, Roberts LO. The 5 untranslated region of Rhopalosiphum padi virus contains an internal ribosome entry site which functions efficiently in mammalian, plant, and insect translation systems. Journal of Virology 2001,75:10244-10249
    38 Royall E, Woolaway KE, Schacherl J, Kubick S, Belsham GJ, Roberts LO. The Rhopalosiphum padi virus 5'internal ribosome entry site is functional in Spodoptera frugiperda 21 cells and in their cell-free lysates:implications for the baculovirus expression system. Journal of General Virology 2004,85:1565-1569
    39 Domier LL, McCoppin NK. In vivo activity of Rhopalosiphum padi virus internal ribosome entry sites. Journal of General Virology 2003,84:415-419
    40 Hsu TA, Betenbaugh MJ. Coexpression of molecular chaperone BiP improves immunoglobulin solubility and IgG secretion from Trichoplusia ni insect cells. Biotechnology Progress 1997,13:96-104
    41 Roy P, Mikhailov M, Bishop DHL. Baculo virus multigene expression vectors and their use for understanding the assembly process of architecturally complex virus particles. Gene 1997,190:119-129
    42 Bertolotti-Ciarlet A, Ciarlet M, Crawford SE, Conner ME, Estes MK. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine 2003,21:3885-3900
    43 Finkelstein Y, Faktor O, Elroy-Stein O, Levi BZ. The use of bi-cistronic transfer vectors for the baculovirus expression system. Journal of Biotechnology 1999,75:33-44
    44 Chen YJ, Chen WS, Wu TY. Development of a bi-cistronic baculovirus expression vector by the Rhopalosiphum padi virus 5'internal ribosome entry site. Biochem Biophys Res Commun 2005,335:616-623
    45 Handler AM, Harrell RA,2nd. Germline transformation of Drosophila melanogaster with thepiggyBac transposon vector. Insect Molecular Biology 1999,8:449-457
    46 Wilson MH, Coates CJ, George AL, Jr. PiggyBac transposon-mediated gene transfer in human cells. Molecular Therapy 2007,15:139-145
    47 Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 2005,122:473-483
    48 Balu B, Chauhan C, Maher SP, Shoue DA, Kissinger JC, Fraser MJ, Adams JH. piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome. BMC Microbiol 2009,9:83
    49 Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ. Transposon Mutagenesis of Baculoviruses-Analysis of Trichoplusia-Ni Transposon Ifp2 Insertions within the Fp-Locus of Nuclear Polyhedrosis Viruses. Virology 1989,172:156-169
    50 Elick TA, Bauser CA, Fraser MJ. Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica 1996,98:33-41
    51 Fraser MJ, Coszczon T, Elick T, Bauser C. Precise excision of TTAA-specific lepidopteran transposons piggyBac(IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Molecular Biology 1996,5:141-151
    52 Li X, Lobo N, Bauser CA, Fraser MJ. The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Molecular Genetics and Genomics 2001,266:190-198
    53 Li X, Harrell RA, Handler AM, Beam T, Hennessy K, Fraser MJ. piggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Molecular Biology 2005,14:17-30
    54 Sakudoh T, Sezutsu H, Nakashima T, Kobayashi I, Fujimoto H, Uchino K, Banno Y, et al. Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene. Proceedings of the National Academy of Sciences of the United States of America 2007,104:8941-8946
    55 Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, et al. Transgenic silkworms produce recombinant human type Ⅲ procollagen in cocoons. Nature Biotechnology 2003,21:52-56
    56 Tan A, Tanaka H, Tamura T, Shiotsuki T. Precocious metamorphosis in transgenic silkworms overexpressing juvenile hormone esterase. Proceedings of the National Academy of Sciences of the United States of America 2005,102:11751-11756
    57 Royer C, Jalabert A, Da Rocha M, Grenier AM, Mauchamp B, Couble P, Chavancy G. Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms. Transgenic Research 2005,14:463-472
    58 Imamura M, Nakahara Y, Kanda T, Tamura T, Taniai K. A transgenic silkworm expressing the immune-inducible cecropin B-GFP reporter gene. Insect Biochemistry and Molecular Biology 2006,36:429-434
    59 Ogawa S, Tomita M, Shimizu K, Yoshizato K. Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon:Production of recombinant human serum albumin. Journal of Biotechnology 2007,128:531-544
