用户名: 密码: 验证码:
复杂高坝坝区边坡岩体的非线性损伤流变力学模型及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高坝出现较大变形与破坏,在很大程度上与坝基软弱岩带和硬脆性岩体在长期荷载作用下产生流变变形密切相关。本文以大岗山水电站坝区的硬脆性辉绿岩和软弱岩带为研究对象,采用试验研究、理论分析和数值模拟相结合的研究方法,基于硬脆性岩石的室内三轴流变试验结果和软弱岩带的现场大型刚性承压板压缩蠕变试验结果,运用非线性流变理论以及损伤力学理论探讨岩石流变力学特性,建立岩石的非线性流变本构模型,用以预测水电站坝区边坡工程的长期变形特性。
     本文主要研究成果包括以下几个方面:
     (1)采用全自动岩石三轴流变伺服仪,对大岗山水电站坝区的硬脆性辉绿岩进行了不同应力路径下的三轴流变试验研究,分析了辉绿岩三轴流变过程中的变形特性,选取典型岩样进行了破坏断口的电镜扫描试验分析,考察了辉绿岩细观结构变化对其宏观强度的影响,揭示了复杂应力状态下辉绿岩的流变破坏机理。
     (2)结合现场软弱岩带的大型刚性承压板压缩蠕变试验,推导了刚、柔性承压板压缩蠕变试验的黏弹性变形理论解析公式,为蠕变参数的理论反演奠定了基础。
     (3)基于辉绿岩三轴流变试验的变形特征,建立了一个新的非线性黏弹塑性流变模型,提出用屈服接近度作为三维蠕变分段函数的判别标准,该模型可以很好地描述岩石的衰减蠕变、等速蠕变特别是加速蠕变的三阶段蠕变变形。
     (4)基于软弱岩带的现场刚性承压板压缩蠕变试验的变形特征,建立了一个材料参数随时间逐渐劣化的变参数损伤流变模型,可以反映软弱岩带的黏弹、黏塑和损伤变形特性。
     (5)将本文提出的硬脆性辉绿岩的非线性黏弹塑流变模型和软弱岩带的变参数损伤流变模型进行了程序编制。
     (6)将改进的二次粒子群算法(PSO)嵌入到流变参数反演程序中,实现了流变参数的快速智能反分析,并通过数值反演法获得了辉绿岩脉软弱岩带的流变力学参数。
     (7)提出了通过三轴流变体积应变法和加卸载流变试验的残余应变法确定硬脆性岩石长期强度的适用方法。
     (8)采用本文提出的硬脆性岩石的非线性黏弹塑流变模型和软弱岩带的变参数损伤流变模型进行了大岗山水电站坝区边坡的三维开挖流变数值计算,预测复杂应力状态下岩体工程的开挖流变特性。
The large deformation and failure of high dam was closed to the rheological deformation of weak intercalated rock mass and hard brittle rock mass in dam foundation under long-term loads. The hard brittle diabase and weak intercalated rock mass in dam foundation of Dagangshan hydropower station were taken for research object, the research methods combined of experiment, theoretical analysis and numerical simulation were used. Based on the triaxial rheological experiment results of hard brittle rock in laboratory and in-situ compressive creep test results under large rigid bearing plate of weak intercalated rock mass, the rheological mechanical properties of rock was analysed by use of nonlinear rheological theory and damage mechanics. Nonlinear rheological constitutive models of rock were established, and the long-term stability of slope project in dam zone of hydropower station was predicted.
     The main research work focused on the following.
     (1) In order to know about the rheological properties of rock specimens in Dagangshan hyeropower project, triaxial compression rheological experiments with rock specimens under different stress load paths were carried out on the rock servo-controlling rheology testing machine. The deformation characteristics in triaxial rheological process were discussed in detail. The SEM experiments were carried out for typical fracture shaping of rock specimens, the influence of rock mesoscopic structure change on its macroscopic strength was studied, and the rheological fracture mechanism of rock under complex stress states was put forward.
     (2) Based on in-situ compressive creep tests under rigid bearing plate, theory analytical formulas'method for inversion of visco-elastic compressive creep parameters under rigid or flexible plate was established. The rheology parameters were obtained through the combination of theoretical analytic inversion and the experiment data.
     (3) Based on deformation characteristics of specimens in the triaxial rheological experiments, a new nonlinear visco-elasto-plastic rheological model was established which could describe the primary creep, steady-state creep and tertiary creep perfectly, and the yield approach index(YAI) was taken as the discriminant criteria of piecewise function in three dimensional creep equation.
     (4) Based on deformation characteristics of in-situ compressive creep tests under rigid bearing plate, a nonlinear damage rheological model was proposed in which the creep parameters of the weak intercalated rock mass were weakened with time gradually, and this model could describe the visco-elastic deformation, visco-plastic deformation and damage deformation perfectly.
     (5) Secondary development of nonlinear visco-elasto-plastic rheological model for hard brittle rock and nonlinear rheological damage model for weak intercalated rock mass were carried out in FLAC3D.
     (6) The improved Particle Swarm Algorithm(PSO) was programmed for the rheological parameters inversion, which achieved rheological parameters rapidly and intelligently through back analysis. The rheological parameters of weak intercalated rock mass were got by numerical calculation inversion method.
     (7) The triaxial rheological volume strain method and residual strain method in loading-unloading rheological test were put forward to determine the long-term strength of hard brittle rock.
     (8) By using the nonlinear visco-elasto-plastic rheological model of hard brittle rock and variable parameters-based damage rheological model of weak intercalated rock mass,3D excavation and rheological numerical calculation of slope in dam zone of Dagangshan hydropower station was carried out, which predicted the long-term deformation characteristic after excavation of rock engineering in complex stress state.
