用户名: 密码: 验证码:
离心泵作透平的理论分析数值计算与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体压力能是一种无污染、可再生能源。随着能源需求的不断上升和节能意识的不断增强,开发利用小功率液体压力能将对建设资源节约型环境友好型社会将起到重要作用。泵作透平开发利用小功率液体压力能与其他类型的小功率液体压力能开发利用技术相比具有体积小、结构简单、造价低、寿命长、易维修等优势。目前在工业流程、小水电等节能技术领域均有应用。对泵作透平进行研究具有明显的社会和学术价值,本文以泵作透平为研究对象,应用理论分析、数值计算和实验相结合的方法对离心泵作透平的选型、内部流动、高效设计理论和设计方法以及非定常压力脉动等方面进行了研究。本文的主要工作和创造性成果有:
     1.系统地总结了国内外泵作透平的研究现状并对泵作透平的发展趋势进行了展望。总结了泵作透平的基础理论,分析了泵作透平的外特性特点,明确了泵作透平外特性曲线的变化与叶轮几何参数之间的关系。
     2.研制了泵作透平驱动泵和泵作透平驱动测功机两种形式的实验台。分别对两种形式的实验台进行了实验调试,分析了自主研制实验台和以往实验台的优缺点。编制了泵作透平实验台自动测试系统软件,成功实现了泵作透平外特性的自动测量。
     3.研究了较为准确的泵作透平外特性数值预测方法。对数值计算过程中三维造型的简化、网格类型和湍流模型的选择等关键问题进行了研究。数值与实验结果表明:采用全流场、结构化网格和标准k-ε湍流模型能够较准确地预测泵作透平的外特性。
     4.对低、中、高三个不同比转数的泵和泵作透平进行了数值与实验研究。对离心泵正反工况的外特性和内部流场的区别与联系进行了分析;研究了泵和泵作透平高效点之间的流量、扬程换算系数,提出了一种较为准确的预测泵作透平高效点的半经验公式,可为泵作透平的选型提供参考;分析了泵作透平内部水力损失分布规律,为泵作透平的进一步优化设计指明了方向。
     5.首次对离心泵作透平叶轮高效设计理论和设计方法进行了较为系统的研究。分别研究了叶轮主要几何参数如:叶片包角、叶片数、叶片进口宽度、叶片进口安放角、叶片厚度、分流叶片、叶轮直径、叶片弯曲形状等对泵作透平内部水力损失分布、内部流动和外特性的影响,丰富和完善了泵作透平的设计理论和设计方法。首次提出对于只在透平工况运行的泵作透平,采用具有体积小、效率高等特点的透平专用前弯型叶片叶轮。
     6.首次对泵作透平高效蜗壳的设计进行了研究。分别对蜗壳主要几何参数如断面形状、喉部面积、环形部分变化规律和基圆直径等对泵作透平内部水力损失分布和外特性的影响进行了研究,掌握了蜗壳主要几何参数对泵作透平内部水力损失分布和外特性的影响规律。
     7.首次对泵作透平内部非定常压力脉动进行了研究。通过对泵作透平主要过流部件如蜗壳、叶轮和尾水管等内部压力脉动的时域和频域图分析,初步掌握了泵作透平内部压力脉动特征。分别研究了叶片数、分流叶片和叶轮外径与蜗壳基圆直径之间的径向间隙等对泵作透平非定常压力脉动的影响,初步掌握了上述几何参数对泵作内部压力脉动的影响规律。
Hydraulic energy is a kind of clean, renewable energy. With the rising energy demand and the enhancement of energy saving awareness, development and utilization of small power hydraulic energy will play an important role in the construction of resource-conserving and environment-friendly society. Compared with other types of small power hydraulic energy exploration devices, pumps as turbines (PAT) have the advantages of small, relatively cheap, long service life, easy to manufacture and maintain et al. At present, PATs are mainly used in industrial processes, small hydropower and other field of energy-saving technologies. Research on PATs apparently has social and academic values; therefore PATs are selected as the research topic of this paper. In this paper, study on the selection method of appropriate pumps as turbines, internal flow field analysis, high efficiency design theory and design method, the unsteady flow fields within PAT et al. were performed using theoretical, numerical and experimental analyses. The main work and creative achievements of this paper were:
     1. The current research status of PAT both at home and abroad was systematically summarized; meanwhile its future development trends were forecasted. The basic theories of PAT were summarized. PAT's performance characteristics were analyzed. Besides, the relations between the variations of PAT's performances and their impeller geometric parameters were explored.