    60 Tateno M, Toyooka M, Shikano Y, Takeda S, Kuwabara N, Sezutsu H, Tamura T. Production and Characterization of the Recombinant Human-Opioid Receptor from Transgenic Silkworms. Journal of Biochemistry 2009,145:37-42
    61 Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T. Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics 2003,165: 1329-1340
    62 Uchino K, Sezutsu H, Imamura M, Kobayashi I, Tatematsu KI, Iizuka T, Yonemura N, et al. Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochemistry and Molecular Biology 2008,38: 1165-1173
    63 Zhong BX, Li JY, Chen JE, Ye J, Yu SD. Comparison of transformation efficiency of piggyBac transposon among three different silkworm Bombyx mori strains. Acta Biochimica Et Biophysica Sinica 2007,39:117-122
    64 Yang HJ, Fan W, Wei H, Zhang JW, Zhou ZH, Li JY, Lin JR, et al. Transgenic breeding of anti-Bombyx mori L. nuclear polyhedrosis virus silkworm Bombyx mori. Acta Biochimica Et Biophysica Sinica 2008,40:873-876
    65 Score PR, Belur LR, Frandsen JL, Geurts JL, Yamaguchi T, Somia NV, Hackett PB, et al. Sleeping beauty-mediated transposition and long-term expression in vivo:Use of the LoxP/Cre recombinase system to distinguish transposition-specific expression (vol 13, pg 617, 2006). Molecular Therapy 2006,14:149-149
    66 Wilson MH, Coates CJ, George AL. PiggyBac transposon-mediated gene transfer in human cells. Molecular Therapy 2007,15:139-145
    67 Geurts AM, Yang Y, Clark KJ, Liu GY, Cui ZB, Dupuy AJ, Bell JB, et al. Gene transfer into genomes of human cells by the sleeping beauty transposon system. Molecular Therapy 2003,8:108-117
    68 Zayed H, Izsvak Z, Walisko O, Ivics Z. Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Molecular Therapy 2004,9:292-304
    69 Wilson MH, Kaminski JM, George AL. Functional zinc finger/sleeping beauty transposase chimeras exhibit attenuated overproduction inhibition. Febs Letters 2005,579: 6205-6209
    70 Mikkelsen JG, Yant SR, Meuse L, Huang Z, Xu H, Kay MA. Helper-independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Molecular Therapy 2003,8:654-665
    71 Wilber A, Frandsen JL, Geurts JL, Largaespada DA, Hackett PB, McIvor RS. RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues. Molecular Therapy 2006,13:625-630
    72 Shi XZ, Harrison RL, Hollister JR, Mohammed A, Fraser MJ, Jarvis DL. Construction and characterization of new piggyBac vectors for constitutive or inducible expression of heterologous gene pairs and the identification of a previously unrecognized activator sequence in piggyBac. BMC Biotechnology 2007,7:5
    73 Pelham HR. A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene. Cell 1982,30:517-528
    74 Nover L. Expression of heat-shock genes in homologous and heterologous systems. Enzyme Microb Tech 1987,9:130-144
    75 Topol J, Ruden DM, Parker CS. Sequences required for in vitro transcriptional activation oi a Drosophila hsp70 gene. Cell 1985,42:527-537
    76 Mirault ME, Southgate. R, Delwart. E. Regulation of heat shock genes:a DNA sequence upstream of Drosophila hsp70 genes is essential for their induction in monkey cells. EMBO J 1982,1: 1279-1285.
    77王晓娟,谢敏,张星,曹广力,薛仁宇,虞晓华,贡成良.家蚕热休克蛋白基因Bmhsp19.9启动子的活性分析http://wwwpapereducn,
    78谢敏,贡成良,薛仁宇,盛洁,张晓荣,李艳梅,虞晓华,et al.家蚕hsp20.4启动子克隆及其驱动表达产物EGT对家蚕蛹体发育的影响.昆虫学报2009,52:246-253
    79张星,胡小龙,王晓娟,谢敏,虞晓华,薛仁宇,曹广力,et al.家蚕hsp23.7启动子瞬时表达载体的构建及活性检测http://wwwpapereducn,
    80 Zhuang LF, Wei H, Lu CD, Zhong BX. The relationship between internal domain sequences of piggyBac and its transposition efficiency in BmH cells and Bombyx mori. Acta Bioch Bioph Sin 2010,42:426-431
    81 Voellmy R, Rungger D. Transcription of a Drosophila Heat-Shock Gene Is Heat-Induced in Xenopus Oocytes. Proc Natl Acad Sci USA 1982,79:1776-1780
    82 Corces V, Pellicer A, Axel R, Meselson M. Integration, transcription, and control of a Drosophila heat shock gene in mouse cells. Proc Natl Acad Sci U S A 1981,78:7038-7042
    83 Amin J, Mestril R, Lawson R, Klapper H, Voellmy R. The heat shock consensus sequence is not sufficient for hsp70 gene expression in Drosophila melanogaster. Mol Cell Biol 1985,5:197-203