引文
[1]徐平,杨挺青,徐春敏,等.三峡船闸高边坡岩体时效特性及长期稳定性分析[J].岩石力学与工程学报.2002,21(2):163-168.
    [2]朱红五,马水山,李端友.三峡工程永久船闸高边坡岩体变形监测及变形特征分析[J].长江科学院院报.1998,15(6):24-27.
    [3]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展.2005,35(1):91-99.
    [4]Griggs D. Creep of Rocks[J]. Journal of Geology.1939,47(3):225-251.
    [5]Ito H, Sasajima S. A ten year creep experiment on small rock specimens[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1987,24(2):113-121.
    [6]Boukharov G N, Chanda M W, Boukharov N G. The three processes of brittle crystalline rock creep[J]. International journal of rock mechanics and mining sciences.1995,32(4):325-335.
    [7]Nawrocki P A, Mroz Z. A viscoplastic degradation model for rocks[J]. International Journal of Rock Mechanics and Mining Sciences.1998,35(7):991-1000.
    [8]Napier J A L, Malan D F. A viscoplastic discontinuum model of time-dependent fracture and seismicity effects in brittle rock[J]. International Journal of Rock Mechanics & Mining Sciences.1997, 34(7):1075-1089.
    [9]Fujii Y, Kiyama T, Ishijima Y, et al. Circumferential strain behavior during creep tests of brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences.1999,36(3):323-337.
    [10]Malan D F. Time-dependent behaviour of deep level tabular excavations in hard rock[J]. Rock mechanics and rock engineering.1999,32(2):123-155.
    [11]Aubertin M, Li L, Simon R. A multiaxial stress criterion for short- and long-term strength of isotropic rock media[J]. International Journal of Rock Mechanics & Mining Sciences.2000,37(8): 1169-1193.
    [12]Gasc Barbier M, Chanchole S, Berest P. Creep behavior of Bure clayey rock[J]. Applied Clay Science.2004,26(1-4 SPEC. ISS.):449-458.
    [13]Hoxha D, Giraud A, Homand F. Modelling long-term behaviour of a natural gypsum rock[J]. Mechanics of Materials.2005,37(12):1223-1241.
    [14]Ma L, Daemen J J K. An experimental study on creep of welded tuff[J]. International Journal of Rock Mechanics and Mining Sciences.2006,43(2):282-291.
    [15]Shao J F, Chau K T, Feng X T. Modeling of anisotropic damage and creep deformation in brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences.2006,43(4):582-592.
    [16]Fabre G, Pellet F. Creep and time-dependent damage in argillaceous rocks[J]. International Journal of Rock Mechanics and Mining Sciences.2006,43(6):950-960.
    [17]Zhou H, Jia Y, Shao J F. A unified elastic-plastic and viscoplastic damage model for quasi-brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences.2008,45(8):1237-1251.
    [18]Abou Chakra Guery A, Cormery F, Su K, et al. A micromechanical model for the elasto-viscoplastic and damage behavior of a cohesive geomaterial[J]. Physics and Chemistry of the Earth.2008,33(SUPPL.1):S416-S421.
    [19]Yang S, Jiang Y. Triaxial mechanical creep behavior of sandstone[J]. Mining Science and Technology.2010,20(3):339-349.
    [20]Verstrynge E, Schueremans L, Van Gemert D, et al. Modelling and analysis of time-dependent behaviour of historical masonry under high stress levels[J]. Engineering Structures.2010,33(1): 210-217.
    [21]Zhou H W, Wang C P, Han B B, et al. A creep constitutive model for salt rock based on fractional derivatives[J]. International Journal of Rock Mechanics and Mining Sciences.2011,48(1): 116-121.
    [22]陈宗基,康文法,黄杰藩.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报.1991,10(4):299-312.
    [23]孙钧.岩土材料流变及其工程应用[M].中国建筑工业出版社,1999.
    [24]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报.2007,26(6):1081-1106.
    [25]Matsushima S. On the flow and fracture of igneous rocks[J]. Bulletins-Disaster Prevention Research Institute, Kyoto University.1960,36:1-9.
    [26]Jaeger J C, Cook N G W. Fundamentals of rock mechanics[M]. New York:Chapman & Hall, 1979.
    [27]Okubo S, Nishimatsu Y, Fukui K. Complete creep curves under uniaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences and Geomechanics Abstracts.1991,28(1): 77-82.
    [28]Tsai L S, Hsieh Y M, Weng M C, et al. Time-dependent deformation behaviors of weak sandstones[J]. International Journal of Rock Mechanics and Mining Sciences.2008,45(2):144-154.
    [29]陶振宇.岩石流变试验与现场观测的比较分析[J].水利学报.1985(10):48-54.
    [30]谷耀君.黄河小浪底细砂岩单轴压缩蠕变性质的研究[J].岩石力学与工程学报.1986,5(4):343-358.
    [31]钟时猷,马明军.软弱岩石蠕变破坏规律的探讨[J].中南矿冶学院学报.1987,18(5):494-500.
    [32]王子潮,王绳祖.岩石幂次蠕变律常数的实验测定[J].岩石力学与工程学报.1989,8(3):191-200.
    [33]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报.1995,14(1):39-47.
    [34]王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报.1996,18(6):55-60.
    [35]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报.1997(3).
    [36]沈振中,徐志英.三峡大坝地基花岗岩蠕变试验研究[J].河海大学学报.1997,25(2):1-7.
    [37]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报.2002,21(12):1791-1796.
    [38]李铀,朱维申,白世伟,等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报.2003,22(10):1673-1677.
