用户名: 密码: 验证码:
豚鼠心室肌细胞膜延迟整流钾通道电流(I_k)及L型钙通道电流(I_(Ca,L))在缺血预适应过程中的变化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前冠心病的防治重点在于减少不可逆的心肌缺血损伤所造成的心肌梗死、猝死等急性事件的发生。心肌缺血预适应(IP)现象是已知的心肌缺血时最强的生理性保护机制,且内在机理不完全明了,而成为研究的重点。近几年对IP的研究从心脏整体水平转向细胞水平的生理、生化等研究。在IP机理的研究中,有关离子通道的研究集中在被认为是“终末效应器”的ATP敏感性钾通道(K_(ATP)),通道电流的分析也基本限于K_(ATP),且直接报导不多。除缺血缺氧等病理情况下开放的K_(ATP)外,关于IP条件下心肌细胞膜其它生理性离子通道电流的研究尚未见直接报导。本研究应用膜片钳全细胞记录技术,在模拟缺血及早期缺血预适应条件下对豚鼠心室肌单细胞的延迟整流钾电流I_k(分为快速激活成分I_(kr)和缓慢激活成分I_(ks))和L型钙通道电流(I_(Ca,L))进行分析。
     方法:用胶原酶Ⅰ分离出豚鼠心室肌单细胞。实验条件设定为:(1)无预适应的缺血模型:细胞经正常细胞外液灌流5min,记录正常状态离子通道电流为对照,再予模拟缺血细胞外液灌流10min,记录缺血状态离子通道电流。(2)缺血预适应模型:细胞经正常细胞外液灌流5min,记录正常状态离子通道电流为对照后,先予缺血细胞外液灌流3min,再予正常细胞外液灌流(再灌注)3min,如此重复操作2次作为缺血预适应刺激并记录离子通道电流,再予模拟缺血细胞外液灌流10min,记录预适应后的缺血状态离子通道电流。本实验共观察记录四组细胞:单纯缺血I_k组(n=14)、缺血预适应I_k组(n=10)、单纯缺血I_(Ca,L)组(n=12)和缺血预适应I_(Ca,L)组(n=11)。
     结果:(1)急性缺血时I_k的变化:缺血后I_(kr)电流密度均大于缺血前正常状态,且自指令电压-20mV至最大+60mV有统计学显著性(P<0.05),将指令电压+40mV时的尾电流I_(kr,tail)也于缺血前后比较(n=9),显示缺血后的I_(kr,tail)电流密度也显著大于缺血前(P<0.05);自指令电压-20mV至最大+60mV,缺血后I_(ks)的电流密度数值有增大趋势(P=0.069~0.088),将其+40mV时的尾电流I_(ks,tail)于缺血前后比较(n=9),显示缺血后的I_(ks,tail)电流密度与缺血前无显著性差异。(2)缺血预适应过程中I_k的变化:各指令电压下,正常状态、预适应后缺血前
    
    天津医科大学博卜研究生学位论文
    和预适应后缺血10分钟这三个IP时相的Ikr电流密度无显著差异,Ik,的电流
    密度也无显著差异,Ik,和I。的+40mV尾电流分析未见显著差异。Ikr和Ik、峰
    值变化趋势表现出预适应后略低于正常,缺血后又升高而接近正常。(3)缺血
    IOmin后,预适应组细胞个体Ikr受抑制的概率大于单纯缺血组(7/10vs3/14,
    确切概率P二0.035);预适应组细胞个体玩,受抑制的概率虽大于单纯缺血组,
    但差异无统计学显著性(7/10 vS4八4,确切概率P=0.095)。(4)急性缺血时xe、L
    的变化:持续缺血10min后内向Ica,:峰值电流密度由正常时的一5.72士2.ooPA·PF
    明显减小至一2.54士1 .19PA.PF(P<0 .001),外向稳态电流155电流密度由正常时一6.40
    士4.04pA. pF增大至一3.15士2.85pA.pF(P<0.05),缺血对最大激活电压(0 mV)和
    反转电压(巧OmV)无影响,缺血使稳态激活曲线略右移(VI/2正常状态平均
    一21.80mv,缺血后平均一17.35mV)。(5)缺血预适应过程中Ic。,L的变化:在IP
    三个时相中,IC次L峰值电流密度于IP刺激后(一2.22士l.00PA·PF)和缺血后(一1.84
    士乃OPA·PF)无显著差异,二者均小于正常状态的一5.60士1.90PA·pF(均为
    P<0.001);三个时相的稳态电流155无显著性差异(分别为一4.35士2.90、一4.18士
    2.18和一4.31士2.巧pA .PF)。三个时相最大激活电压和反转电压无变化。预适应
    刺激和之后的缺血均使IC比L的稳态激活曲线略右移(V,/:在正常状态平均为
    一17.IOmV,经预适应刺激后一11.57mV,缺血后一13.45mV)。
     结论:(1)急性持续心肌缺血使Ik增大,且以Ikr的增大为主。(2)缺血预适
    应的刺激抑制了持续缺血.时Ik的开放,对Ikr的抑制更为显著。(3)急性持续缺
    血使内向Ica,L峰值电流减小,相应外向稳态电流155增大,稳态激活曲线略右
    移,不影响最大激活电位和反转电位。(4)缺血预适应刺激仍使Ica,L峰值电流
    减小,即短暂缺血后的再灌注不能使减小的Ica,L峰值恢复,但限制了IP之后
    的持续缺血时Ica,!峰值进一步减低;IP刺激和之后缺血时的155均保持正常,
    稳态激活曲线均比正常略右移,均不影响最大激活电位和反转电位。(5)缺血
    预适应对Ik和IC、L的抑制可限制细胞过度的钾外流和钙内流,IP使I、s正常化
    有助于稳定静息膜电位,可能与持续缺血时对心肌的保护作用有关。
Objective: Ischemic preconditioning (IP) is known by now to be the most physiologically effective protection against myocardial ischemia , the mechanism of which is not thoroughly clear and becomes an important investigative question. Most studies on ionic currents in the course of IP focus on ATP-sensitive potassium channel (Katp) which is regarded as terminal effector, and direct reports on other ionic currents opening in physiological condition has not yet been available. In this study by developing a cellular mode of acute ischemia and IP, analyses of delayed rectifier potassium current (Ik) that is divided into rapidly activated component (Ikr) and slowly activated component (Iks) and of L-type calcium current were performed in guinea pig ventricular myocytes with whole-cell configuration of patch clamp technique.