     2. Two types of test rigs namely pump driven by PAT and dynamometer driven by PAT were developed. After experimental research on the two test rigs, the advantages and drawbacks of the two test rigs and other test rigs were found and presented. PAT's automatic test system software was programmed and the automatic measurement of PAT's external characteristics was realized.
     3. Research on the accurate numerical prediction method of PAT's external performances was performed. Some of the key issues, including three dimensional model simplifications, mesh type and turbulence model selection et al. were studied. Numerical and experimental results showed that PAT's external performances could be accurately predicted when the complete domain within PAT was modeled, structured grid and standard k-ε turbulence model were selected.
     4. Numerical and experimental research on both pump and turbine modes of three pumps covering low, medium and high specific speeds were carried out. The differences and correlations between external performances and internal flow fields of the pumps in positive and reverse modes were analyzed. A more accurate half-empirical formula of PAT's BEP prediction method which could be a helpful guidance in the selection of appropriate pumps as turbines was developed, through detailed investigation into the head and flow conversion factors between pumps and PATs. Besides, hydraulic loss distribution analysis within PATs which could provide a direction for further optimization was performed.
     5. High efficient impeller design theory and design method of centrifugal PAT was systematically studied for the first time. Impeller main geometric parameters such as blade wrap angle, blade number, blade inlet width, blade inlet angle, blade thickness, splitter blades, impeller diameter, blade swept shape et al. to the influence of PAT's internal hydraulic loss distributions, internal flow fields and external performances were carried out, therefore the design theory and design method of PAT was enriched. Impeller with forward swept blades which apparently has smaller size and higher efficiency compared with conventional back swept blades was proposed for pump operated in turbine mode only for the first time.
     6. The high efficiency volute design method of PAT was studied for the first time. Effects of PAT's volute main geometric parameters such as cross section shape, throat area, spiral development area and volute base circle diameter et al. influencing PAT's internal hydraulic loss distributions and external performances were acquired through investigations into these geometric parameters to the influence of PAT.
     7. The unsteady pressure fields within PAT were studied for the first time. Through time domain and frequency domain analyses of the unsteady pressure pulsations within PAT's main flow components such as volute, impeller and outlet pipe, the unsteady pressure characteristics within PAT were obtained. Effects of blade number, splitter blades and volute base circle diameter influencing PAT's unsteady flow fields were performed; laws of the above stated parameters to the influence of PAT's unsteady flow fields were acquired.
引文
[1]Yao Lan, Liu Bin, Wu Zongxin. Present and future power generation in China [J]. Nuclear Engineering and Design,2007(237):1468-1473.
    [2]Paul Cook. Infrastructure, rural electrification and development [J]. Energy for Sustainable Development,2011(15):304-313.
    [3]Huang Hailun, Yan Zheng. Present situation and future prospect of hydropower in China [J]. Renewable and Sustainable Energy Reviews,2009 (13):1652-1656.
    [4]Liu Wen, Henrik Lund, Brian Vad Mathiesen et al. Potential of renewable energy systems in China [J]. Applied Energy,2011 (88):518-525.
    [5]Kaldellis J K. The contribution of small hydro power stations to the electricity generation in Greece: Technical and economic considerations [J]. Energy Policy,2007 (35):2187-2196.
    [6]Wang Huaqi, Zhang Maosheng, Zhu Hua et al. Hydro-climatic trends in the last 50 years in the lower reach of the Shiyang River Basin, NW China [J]. Catena,2012 (95):33-41.
    [7]Francis Li. Hydropower in China [J]. Energy Policy,2002 (30):1241-1249.
    [8]Zhou Sheng, Zhang Xiliang, Liu Jinghe. The trend of small hydropower development in China [J]. Renewable Energy,2009(34):1078-1083.
    [9]Williams A A, Simpson R. Pico hydro-Reducing technical risks for rural electrification [J]. Renewable Energy,2009(34):1986-1991.
    [10]Debajit Palit, Akanksha Chaurey. Off-grid rural electrification experiences from South Asia: Status and best practices [J]. Energy for Sustainable Development,2011(15):266-276.
    [11]Varun PR, Bhat IK. Energy, economics and environmental impacts of renewable energy systems [J]. Renewable and Sustainable Energy Reviews,2009(13):2716-2721.
    [12]Oliver Paish. Small hydro power: technology and current status [J]. Renewable and Sustainable Energy Reviews,2002(6):537-556.
    [13]杨军虎,张雪宁,王晓晖等.能量回收液力透平研究综述[J].流体机械,2011,39(6):29-33.