    [39]李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报.2004,23(22):3745-3749.
    [40]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报.2005,27(11).
    [41]范庆忠.岩石蠕变及其扰动效应试验研究[D].泰安:山东科技大学,2006.
    [42]袁海平,曹平,万文,等.分级加卸载条件下软弱复杂矿岩蠕变规律研究[J].岩石力学与工程学报.2006,25(8):1575-1581.
    [43]范秋雁,阳克青,王渭明.泥质软岩蠕变机制研究[J].岩石力学与工程学报.2010,29(8): 1555-1561.
    [44]张明,毕忠伟,杨强,等.锦屏一级水电站大理岩蠕变试验与流变模型选择[J].岩石力学与工程学报.2010,29(8):1530-1537.
    [45]Fujii Y, Kiyama T, Ishijima Y, et al. Circumferential strain behavior during creep tests of brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences.1999,36(3):323-337.
    [46]Maranini E, Brignoli M. Creep behaviour of a weak rock. Experimental characterization[J]. International Journal of Rock Mechanics and Mining Sciences.1999,36(1):127-138.
    [47]彭苏萍,王希良,刘咸卫,等.“三软”煤层巷道围岩流变特性试验研究[J].煤炭学报.2001,26(2):149-152.
    [48]赵法锁,张伯友,彭建兵.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报.2002,21(10):1527-1532.
    [49]陈渠,西田和范,岩本健,等.沉积软岩的三轴蠕变实验研究及分析评价[J].岩石力学与工程学报.2003,22(6):905-912.
    [50]Gasc-Barbier M, Chanchole S, Berest P. Creep behavior of Bure clayey rock[J]. Applied Clay Science.2004,26(1-4):449-458.
    [51]刘光廷,胡昱,陈凤岐,等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报.2004,23(8):1237-1241.
    [52]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学.2005,26(4):531-537.
    [53]冒海军,杨春和,刘江,等.板岩蠕变特性试验研究与模拟分析[J].岩石力学与工程学报.2006,25(6):1204-1209.
    [54]付志亮,高延法,宁伟,等.含油泥岩各向异性蠕变研究[J].采矿与安全工程学报.2007,24(3):353-356.
    [55]黄书岭.高应力下脆性岩石的力学模型与工程应用研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [56]王志俭,殷坤龙,简文星,等.三峡库区万州红层砂岩流变特性试验研究[J].岩石力学与工程学报.2008,27(4):840-847.
    [57]郭臣业,鲜学福,姜永东,等.破裂砂岩蠕变试验研究[J].岩石力学与工程学报.2010,29(5):990-995.
    [58]于洪丹,陈卫忠,郭小红,等.厦门海底隧道强风化花岗岩力学特性研究[J].岩石力学与工程学报.2010,29(2):381-387.
    [59]杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报.2000,19(03):270-275.
    [60]胡云华.高应力下花岗岩力学特性试验及本构模型研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2008.
    [61]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [62]韩冰,王芝银,郝庆泽.某地区花岗石三轴蠕变试验及其损伤分岔特性研究[J].岩石力学与工程学报.2007,26(S2):4123-4129.
    [63]闫子舰,夏才初,李宏哲,等.分级卸荷条件下锦屏大理岩流变规律研究[J].岩石力学与工程学报.2008,27(10):2153-2159.
    [64]闫子舰,夏才初.锦屏大理岩卸荷流变变形特性试验[J].长江科学院院报.2008,25(05):11-15.
    [65]夏才初,闫子舰,王晓东,等.大理岩卸荷条件下弹黏塑性本构关系研究[J].岩石力学与工程学报.2009,28(03):459-466.
    [66]朱杰兵,汪斌,杨火平,等.页岩卸荷流变力学特性的试验研究[J].岩石力学与工程学报.2007,26(S2):4552-4556.
    [67]徐平,丁秀丽,全海,等.溪洛渡水电站坝址区岩体蠕变特性试验研究[J].岩土力学.2003,24(S1):220-222.
    [68]贺如平,张强勇,王建洪,等.大岗山水电站坝区辉绿岩脉压缩蠕变试验研究[J].岩石力学与工程学报.2007,26(12):2495-2503.
    [69]张强勇,张建国,杨文东,等.软弱岩体蠕变模型辨识与参数反演[J].水利学报.2008,39(1):66-72.
    [70]张强勇,王建洪,费大军,等.大岗山水电站坝区岩体的刚性承压板试验研究[J].岩石力学与工程学报.2008,27(7):1417-1422.
    [71]杨文东,张强勇,张建国,等.刚性承压板下深部岩体压缩蠕变参数反演[J].岩土力学.2009,30(3):762-768.
    [72]熊诗湖,周火明,钟作武.岩体载荷蠕变试验方法研究[J].岩石力学与工程学报.2009,28(10):2121-2127.
    [73]熊诗湖.长江科学院,2007.
    [74]丁秀丽.岩体流变特性的试验研究及模型参数辨识[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2005.
    [75]刘允芳,周密.承压垫板法试验的研究[J].岩石力学与工程学报.2005,24(2):257-262.
    [76]李云鹏,王芝银,丁秀丽.流变荷载试验曲线的模型识别及其应用[J].石油大学学报(自然科学版).2005,29(2):73-77.
    [77]周火明,盛谦,陈殊伟,等.层状复合岩体变形试验尺寸效应的数值模拟[J].岩石力学与工程学报.2004,23(2):289-292.
    [78]李迪,王昌明.现场承压板变形试验的分层弹模计算[J].长江科学院院报.1991,20(2):29-36.
    [79]郑雨天.岩石力学的弹塑粘性理论基础[M].北京:煤炭工业出版社,1988.