    Methods: Single myocytes were isolated from the ventricles of adult guinea pigs. Experimental conditions for myocytes were set as (1) merely ischemia without preconditioning: ionic currents were recorded after 5min of equilibration with normal extracellular solution for control data, and then recorded following 10 min of perfusion with mimic ischemic solution; (2) ischemic preconditioning: after control data were recorded as above, two cycles of ischemic perfusion for 3min followed by normal reperfusion for 3 min were given as IP stimulation, after which currents were recorded, finally data of 10 min of mimic ischemia were collected. Thus altogether 4 experimental groups of cells were observed: Ik of merely ischemia(n=14), Ik of IP(n=10), Ica,L of merely ischemia(n=12) and Icax of
    Results: (1) Compared with normal state, after 10 min of ischemia without IP , the current density of Ikr increased(from -20 to +60 mV differences were of statistical significance, P<0.05) and the density of corresponding tail current Ikr,tail at +40mV was also significantly increased(n=9, P<0.05), the density of Iks trended to increase from -20mV to +60mV(P=0.069~0.088) and the density of tail current Iks.tail at +40mV did not markedly change(n=9); (2)in the course of IP, the density of Ikr and Iks in the 3 phases(control, IP stimulation, persistent ischemia) showed no statistical difference, and Ikr,tail and IkS,tail did not differ; (3)the probability of
    
    
    inhibition of Ikr in ischemia following IP was greater than in merely ischemia(7/10 vs 3/14, exact P=0.035), but that of Iks in preconditioned ischemia was greater than in merely ischemia without statistical significance(7/10 vs 4/14, exact P=0.095); (4)Compared with normal state, after 10 min of ischemia without IP , the inward current density of the peak value of Ica,L greatly reduced from -5.72+2.00pA pF to -2.54+ 1.19pA pF(P<0.001), and the outward density of corresponding steady-state current(Iss) increased from -6.40 + 4.04pA pF to -3.15 + 2.85pA pF (P<0.05), steady-state activation curve slightly moved to the right(V1/2 was -21.80mV on average in normal state, -17.35mV in ischemia), but the most activation voltage(0mV) and reversal voltage(+50mV) was unchanged; (5) in the 3 phases of IP, there was no difference between the density of the peak value of Ica,L in IP state(-2.22+ 1.00 pA-pF) and in following ischemia(-1.84 +7.50 pA-pF), both of which were significantly less than normal state(-5.60+1.90 pA
    -pF, both P<0.001). Iss was also unchanged(-4.35 + 2.90, -4.18+2.18 and -4.31+2.15 pA.pF in time order), the most activation voltage and reversal voltage was still unchanged, steady-state activation curve in IP and in following ischemia consistently slightly moved to the right(on average V1/2 were -17.10mV, -11.57mV, -13.45mV in time order).