    [14]Helena RAMOS, Almeida AB. Small Hydropower Schemes as an Important Renewable Energy Source[C]//In Proc. of the Hidroenergia 99, Vienna, Austria,11-13, October,1999.
    [15]曹鹍,姚志民.水轮机原理及水力设计[M].北京:清华大学出版社,1991.
    [16]汀小洪,曹志锡.液体压力能回收技术[J].新技术新工艺,2002(6):18-19.
    [17]Williams A A, Stephen Porter. Comparison of hydropower options for developing countries with regard to the environmental, social and economic aspects [C]//Proceedings of the International Conference on Renewable Energy for Developing Countries,2006:1-13.
    [18]Mariano A. Pump as turbine-A pico-hydro alternative in Lao People's Democratic Republic [J]. Renewable energy,2010(35):1109-1115.
    [19]Himanshu Nautiyal, Varun, Anoop Kumar. Reverse running pumps analytical, experimental and computational study: A review [J]. Renewable and Sustainable Energy Reviews, 2010(14):2059-2067.
    [20]Orchard B, Klos S. Pumps as turbines for water industry [J]. World Pumps,2009(8):22-23.
    [21]孙嘉岐,冯晨阳.液力透平在流程工业领域的应用[J].热带农业工程,2012,36(1):33-37.
    [22]盛树仁,房壮为.在石油化学工业中利用水轮机回收能量[J].大电机技术,1982(4):41-44.
    [23]刁望升.高压加氢装置应用液力透平可行性研究[J].炼油技术与工程,2007,38(7):33-35.
    [24]王梓荣,秦馗,厂庆永等.半贫液泵和水力透平机组的配置及应用[J].中国高新技术企业,2010(9):91-92.
    [25]谢亚.浅析水力透平(1107-JHT)改进的经济性[J].贵州化工,2010,35(4):56-59.
    [26]Raja WA, Piazza RW. Reverse running centrifugal pumps as hydraulic power recovery turbines for sea water reverse osmosis systems [J]. Desalination,1981(38):123-134.
    [27]Antwerpen H J van, Greyvenstein G P. Use of turbines for simultaneous pressure regulation and recovery in secondary cooling water systems in deep mines [J]. Energy Conversion and Management,2005 (46):563-575.
    [28]Giugni M, Fontana N, Portolano D. Energy saving policy in water distribution networks[C]//In: International Conference on Renewable Energies and Power Quality, 2009:1-10.
    [29]李振明.液力透平在炼油板块的应用[J].机械研究与应用,2011(4):26-30.
    [30]余良俭,陈允中.液力能量回收透平在石化行业中的应用[J].动设备,1996,17(4):27-31.
    [31]Nouni MR, Mullick SC, Kandpal TC. Providing electricity access to remote areas in India: Niche areas for decentralized electricity supply [J]. Renewable Energy,2009 (34):430-434.
    [32]Varun PR, Bhat IK. Energy, economics and environmental impacts of renewable energy systems [J]. Renewable and Sustainable Energy Reviews,2009 (13):2716-2721.
    [33]Williams A A. Pump as turbines for low cost micro hydro power [J]. Renewable Energy, 1996,9(14):1227-1234.
    [34]Maher P, Smith N P A, Williams A A. Assessment of pico-hydro as an option for off-grid electrification in Kenya [J]. Renewable Energy,2003 (28):1357-1369.
    [35]Ramos H, Borga A. Pumps as turbines: an unconventional solution to energy production [J]. Urban Water,1999, 1(3):261-263.
    [36]Salil Joshi, A Gordon L Holloway, Chang Liuchen et al. Development of a standalone micro-hydro system using pump as turbine technology for low head sites in remote areas[C]//In:20th International Power System Conference,2005:1-7.
    [37]Joshi S, Holloway AGL, Chang L. Selecting a high specific speed pump for low head hydro-electric power generation [J]. IEEE Transactions,2005:603-606.
    [38]Chapallaz J M, Eichenberger P, Fischer G. Manual on Pumps Used as Turbines [M]. Vieweg, Braunschweig, Germany,1992, Chap.1.
    [39]Nourbakhsh A, Derakhshan S. Pumps used as turbine in small hydropower stations [C]//Proceeding of the First Cappadocia International Mechanical Engineering Symposium, 14-16 July 2004, Cappadocia, Turkey.
    [40]Kitteredge C P, Thomas D. Centrifugal pumps operated under abnormal conditions [J]. Power, 1931(4):881-884.
    [41]Helmut Keck, Mirjam Sick. Thirty years of numerical flow simulation in hydraulic Turbomachines [J]. Acta Mech,2008(201):211-229.