    [80]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [81]金丰年.岩体的非线性流变[M].南京:河海大学出版社,1998.
    [82]Cruden D M, Leung K, Masoumzadeh S. A Technique for estimating the complete creep curve of a subObituminous coal under uniaxial compression[J]. International journal of rock mechanics and mining sciences & Geomechanics Abstracts.1987,24(4):265-269.
    [83]芮勇勤,徐小荷,马新民,等.露天煤矿边坡中软弱夹层的蠕动变形特性分析[J].东北大学学报.1999,20(06):612-614.
    [84]周家文,徐卫亚,杨圣奇.改进的广义Bingham:岩石蠕变模型[J].水利学报.2006,37(7):827-830.
    [85]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报.1996,15(4).
    [86]姜永东,鲜学福,熊德国,等.砂岩蠕变特性及蠕变力学模型研究[J].岩土工程学报.2005,27(12):1478-1481.
    [87]陶波,伍法权,郭改梅,等.西原模型对岩石流变特性的适应性及其参数确定[J].岩石力学与工程学报.2005,24(17):3165-3171.
    [88]刘江,杨春和,吴文,等.盐岩蠕变特性和本构关系研究[J].岩土力学.2006,27(8):1267-1271.
    [89]夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报(自然科学版).1996,24(5):498-503.
    [90]夏才初,王晓东,许崇帮,等.用统一流变力学模型理论辨识流变模型的方法和实例[J].岩石力学与工程学报.2008,27(8):1594-1600.
    [91]夏才初,许崇帮,王晓东,等.统一流变力学模型参数的确定方法[J].岩石力学与工程学报.2009,28(2):425-432.
    [92]李良权,徐卫亚,王伟.基于西原模型的非线性黏弹塑性流变模型[J].力学学报.2009,41(5):671-680.
    [93]邓荣贵,周德培,张倬元,等.一种新的岩石流变模型[J].岩石力学与工程学报.2001,20(6):780-784.
    [94]曹树刚,金边,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报.2002,21(05):632-634.
    [95]陈沅江,潘长良,曹平,等.软岩流变的一种新力学模型[J].岩土力学.2003,24(2):209-214.
    [96]徐卫亚,杨圣奇,谢守益,等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学.2005,26(5):693-698.
    [97]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报.2006,25(03):433-447.
    [98]汪仁和,李栋伟,王秀喜.改进的西原模型及其在ADINA程序中的实现[J].岩土力学.2006,27(11):1954-1958.
    [99]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报.2007,26(2):391-396.
    [100]范庆忠,高延法,崔希海,等.软岩非线性蠕变模型研究[J].岩土工程学报.2007,29(4):505-509.
    [101]高延法,范庆忠,崔希海,等.岩石流变及其扰动效应试验研究[M].北京:科学出版社,2007.
    [102]蒋昱州,徐卫亚,王瑞红,等.水电站大型地下洞室长期稳定性数值分析[J].岩土力学.2008,29(S1):52-58.
    [103]宋德彰,孙钧.岩质材料非线性流变属性及其力学模型[J].同济大学学报(自然科学版).1991,19(4):395-401.
    [104]张贵科,徐卫亚.适用于节理岩体的新型黏弹塑性模型研究[J].岩石力学与工程学报.2006,25(S1):2894-2901.
    [105]赵延林,曹平,文有道,等.岩石弹黏塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报.2008,27(3):477-486.
    [106]罗润林,阮怀宁,孙运强,等.一种非定常参数的岩石蠕变本构模型[J].桂林工学院学报.2007,27(2):200-203.
    [107]熊良宵,杨林德,张尧.岩石的非定常Burgers模型[J].中南大学学报(自然科学版).2010,41(2):679-684.
    [108]夏才初,金磊,郭锐.参数非线性理论流变力学模型研究进展及存在的问题[J].岩石力学与工程学报.2011,30(3):454-463.
    [109]Itasca Consulting Group Inc. FLAC-3D (Version 3.0) Users Manual[R]. USA:Itasca Consulting Group Inc.,2005.
    [110]丁秀丽,付敬,刘建,等.软硬互层边坡岩体的蠕变特性研究及稳定性分析[J].岩石力学与工程学报.2005,24(19).
    [111]丁秀丽,刘建,白世伟,等.岩体蠕变结构效应的数值模拟研究[J].岩石力学与工程学报.2006,25(S2):3642-3649.
    [112]袁海平,曹平,许万忠,等.岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J].岩土工 程学报.2006,28(6):796-799.
    [113]朱昌星,阮怀宁,朱珍德,等.锦屏深埋长大引水隧洞围岩蠕变特性仿真分析[J].地下空间与工程学报.2006,2(6):921-925.
    [114]赵旭峰.挤压性围岩隧道施工时空效应及其大变形控制研究[D].上海:同济大学,2007.
    [115]陈炳瑞,冯夏庭.黏弹塑性普适组合模型及其工程应用[J].岩石力学与工程学报.2008,27(05):1028-1035.
    [116]王志俭.万州区红层岩土流变特性及近水平地层滑坡成因机理研究[D].武汉:中国地质大学,2008.
    [117]陈卫兵,郑颖人,冯夏庭,等.考虑岩土体流变特性的强度折减法研究[J].岩土力学.2008,29(1):101-105.
    [118]Guan Z, Jiang Y, Tanabashi Y, et al. A new rheological model and its application in mountain tunnelling[J]. Tunnelling and Underground Space Technology.2008,23(3):292-299.
    [119]陈国庆,冯夏庭,周辉,等.锦屏二级水电站引水隧洞长期稳定性数值分析[J].岩土力学.2007,28(S1):417-422.