    Conclusions: (1) Acute persistent myocardial ischemia could increase Ik, mainly by increasing Ikr; (2)Ischemic preconditioning could inhibit Ik opening during subsequent persistent ischemia, mainly by inhibiting Ikr; (3)Acute ischemia can decrease inward peak value of Ica,L and increase outward steady-state current(Iss); (4)IP stimulation still makes peak value of Ica,L decrease without affecting ISs, and may restrict further
引文
1. Valentin Fuster, R.Wayne Alexander, RobertA. O'Rourke, et al. HURST'S THE HEART. Edition 10(英文影印版).北京医科大学出版社,2002.
    2. CE Murry, RB Jennings, and KA Reimer. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986, 74(5): 1124-1136.
    3.欧阳伟.人心肌缺血预适应的研究进展.国外医学·心血管疾病分册.1997,24(6):6-9.
    4. Robert A. Kloner, Robert B. Jennings. Consequences of Brieflschemia: Stunning, Preconditioning, and Their Clinical Implications .Part 1. Circulation. 2001, 104: 2981-2989.
    5.谢志泉.缺血预适应信号传导机制的研究进展.国外医学·心血管疾病分册.1999,26(6):326-328.
    6. Priya TYAGI, Girish TAYAL. Ischemic preconditioning of myocardium. Acta Pharmacol Sin. 2002, 23 (10): 865-870.
    7. Michael S. Marber. Ischemic Preconditioning in Isolated Cells. Circ Res. 2000; 86:926-931.
    8.彭军,李元建.ATP敏感性钾通道与心肌缺血预适应.中国药理学通报.2000,16(2):141~144.
    9. Robert A. Kloner, Robert B. Jennings. Consequences of Brief Ischemia: Stunning, Preconditioning,and Their Clinical Implications. Part 2. Circulation. 2001, 104: 3158-3167.
    10. JN Peart, GJ Gross. Sarcolemmal and mitochondriai KATP channels and myocardial isehemie preconditioning. J Cell Mol Med. 2002, 6(4): 453-464.
    11.尹彤,何瑞荣.胞膜和线粒体ATP敏感性钾通道在心肌保护中的作用.河北医科大学学报.2001,21(1):52-56.
    12. Pierre Dos Santos, Alicia J. Kowaltowski, Muriel N. Laclau, et al. Mechanisms by which opening the mitochondrial ATP- sensitive K~+ channel protects the ischemic heart. Am J Physioi Heart Circ Physiol, 2002, 283(1): H284-H295.
    13. Mitsushige Murata, Masaharu Akao, Brian O'Rourke, et al. Mitochondrial ATP-Sensitive Potassium Channels Attenuate Matrix Ca~(2+)Overload During Simulated lschemia and Reperfusion.: Possible Mechanism of Cardioprotection. Circ Res. 2001, 89: 891-898.
    14.魏向荣.心肌缺血预适应的研究进展.国外医学.心血管疾病分册.1996,23(4):205-207.
    15.吕利雄.心肌的缺血预适应及其对心脏的保护作用.心血管病学进展.1995,16(3):159-161.
    16. Derek M.Yellon, Gary F.Baxter, David Garcia-Dorado, et al.Mark S.Sumaray. lschemic Preconditioning: Present Position and Future Directions. Cardiovasc Res. 1998, 37:21-33
    17. Henry P, Popescu A, Puceat M, et al. Acute simulated ischaemia produces both inhibition and activation of K+ currents in isolated ventricular myocytes. Cardiovasc Res. 1996 ,
    
    32(5):930-939.