    84 Parker CS, Topol J. A Drosophila RNA polymerase II transcription factor contains a promoter-region-specific DNA-binding activity. Cell 1984,36:357-369
    85 Dudler R, Travers AA. Upstream elements necessary for optimal function of the hsp70 pomoter in transformed flies. Cell 1984,38:391-398
    86 Lee HS, Kraus KW, Wolfner MF, Lis JT. DNA-sequence requirements for generating paused polymerase at the start of hsp70. Gene Dev 1992,6:284-295
    87 Simon JA, Sutton CA, Lobell RB, Glaser RL, Lis JT. Determinants of heat shock-induced chromosome puffing. Cell 1985,40:805-817
    88 Pelham HR, Bienz M. A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J 1982,1: 1473-1477
    89 Morimoto RI. Cells in stress-transcriptional activation of heat-shock genes. Science 1993,259:1409-1410
    90 Mosser DD, Theodorakis NG, Morimoto RI. Coordinate changes in heat-shock element-binding activity and hsp70 gene-transcription rates in human-cells. Mol Cell Biol 1988,8:4736-4744
    91 Turturici G, Geraci F, Candela ME, Cossu G, Giudice G, Sconzo G. Hsp70 is required for optimal cell proliferation in mouse A6 mesoangioblast stem cells. Biochem J 2009,421:193-200
    92 Ashburner M, Bonner JJ. The induction of gene activity in Drosophilia by heat shock. Cell 1979,17:241-254
    93 Schlesinger M, Ashburner M, Tissieres A. Heat shock from bacteria to man. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY 1982
    94 Schoffl F, Rieping M, Baumann G, Bevan M, Angermuller S. The function of plant heat shock promoter elements in the regulated expression of chimaeric genes in transgenic tobacco. Mol Gen Genet 1989,217:246-253
    95 Holmgren R, Corces V, Morimoto R, Blackman R, Meselson M. Sequence Homologies in the 5'Regions of 4 Drosophila Heat-Shock Genes. Proc Natl Acad Sci USA 1981,78:3775-3778
    96 Klemenz R, Hultmark D, Gehring WJ. Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader. EMBO J 1985,4: 2053-2060
    97 Rong YKS, Titen SW, Xie HB, Golic MM, Bastiani M, Bandyopadhyay P, Olivera BM, et al. Targeted mutagenesis by homologous recombination in D-melanogaster. Genes & Development 2002,16:1568-1581
    98 Kennerdell JR, Carthew RW. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnology 2000,18:896-898
    99代红久,徐国江,ean-luc T,王铸钢,蒋容静,费俭.利用鳞翅目来源的转座子piggyBac建立高效稳定的转基因家蚕技术.科学通报2005,14
    100徐汉福,夏庆友,刘春,吴雪峰,杨远萍,赵萍,向仲怀.家蚕转基因载体pBacA3EG的构建及其表达.昆虫学报2005,48:799-803
    101曹广力,薛仁宇,何泽,郑小坚,沈卫德,贡成良.基于piggyBac转座子转hGM-CSF基因家蚕的研究.蚕业科学2006,32:324-327
    102 Inoue S, Kanda T, Imamura M, Quan GX, Kojima K, Tanaka H, Tomita M, et al. A fibroin secretion-deficient silkworm mutant, Nd-sD, provides an efficient system for producing recombinant proteins. Insect Biochemistry and Molecular Biology 2005,35:51-59
    103杨慧娟,庄兰芳,范伟,蓝天云,丁农,陆长德,钟伯雄.A3启动子缺陷piggyBac转座子在家蚕中的转基因研究.蚕业科学2008,34:41-44
    104 O'Brochta D A, Handler AM. Mobility of P elements in drosophilids and nondrosophilids. Proceedings of the National Academy of Sciences of the United States of America 1988,85:6052-6056
    105 Lohe AR, Lidholm DA, Hartl DL. Genotypic Effects, Maternal Effects and Grand-Maternal Effects of Immobilized Derivatives of the Transposable Element Mariner. Genetics 1995,140:183-192
    106 Lohe AR, Hartl DL. Reduced germline mobility of a mariner vector containing exogenous DNA:Effect of size or site? Genetics 1996,143:1299-1306
    107 Lohe AR, Timmons C, Beerman I, Lozovskaya ER, Hartl DL. Self-inflicted wounds, template-directed gap repair and a recombination hotspot:Effects of the mariner transposase. Genetics 2000,154:647-656
    108 Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 2004,36:283-287
    109徐汉福,幸俊逸,王职峰,夏庆友.外源piggyBac转座元件在转基因家蚕中的整合位点分析.蚕学通讯2010,30:1-7
    110 Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, Misra S, et al. The Berkeley Drosophila Genome Project gene disruption project:Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 1999,153:135-177
    111 Handler AM. A current perspective on insect gene transformation. Insect Biochemistry and Molecular Biology 2001,31:111-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700