    [120]Hajiabdolmajid V, Kaiser P K, Martin C D. Modelling brittle failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences.2002,39(6):731-741.
    [121]Hajiabdolmajid V. Mobilization of strength in brittle failure of rock[D]. Kingston, Canada: Queen's University,2001.
    [122]杨春和,李银平,陈锋.层状盐岩力学理论与工程[M].北京:科学出版社,2009.
    [123]王清明.关于我国盐矿水采溶洞利用问题的刍议[J].中国井矿盐.2002,33(1):17-20.
    [124]Staudtmeister K, Rokahr R B. Rock mechanical design of storage caverns for natural gas in rock salt mass[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts.1997,34(3-4):646.
    [125]De Las Cuevas C, Miralles L, Pueyo J J. The effect of geological parameters on radiation damage in rock salt:application to rock salt repositories [J]. Nuclear Technology.1996,114(3):325-336.
    [126]Chan K S, Bodner S R, Fossum A F, et al. A constitutive model for inelastic flow and damage evolution in solids under triaxial compression[J]. Mechanics of Materials.1992,14(1):1-14.
    [127]Chan K S, Brodsky N S, Fossum A F, et al. Damage-induced nonassociated inelastic flow in rock salt[J]. International Journal of Plasticity.1994,10(6):623-642.
    [128]Fossum A F, Brodsky N S, Chan K S, et al. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1993,30(7):1341-1344.
    [129]Chan K S, Bodner S R, Fossum A F, et al. A damage mechanics treatment of creep failure in rock salt[J]. International Journal of Damage Mechanics.1997,6(2):121.
    [130]Chan K S, Bodner S R, Munson D E, et al. Inelastic flow behavior of argillaceous salt[J]. International Journal of Damage Mechanics.1996,5(3):292.
    [131]Chan K S, Munson D E, Bonder S R. Creep deformation and fracture in rock salt[A]. Aliabadi M H. Fracture of Rock[C].Boston:Southampton WIT press,1999.
    [132]Lux K H, Hou Z. New developments in mechanical safety analysis of repositories in rock salt[A]. Pro. Int. Conf. On Radioactive Waste Disposal, Disposal Technologies & Concepts[C]. Berlin: Springer Verlag,2000:281-286.
    [133]Aubertin M, Gill D E, Ladanyi B. An internal variable model for the creep of rocksalt[J]. Rock Mechanics and Rock Engineering.1991,24(2):81-97.
    [134]Aubertin M, Sgaoula J, Gill D E. A viscoplastic-damage model for soft rocks with low porosity[A]. In:Proc. Of 8th Int. Cong.on Rock Mechanics[C].1995,1:283-289.
    [135]Yahya O M L, Aubertin M, Julien M R. A unified representation of the plasticity, creep and relaxation behavior of rocksalt[J]. International Journal of Rock Mechanics and Mining Sciences.2000, 37(5):787-800.
    [136]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报.2002,21(11):1602-1604.
    [137]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1998.
    [138]Wong R H C, Lin P, Tang C A, et al. Creeping damage around an opening in rock-like material containing non-persistent joints[J]. Engineering Fracture Mechanics.2002,69(17):2015-2027.
    [139]Shao J F, Zhu Q Z, Su K. Modeling of creep in rock materials in terms of material degradation[J]. Computers and Geotechnics.2003,30(7):549-555.
    [140]徐卫亚,周家文,杨圣奇,等.绿片岩蠕变损伤本构关系研究[J].岩石力学与工程学报.2006,25(S1):3093-3097.
    [141]李连崇,徐涛,唐春安,等.单轴压缩下岩石蠕变失稳破坏过程数值模拟[J].岩土力学.2007,28(9):1978-1982.
    [142]朱昌星,阮怀宁,朱珍德,等.岩石非线性蠕变损伤模型的研究[J].岩土工程学报.2008,30(10):1510-1513.
    [143]任中俊,彭向和,万玲,等.三轴加载下盐岩蠕变损伤特性的研究[J].应用力学学报.2008,25(2):212-217.
    [144]佘成学.岩石非线性黏弹塑性蠕变模型研究[J].岩石力学与工程学报.2009,28(10):2006-2011.
    [145]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [146]楼志文.损伤力学基础[M].西安:西安交通大学出版社,1991.
    [147]沈为.损伤力学[M].武汉:华中理工大学出版社,1995.
    [148]唐春安,朱万成.混凝土损伤与断裂一数值试验[M].北京:科学出版社,2003.
    [149]吴鸿遥.损伤力学[M].北京:国防工业出版社,1990.
    [150]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [151]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [152]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [153]赵锡宏,孙红,罗冠威.损伤土力学[M].上海:同济大学出版社,2000.
    [154]李树忱,李术才,朱维申,等.能量耗散弹性损伤本构方程及其在围岩稳定分析中的应用[J].岩石力学与工程学报.2005,24(15):2646-2653.
    [155]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验原理及工程应用[M].北京:中国水利水电出版社,2005.
    [156]李术才.加锚断续节理岩体断裂损伤模型及其应用[D].武汉:中国科学院研究生院(武汉岩土力学研究所),1996.
    [157]李术才,王刚,王书刚,等.加锚断续节理岩体断裂损伤模型在硐室开挖与支护中的应用[J].岩石力学与工程学报.2006,25(8):1582-1590.
    [158]李新平,朱维申.裂隙岩体的损伤断裂理论与应用[J].岩石力学与工程学报.1995,14(3):236-245.
    [159]尹双增.断裂,损伤理论及应用[MJ.北京:清华大学出版社,1992.