    18. Irie H, Gao J, Gaudette GR, et al. Both metabolic inhibition and mitochondrial K(ATP) channel opening are myoprotective and initiate a compensatory sarcolemrnal outward membrane current. Circulation. 2003, 108 Suppl 1:II341-347.
    19. David X. Zhang, Ya-Fei Chen, William B. Campbell, et al. Characteristics and Superoxide-Induced Activation of Reconstituted Myocardial Mitochondrial ATP-Sensitive Potassium Channels. Circ Res. 2001, 89( 12):1177-1183.
    20.刘华军,陈灏珠,杨学义,程介士.ATP sensitive K+ channel may be involved in the protective effects of preconditioning in isolated guinea pig cardiomyocytes. Chin Med J (Engl). 2001 , 114(2):178-182.
    21.李翠兰,胡大一,刘秀兰,丁国良,孙彦杰.心肌缺血预适应引起的ATP敏感性钾电流变化.中国心脏起搏与心电生理杂志.2001,15(4):269~272.
    22.刘泰槰.心肌细胞电生理学.北京大学出版社,2000.
    23.陈莉娜.心肌缺血预适应中的离子通道.心血管病学进展.2003,24(3):194-197.
    24.刘华军,陈灏珠,杨学义,程介士.低氧复氧对豚鼠心肌细胞钾通道电流及钙通道电流的影响.中华心血管病杂志.1997,25(2):85-88.
    25.邹路芸,蒋文平.缺血/再灌注对心室肌细胞膜离子通道的影响.中国心脏起搏与心电生理杂志.1999,13(4):230-233.
    26.吴黎明,唐敏.急性缺血对豚鼠心室肌细胞L型钙通道电流的影响.福建医科大学学报.2002,36(4):374-377.
    27. Carmeliet E. Cardiac Ionic Currents and Acute Ischemia: From Channels to Arrhythmias. Physiol Rev. 1999, 79: 917-1017.
    28. Ju YK, Saint DA, Gage PW. Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol. 1996,497 (Pt 2): 337-347.
    29.骆红艳,唐明,吴克忠,钱悦,李守宾,别毕华,岳远坤,白润涛,胡新武.粉防己碱对豚鼠心室肌细胞延迟整流钾通道的影响.同济医科大学学报.1999,28(2):108-113.
    30. B. M. Heath and D. A. Terrar. Protein kinase C enhances the rapidly activating delayed rectifier potassium current, I_(Kr), through a reduction in C-type inactivation in guinea-pig ventricular myocytes. J Physiol. 2000, 522(3) : 391-402.
    31. Livia C. Hool, Peter G. Arthur. Decreasing Cellular Hydrogen Peroxide With Catalase Mimics the Effects of Hypoxia on the Sensitivity of the L-Type Ca~(2+) Channel to β-Adrenergic Receptor Stimulation in Cardiac Myocytes. Cir Res. 2002, 91 : 601-609.
    32.王文伟,朱依纯,姚泰,郑平,龚芮玲.血管紧张素Ⅱ对缺血心肌细胞钾离子通道的作用.生理学报.2002,54(2):149-153.
    33.赵正航,臧伟进,丁二晓江,孙强,吕军,张春虹.腺苷对模拟缺血再灌注豚鼠心室肌细胞动作电位的影响及其离子机制.中国药理学通报.2003,19(3):274-278.
    
    
    34.刘恭鑫,顾全堡,郭棋,杨英珍.大鼠、豚鼠心肌细胞的简单、快速分离.中国应用生理学杂志.1997,13(4):361-362.
    35.王晓良.膜片钳全细胞记录及其在抗心律失常药物研究中的应用.中国心脏起搏与心电生理杂志.1994,8(1):44-47.
    36.曾涛,牛小伟,瞿安连,康华光,戴水平,姚伟星,江明性.粉防己碱对分离的豚鼠心室肌单细胞动作电位及钙通道电流的影响.中国药理学与毒理学杂志.1995,9(3):196-198.
    37. William E. Louch, Gregory R. Ferrier, Susan E. Howlett. Changes in excitation-contraction coupling in an isolated ventricular myocyte model of cardiac stunning. Am J Physiol Heart Cite Physiol. 2002, 283:H800-H810.
    38.马杰.延迟整流钾电流(IK)对心肌电生理特性影响的研究进展.心血管病学进展.2002,23(5):283-285.
    39.蔡军,江洪,王腾,向小峰.伊贝沙坦对兔心室肌细胞L-型钙通道电流的影响.中华心律失常学杂志.2003,7(3):165-169.
    40.商立军,臧益民,王四旺,周士胜.各部位心肌细胞的分离技术.心功能杂志.1999,11(3):182-184.
    41.华铮,王晓良.黄连素对豚鼠心肌钾离子通道的抑制作用.药学学报.1994,29(8):576-580.
    42.周亮,曾晓荣,杨艳,刘智飞,李妙龄,裴杰.豚鼠心肌细胞急性酶分离法.四川生理科学杂志.2000,22(2):35-36.
    43. Tytgat J. How to isolate cardiacmyocytes? Cardiovasc Res. 1994, 28: 280-283.
    44.陈军.膜片钳实验技术.科学出版社,2001.
    45.康华光.膜片钳技术及其应用.科学出版社,2003.
    46.张鸿修,石毓澍.实用冠心病学(第三版).天津科学技术出版社,1995.
    47. M. W. Botsford, A. Lukas. Ischemic Preconditioning and Arrhythmogenesis in the Rabbit Heart: Effects on Epicardium Versus Endocardium. J Mol Cell Cardiol. 1998, 30: 1723-1733.
    48.柳景华,任自文,江丽蕙,丁燕生,张钧华.缺血预适应对兔心脏电生理参数的影响.中国介入心脏病学杂忐.2000,8(1):48-51.
    49.张建军,胡大一,刘秀兰,唐朝枢,翁心植.缺血预适应抗心律失常机制的实验研究.中国心脏起搏与心电生理杂志.1999,13(3):178-181.
    50. Tetsushi Furukawa, Shinichi Kimura, Nanako Furukawa, et al. Role of Cardiac ATP-Regulated Potassium Channels in Differential Responses of Endocardial and Epicardial Cells to lschemia. Circ Res. 1991, 68:1693-1702.
    51.朱莉,杨向军,蒋文平.腺苷对心肌细胞的电生理作用及机制探讨.中华心血管病杂志.1997,25(2):89-93.
    52. Hugh W. L. Bethell, Jamie 1. Vandenberg, Gerry A. Smith, et al. Changes in ventricular repolarization during acidosis and low-flow ischemia. Am J Physiol Heart Cite Physiol.
    
    1998, 275: H551-H561.
    53. Shinji lto, Toshihisa Miyazaki, Shunichiro Miyoshi, et al. Ventricular Fibrillation and Shortening, Altemans and After-depolarizations of Epicardial Monophasic Action Potentials During Coronary Occlusion and Reperfusion: Effect of Repetition of lschemia. Jpn Cire J. 1999, 63:201-208.
    54.金明华.心肌缺血预适应与细胞信号转导.深圳中西医结合杂志.2003,13(3):181-188.
    55. Mubagawa K, Flameng W. Adenosine, adenosine receptors and myocardial protection: an updated overview. Cardiovasc Res. 2001, 52(1): 25-39.
    56. Noma, A. ATP-regulated K~+ channels in cardiac muscle. Nature. 1983, 305: 147-148.
    57. Garlid KD, Paucek P, Yarov-Yarovoy V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K channels. Circ Res. 1997, 81:1072-1082.
    58. Yao Z., Gross G.J. Effects of the K-ATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infaretsize in dogs. Circulation. 1994, 89: 1769-1775.
    59. Hamada K, Yamazaki J, Nagao T. Shortening of action potential duration is not prerequisite for cardiac protection by ischemic preconditioning or a KATP channel opener. J Mol Cell Cardiol.. 1998, 30:1369~1379.
    60.胡晓东,钱家庆.盐酸非洛普对豚鼠心室肌细胞延迟整流钾电流的抑制作用.中国药理学与毒理学杂志.2002,16(5):343-347.