    [160]张淳源.粘弹性断裂力学[M].武汉:华中理工大学出版社,1994.
    [161]陈智纯,缪协兴,茅献彪.岩石流变损伤方程与损伤参量测定[J].煤炭科学技术.1994,22(08).
    [162]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报.1995,16(4):343-346.
    [163]凌建明.岩体蠕变裂纹起裂与扩展的损伤力学分析方法[J].同济大学学报(自然科学版).1995,23(2).
    [164]肖洪天,周维垣,杨若琼.三峡船闸高边坡损伤流变研究及实测分析[J].岩石力学与工程学报.2000,18(5):497-502.
    [165]秦跃平,王林,孙文标,等.岩石损伤流变理论模型研究[J].岩石力学与工程学报.2002,21(S2):2291-2295.
    [166]王者超.盐岩非线性蠕变损伤本构模型研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006.
    [167]陈卫忠,王者超,伍国军,等.盐岩非线性蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报.2007,26(3):467-472.
    [168]韦立德,杨春和,徐卫亚.基于细观力学的盐岩蠕变损伤本构模型研究[J].岩石力学与工程学报.2005,24(23):4253-4258.
    [169]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报.2002(1):10-15.
    [170]Kranz R L. Crack-crack and crack-pore interactions in stressed granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1979,16(1):37-47.
    [171]Kranz R L. Crack growth and development during creep of Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1979,16(1):23-35.
    [172]Korzeniowski W. Rheological model of hard rock pillar[J]. Rock mechanics and rock engineering.1991,24(3):155-166.
    [173]陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报.2003,35(4):480-484.
    [174]陈有亮,刘涛.岩石流变断裂扩展的力学分析[J].上海大学学报(自然科学版).2000,6(6):491-496.
    [175]陈有亮,孙钧.岩石的蠕变断裂特性分析[J].同济大学学报(自然科学版).1996,24(05):504-508.
    [176]Costin L S. Time-dependent damage and creep of brittle rock[A]. Damage Mechanics and Continuum Modeling[C]. ASCE, New York,1985:25-38.
    [177]周维垣,杨延毅.节理岩体的损伤断裂模型及验证[J].岩石力学与工程学报.1991,10(1):43-54.
    [178]杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学.1994,11(2):81-90.
    [179]朱维申,邱祥波,李术才,等.损伤流变模型在三峡船闸高边坡稳定分析的初步应用[J].岩石力学与工程学报.1997,16(5):431-436.
    [180]Chen W Z, Zhu W S, Shao J F. Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation[J]. International Journal of Rock Mechanics and Mining Sciences.2004,41(4):669-677.
    [181]陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报.1999(12):33-37.
    [182]Valanis K C. A theory of viscoplasticity without a yield surface[J]. Archives of Mechanics. 1971,23(5):517-551.
    [183]陈沅江,潘长良,曹平,等.基于内时理论的软岩流变本构模型[J].中国有色金属学报.2003,13(3):735-742.
    [184]邵卓平.木质材料变参数流变模型的研究[J].林业科学.2003,39(3):106-110.
    [185]吕爱钟,丁志坤,焦春茂,等.岩石非定常蠕变模型辨识[J].岩石力学与工程学报.2008, 27(1):16-21.
    [186]丁志坤.岩石粘弹性非定常蠕变方程的参数辨识[D].泰安:山东科技大学,2003.
    [187]丁志坤,吕爱钟.岩石粘弹性非定常蠕变方程的参数辨识[J].岩土力学.2004,25(S1):37-40.
    [188]焦春茂.岩体非定常流变模型的有限元计算及位移反分析[D].泰安:山东科技大学,2005.
    [189]李金兰.岩体非定常粘弹塑性有限元分析及位移反分析[D].泰安:山东科技大学,2006.
    [190]秦玉春.长大深埋隧洞围岩非定常剪切蠕变模型初探[D].南京:河海大学,2007.
    [191]秦玉春,朱珍德,王战鹏.锦屏水电站引水隧洞大理岩卸荷变形特性试验[J].岩土力学.2006,27(S2):1084-1088.
    [192]李成波.岩石蠕变实验及非定常参数粘弹模型[D].合肥:中国科学技术大学,2009.
    [193]李成波,Ay din Adnan,施行觉,等.岩石蠕变模型的比较和修正[J].实验力学.2008,23(1):9-16.
    [194]朱明礼,朱珍德,李志敬,等.深埋长大隧洞围岩非定常剪切流变模型初探[J].岩石力学与工程学报.2008,27(7):1436-1441.
    [195]张强勇,杨文东,张建国,等.变参数蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报.2009,28(4):732-739.
    [196]崔少东.岩石力学参数的时效性及非定常流变本构模型研究[D].北京:北京交通大学,2010.
    [197]吕爱钟,蒋斌松.岩石力学反问题[M].北京:煤炭工业出版社,1998.
    [198]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996.
    [199]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [200]Feng X, Chen B, Yang C, et al. Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm[J]. International Journal of Rock Mechanics and Mining Sciences.2006,43(5):789-801.
    [201]刘保国,孙钧.岩体粘弹性本构模型辨识的一种方法[J].工程力学.1999,16(1).
    [202]高玮,郑颖人.岩体参数的进化反演[J].水利学报.2000(8):1-5.
    [203]高玮,郑颖人.采用快速遗传算法进行岩土工程反分析[J].岩土工程学报.2001,23(1):120-122.
    [204]苏国韶,冯夏庭.基于粒子群优化算法的高地应力条件下硬岩本构模型的参数辨识[J].岩石力学与工程学报.2005,24(17):3029-3034.