    61. Zhibo Lu, Kaichiro Kamiya, Tobias Opthof, et al. Density and Kinetics of I_(Kr) and I_(Ks) in Guinea Pig and RabbitVentricular Myocytes Explain Different Efficacy of Iks Blockade at High Heart Rate in Guinea Pig and Rabbit: Implications for Arrhythmogenesis in Humans. Circulation. 2001, 104: 951-956.
    62.裴德安.心肌钾通道的研究进展.国外医学生理、病理科学与临床分册1997,17(1):78-81.
    63. B. M. Heath and D. A. Terrar. Protein kinase C enhances the rapidly activating delayed rectifier potassium current, I_(Kr), through a reduction in C-type inactivation in guinea-pig ventricular myocytes. J Physiol. 2000, 522(3): 391-402.
    64.李泱.肾上腺素受体对心肌细胞延迟整流钾电流的调控.国外医学·生理、病理科学与临床分册.2001,21(6):471-473.
    65.徐长庆,李玉荣,孙可青,杨宝峰,单宏丽,娄延平,傅国辉.活性氧对豚鼠心室肌细胞不同钾通道离子电流的影响.中国病理生理杂志.1999,15(10):773-776.
    66. Satoh H, Matsui K. Electrical and mechanical modulations by oxygen-derived free radical generating system in guinea-pig heart muscles. J Pharm pharmacol. 1997, 49(5): 505-510.
    67. E Cerhai, G Ambrosio, F Porciatti, M Chiariello, A Giotti and A Mugelli. Cellular electrophysiological basis for oxygen radical-induced arrhythmias. A patch-clamp study in guinea pig ventricular myocytes. Circulation. 1991, 84(4): 1773-1782.
    
    
    68. B. Rodrguez, J. M. Ferrero Jr., B. Trénor. Mechanistic investigation of extracellular K~+ accumulation during acute myocardial ischemia: a simulation study. Am J Physiol Heart Circ Physiol. 2002, 283: H490-H500.
    69. Heath BM, Terrar DA. Effect of glibenclamide, forskolin, and isoprenaline on the parallel activation of K_(ATP) and reduction of I_K by cromakalim in cardiac myocytes. Cardiovasc Res. 1994, 28(6): 818-22.
    70. Cordeiro JM, Howlett SE, Ferrier GR. Simulated ischaemia and reperfusion in isolated guinea pig ventricular myocytes. Cardiovasc Res. 1994 Dec;28(12): 1794-802.
    71.商立军,臧益民.臧伟进.CGRP对正常及模拟缺血缺氧状态下豚鼠心肌细胞L型钙通道电流的影响.中国药理学通报.2000,16(5):503~506.
    72.徐长庆,李玉荣,杨宝峰,单宏丽,孙可青,李全凤,朱世军.氧自由基致豚鼠心室肌细胞跨膜电位变化的离子电流基础.中国应用生理学杂志.2000,16(2):121-124.
    73.张彦周,张辉,郭宗强,董建增,邱春光,陈庆华,黄振文.去甲肾上腺素对豚鼠缺血及再灌注性室颤的作用.郑州大学学报(医学版).2002,37(2):195-197.
    74. Linz KW, Meyer R. Modulation of L-type calcium current by internal potassium in guinea pig ventricular myocytes. Cardiovasc Res. 1997, 33(1): 110-22.
    75. Dekker LR, Coronel R, VanBavel E, Spaan JA, Opthof T. Intracellular Ca~(2+) and delay of ischemia-induced electrical uncoupling in preconditioned rabbit ventricular myocardium. Cardiovase Res.1999, 44(1):101-12.
    76. I. M. Fearon, A. C. V. Palmer, A. J. Baimforth, et al. Modulation of recombinant human cardiac L-type Ca~(2+) channel (?)qc subunits by redox agents and hypoxia. J Physiol. 1999, 514(3): 629-637.
    77.梁勇,王晓良.人心肌细胞钾通道研究进展.中国药理学通报.1998,14:30-33.
    78. Marieke W. Veldkamp, Antoni C.G. van Ginneken, Tobias Opthof, Lennart N. Bouman. Delayed Rectifier Channels in Human Ventricular Myocytes. Circulation. 1995, 92:3497-3504.
    79. Gui-Rong Li, Jianlin Feng, Lixia Yue, et al. Evidence for Two Components of Delayed Rectifier K~+ Current in Human Ventricular Myocytes. Circ Res. 1996, 78: 689-696.
    80. Iost N, Virag L, Opincariu M, Szecsi J, Varro A, Papp JG. Delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovasc Res. 1998,40(3): 508-515.
    81. Virag L, Iost N, Opincariu M, et al. The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovasc Res. 2001,49(4): 790-797.
    82.李泱,王琳,邱苹,高伟.索他洛尔对豚鼠心室肌动作电位及延迟整流钾电流的作用特性.中华老年多器官疾病杂志.2003,2(4):283-286.
    83. CE Murry, VJ Richard, KA Reimer, RB Jennings. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res. 1990, 66(4): 913-931.
    84. Boris Z.Simkhovich, Karin Przyklenk, Robert A.Kloner. Role of a protein kinase C as a cellular mediator of ischemic preconditioning: a critical review. Cardiovasc Res. 1998, 40(1): 9-22.
    
    
    85.金祝秋.约理性预适应的心脏保护作川.国外医学生理、病理科学与临床分册.1997,17(2):106-109.
    86. Armstrong S, Ganote CE. Adenosine receptor specificity in preconditioning of isolated rabbit cardiomyocytes: evidence of A_3 receptor involvement. Cardiovasc Res. 1994, 28: 1049-1056.
    87. Ikonomidis TS, Laura C, Tumiati LC, et al. Preconditioning human ventricular cardiomyocytes with brief periods of stimulated ischemia. Cardiovasc Res. 1994, 28:1285-1291.
    88.梁金锐,沈潞华,刘秀兰.卡维地洛对模拟缺血时豚鼠乳头肌动作电位和心室肌细胞ATP敏感性钾电流的影响.中华心律失常学杂志.2003,7(2):107-111.
    89. Livia C. Hool. Differential regulation of the slow and rapid components of guinea-pig cardiac delayed rectifier K channels by hypoxia. J Physiol. 2004, 554 (3) : 743-754.
    90. Philip B.Adamson, Emilio Vanoli, Stephen S.Hull, et al. Antifibrillatory efficacy of ersentilide, a novel β-adrenergic and Ikr blocker in conscious dogs with a healed myocardial infarction. Cardiovsc Res. 1998, 40(1): 56-63.
    91. Nakaya H, Furusawa Y, Ogura T, Tamagawa M, Uemura H. Inhibitory effects of JTV-519, a novel cardioprotective drug, on potassium currents and experimental atrial fibrillation in guinea-pig hearts. Br J Pharmacol. 2000, 131(7): 1363-1372.
    92. Hiroshi Miyawaki, Muhammad Ashraf. Ca~(2+) as a Mediator of Ischemic Preconditioning. Circ Res. 1997, 80: 790-799.
    93. S Kimura, AL Bassett, H Xi and RJ Myerburg. Verapamil diminishes action potential changes during metabolic inhibition by blocking ATP-regulated potassium currents. Circ Res. 1992 Jul;71(1): 87-95.
    94. Brian S.Cain, Daniel R.Meldrum, Joseph C.Cleveland,et al. Clinal L-Type Ca~(2+) Channel Blockade Prevents Ischemic Preconditioning of Human Myocardium. J Mol Cell Cardiol. 1999, 31: 2191-2197.
    95. Wallbridge DR, Schulz R, Braun C, Post H, Heusch G. No attenuation of ischaemic preconditioning by the calcium antagonist nisoldipine. J Mol Cell Cardiol. 1996,28(8): 1801-1810.
    96.颜红兵,柯元南编译.美国冠心病诊断与治疗指南.中国环境科学出版社,2004
    97.吴熹,王康,马旺扣,杨如松.钙预适应在心肌内源性保护机制中的应用.中华实验外科杂志.2000,17(3):253-254.
    98. Sian A. Rees, Jamie I. Vandenberg, Anthony R. Wright, et al. Cell Swelling Has Differential Effects on the Rapid and Slow Components of Delayed Rectifier Potassium Current in Guinea Pig Cardiac Myocytes. J Gen Physiol. 1995, 106:1151-1170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700