    [205]陈炳瑞,冯夏庭,黄书岭,等.基于快速拉格朗日分析-并行粒子群算法的黏弹塑性参数反演及其应用[J].岩石力学与工程学报.2007,26(12):2517-2525.
    [206]杨成祥,冯夏庭,陈炳瑞.基于扩展卡尔曼滤波的岩石流变模型参数识别[J].岩石力学与工程学报.2007,26(04):754-761.
    [207]李志敬,朱珍德,周伟华.基于CPSO算法的岩石蠕变模型非定常参数反演分析[J].河海大学学报(自然科学版).2008,36(3):346-349.
    [208]罗润林,阮怀宁,朱昌星.基于粒子群-最小二乘法的岩石流变模型参数反演[J].辽宁工程技术大学学报(自然科学版).2009,28(5):750-753.
    [209]刘文彬.岩石蠕变本构模型的辨识及应用[D].北京交通大学,2009.
    [210]刘文彬,刘保国,刘中战,等.基于改进PSO算法的岩石蠕变模型参数辨识[J].北京交通大学学报.2009,33(04):140-143.
    [211]陈炳瑞,冯夏庭,丁秀丽,等.基于模式搜索的岩石流变模型参数识别[J].岩石力学与工程学报.2005,24(2):207-211.
    [212]胡斌,冯夏庭,王国峰,等.龙滩水电站左岸高边坡泥板岩体蠕变参数的智能反演[J].岩 石力学与工程学报.2005,24(17):3064-3070.
    [213]王伟.改进粒子群优化算法在边坡工程力学参数反演中的应用[D].南京:河海大学,2007.
    [214]杜好.基于微粒群算法的堆石坝坝料参数反演分析[D].大连:大连理工大学,2006.
    [215]陈炳瑞,冯夏庭,丁秀丽,等.基于模式-遗传-神经网络的流变参数反演[J].岩石力学与工程学报.2005,24(04):553-558.
    [216]高玮.基于粒子群优化的岩土工程反分析研究[J].岩土力学.2006,27(5):795-798.
    [217]罗润林,阮怀宁,黄亚哲,等.岩体初始地应力场的粒子群优化反演及在FLAC-(3D)中的实现[J].长江科学院院报.2008,25(4):73-76.
    [218]中国水电顾问集团成都勘测设计研究院.四川省大渡河大岗山水电站可行性研究报告(综合说明)[R].成都,2006.
    [219]中国水电顾问集团成都勘测设计研究院.四川省大渡河大岗山水电站可行性研究报告(工程地质)[R].成都,2006.
    [220]中国水电顾问集团成都勘测设计研究院.大岗山岩体分类及力学特性研究报告[R].成都,2006.
    [221]长江水利委员会长江科学院主编.水利水电工程岩石试验规程[S].北京,2001.
    [222]Bieniawski Z T. Mechanism of brittle fracture of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1967,4(4):407-423.
    [223]Paterson M S, Wong T. Experimental rock deformation--the brittle field[M]. Berlin:Springer Verlag,1978.
    [224]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报.2002,21(06):778-781.
    [225]谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报.2005,24(15):2603-2608.
    [226]姚孝新,耿乃光,陈顒.应力途径对岩石脆性—延性变化的影响[J].地球物理学报.1980,23(03):312-319.
    [227]许东俊,耿乃光.岩体变形和破坏的各种应力途径[J].岩土力学.1986,7(02):17-25.
    [228]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [229]刘泉声,胡云华,刘滨.基于试验的花岗岩渐进破坏本构模型研究[J].岩土力学.2009,30(02):289-296.
    [230]吕颖慧,刘泉声,胡云华.基于花岗岩卸荷试验的损伤变形特征及其强度准则[J].岩石力学与工程学报.2009,28(10):2096-2103.
    [231]尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报.1998,17(01):24-29.
    [232]徐松林,吴文,王广印,等.大理岩等围压三轴压缩全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程实验[J].岩石力学与工程学报.2001,20(06):763-767.
    [233]邓林,邓荣贵,付小敏,等.泥巴山隧道流纹岩加卸围压力学特性研究[J].岩石力学与工程学报.2009,28(S1):3150-3155.
    [234]陈卫忠,刘豆豆,杨建平,等.大理岩卸围压幂函数型Mohr强度特性研究[J].岩石力学与工程学报.2008,27(11):2214-2220.
    [235]陈卫忠,吕森鹏,郭小红,等.基于能量原理的卸围压试验与岩爆判据研究[J].岩石力学与工程学报.2009,28(08):1530-1540.
    [236]朱杰兵,汪斌,邬爱清.锦屏水电站绿砂岩三轴卸荷流变试验及非线性损伤蠕变本构模型研究[J].岩石力学与工程学报.2010,29(03):528-534.
    [237]Pushkarev V I, Afanas' Ev B G. A rapid method of determining the long-term strengths of weak rocks[J]. Journal of Mining Science.1973,9(5):558-560.
    [238]朱珍德,李志敬,朱明礼,等.岩体结构面剪切流变试验及模型参数反演分析[J].岩土力学.2009,30(01):99-104.
    [239]黎克日,康文法.岩体中泥化夹层的流变试验及其长期强度的确定[J].岩土力学.1983,4(01):39-46.
    [240]朱长歧,郭见杨.粘土流变特性的再认识及确定长期强度的新方法[J].岩土力学.1990,11(02):15-22.
    [241]杨晓杰,彭涛,李桂刚,等.云冈石窟立柱岩体长期强度研究[J].岩石力学与工程学报.2009,28(S2):3402-3408.
    [242]崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩石力学与工程学报.2006,25(05):1021-1024.
    [243]蒋昱州.高拱坝拱肩槽岩石流变力学特性试验研究及其长期稳定性分析[D].南京:河海大学,2009.
    [244]Goodman R E. Introduction to rock mechanics[M]. New York:John Wiley & Sons,1989.
    [245]杨文东.坝基软弱岩体的非线性蠕变损伤本构模型及其工程应用[D].济南:山东大学,2008.
    [246]夏才初,钟时猷.考虑加载历史影响的蠕变试验数据整理方法[J].中南大学学报(自然科学版).1989,20(1):18-24.
    [247]钱伟长,叶开沅.弹性力学[M].北京:科学出版社,1980.
    [248]杨挺青,罗文波,徐平,等.黏弹性理论与应用[M].北京:科学出版社,2004.
    [249]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [250]谌文武,原鹏博,刘小伟.分级加载条件下红层软岩蠕变特性试验研究[J].岩石力学与工程学报.2009,28(S1):3076-3081.
    [251]张忠亭,罗居剑.分级加载下岩石蠕变特性研究[J].岩石力学与工程学报.2004,32(02):218-222.
    [252]Li Y, Xia C. Time-dependent tests on intact rocks in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences.2000,37(3):467-475.
    [253]周辉,张传庆,冯夏庭,等.隧道及地下工程围岩的屈服接近度分析[J].岩石力学与工程学报.2005,24(17):3083-3087.
    [254]张传庆.基于破坏接近度的岩石工程安全性评价方法的研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006.
    [255]张传庆,周辉,冯夏庭.基于破坏接近度的岩土工程稳定性评价[J].岩土力学.2007,28(05):888-894.
    [256]张传庆,周辉,冯夏庭,等.基于屈服接近度的围岩安全性随机分析[J].岩石力学与工程学报.2007,26(02):292-299.
    [257]杨圣奇.岩石流变力学特性的研究及其工程应用[D].南京:河海大学,2006.
    [258]徐平,李云鹏,丁秀丽,等FLAC-(3D)粘弹性模型的二次开发及其应用[J].长江科学院院报.2004,21(02):10-13.
    [259]褚卫江,徐卫亚,杨圣奇,等.基于FLAC-(3D)岩石黏弹塑性流变模型的二次开发研究[J].岩土力学.2006,27(11):2005-2010.
    [260]谢秀栋,苏燕.软土弹粘塑性模型在FLAC-(3D)中的二次开发及其应用[J].福州大学学报(自然科学版).2009,37(04):582-587.
    [261]杨文东,张强勇,张建国,等.基于FLAC-(3D)的改进Burgers蠕变损伤模型的二次开发研究[J].岩土力学.2010,3](6):1956-1964.
    [262]黄书岭,冯夏庭,黄小华,等.岩土流变数值计算中一些问题的探讨[J].岩土力学.2008, 29(04):1107-1113.
    [263]黄小华,冯夏庭,陈炳瑞.广义黏弹组合模型的等效性及其基本性质[J].力学学报.2010,42(01):65-73.
    [264]黄小华,冯夏庭,陈炳瑞,等.蠕变试验中黏弹组合模型参数确定方法的探讨[J].岩石力学与工程学报.2007,26(06):1226-1231.
    [265]徐芝纶.弹性力学[M].北京:高等教育出版社,1978.
    [266]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.
    [267]田明俊,周晶.岩土工程参数反演的一种新方法[J].岩石力学与工程学报.2005,24(9):1492-1496.
    [268]李守巨,刘迎曦,孙伟.智能计算与参数反演[M].北京:科学出版社,2008.
    [269]Kennedy J, Eberhart R. Particle Swarm Optimization[A]. Proc. IEEE International Conference on Neural Networks[C]. Piscataway NJ:IEEE Service Center,1995:1942-1948.
    [270]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc. On 6th International Symposium on Micromachine and Human Science[C]. Piscataway NJ:IEEE Service Center,1995:39-43.
    [271]王俊伟.粒子群优化算法的改进及应用[D].沈阳:东北大学,2006.
    [272]陈宝林.最优化理论与方法[M].北京:清华大学出版社,1989.
    [273]薛毅.最优化原理与方法[M].北京:北京工业大学出版社,2001.
    [274]Wilson E O. Sociobiology:The new synthesis[M]. Cambridge, MA:Belknap Press,1975.
    [275]Reynolds C W. Flocks, herds and schools:A distributed behavioral model[J]. Computer Graphics. 1987,21(4):25-34.
    [276]Heppner F, Grenander U. A stochastic nonlinear model for coordinated bird flocks[M]. Washington DC:In:S. Krasner (Ed.), The Ubiquity of Chaos, AAAS Publications,1990.
    [277]谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策.2003,18(2):129-134.
    [278]毛恒.粒子群优化算法的改进及应用研究[D].泉州:华侨大学,2008.
    [279]冯静,舒宁.群智能理论及应用研究[J].计算机工程与应用.2006,42(17):31-34.
    [280]Croes G A. A method for solving traveling-salesman problems[J]. Operations Research.1958, 6(6):791-812.
    [281]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [282]肖明.地下洞室施工开挖三维动态过程数值模拟分析[J].岩土工程学报.2000,22(4):421-425.
    [283]胡斌,冯夏庭,黄小华,等.龙滩水电站左岸高边坡区初始地应力场反演回归分析[J].岩石力学与工程学报.2005,24(22):4055-4064.
    [284]张建国,张强勇,杨文东,等.大岗山水电站坝区初始地应力场反演分析[J].岩土力学.2009,30(10):3071-3078.
    [285]山东大学.大岗山水电站坝区初始地应力场反演计算分析报告[R].济南,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700