    [42]Helmut Keck, Wolfgang Michler, Thomas Weiss et al. Recent developments in the dynamic analysis of water turbines [C]//2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems Timisoara, Romania,2007, October 24-26.
    [43]Smith N P A, Williams A A, Harvey A B et al. Directly coupled turbine-induction generator systems for micro-hydro power[C]//In: 2nd World Renewable Energy Congress,1992: 2509-2516.
    [44]Stepanoff A J. Centrifugal and axial flow pumps [M]. New York, John Wiley,1957.
    [45]Gantar M. Propeller pumps running as turbines [C]//In: Conference on Hydraulic Machinery, September 13-15, Ljubljana, Slovenia,1988:237-248.
    [46]Ramos H, Borga A. Pumps yielding power [J]. Dam Engineering,2000 (2):197-217.
    [47]Chaudhry M H. Applied hydraulic transients 2nd ed. [M]. Van Nostrand Reinhold Company Inc.1987.
    [48]Fernandez J, Blanco E, Parrondo J et al. Performance of a centrifugal pump running in inverse mode [J]. Proceedings of the Institution of Mechanical Engineers: Part A, Journal of Power and Energy,2004(218):265-271.
    [49]施咸道.叶片泵第三象限性能的试验研究[J].水泵技术,1989(1):51-54.
    [50]盛树仁,房壮为.可逆水轮机转轮水力设计的探讨[J].大电机技术,1983(5):41-48.
    [51]刘甲凡.泵作水轮机运行的特性分析[J].农业机械学报,1997,28(3):20-24.
    [52]杨军虎,袁亚飞,蒋云国等.离心泵反转作为能量回收透平的性能预测[J].兰州理工大学学报,2010,1(36):54-56.
    [53]Swanson M M. Complete characteristics circle diagram for turbomachinery [J]. Transactions of the ASME,1953,(75):816-826.
    [54]Williams A A. Pumps as turbines used with induction generators for standalone micro-hydro electric power plants [D]. PhD Thesis, Nottingham Trent University,1992.
    [55]Williams AA. Pumps as Turbines users guide [M]. International Technology, London.1995.
    [56]Anderson H H. Modern developments in the use of large single entry centrifugal pumps[J]. Proceedings of the Institution of Mechanical Engineers,1993,177(31):1-11.
    [57]Sharma R L. Pumps as turbines (PAT) for small hydro[C]//In:International Conference on Hydro Power Development in Himalayas,1998:137-146.
    [58]Amelio M, Barbarelli S. A one-dimensional numerical model for calculating the efficiency of pumps as turbines for implication in micro-hydro power plants[C]//In Proceeding of ESDA:7th Biennial ASME Conference Engineering Systems Design and Analysis. July 19-22,2004, Manchester, UK:1-9.
    [59]Nourbakhsh A, Derakhshan S. Prediction of pump as turbine's (PAT) best efficiency point (BEP) by theoretical method [J]. IASME Transactions,2005,2(1):28-31.
    [60]Isbasoiu EC, Bucur DM, Ghergu CM, Dunca G. Using standard pumps as turbines[C]//In: CEEX 2007 Conference.2007.
    [61]Derakhshan S, and Nourbakhsh A. Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds [J]. Experimental Thermal and Fluid Science,2008,32(3):800-807.
    [62]Singh P, Nestmann F. An optimization routine on a prediction and selection model for the turbine operation of centrifugal pumps [J]. Experimental Thermal and Fluid Science,2010, 34(2):152-164.
    [63]Williams A A. The turbine performance of centrifugal pumps: a comparison of prediction methods [J]. Proceedings of the Institution of Mechanical Engineers:Part A: Journal of Power and Energy,1994,208(1):59-66.
    [64]Sharma K. Small hydroelectric project-use of centrifugal pumps as turbines [M]. Technical report. Bangalore, India, Kirloskar Electric Co.1985.
    [65]Alatorre-Frenk C, Thomas T H. The pumps-as-turbines approach to small hydropower [C]//World Congress on Renewable energy,1990.
    [66]Schmiedl E. Serien-Kreiselpumpen im Turbinenbetrieb [M]. Pumpentagung Karlsruhe, October 1988, Sec. A6.
    [67]Grover K M. Conversion of pumps to turbines [M]. Katonah, New York: GSA Inter Corp.1980.
    [68]Buse F. Using centrifugal pumps as hydraulic turbines [J]. Chemical Engineering, January, 1981:113-117.
    [69]Hancock J W. Centrifugal pump or water turbine [J]. Pipe Line News,1963:25-27.
    [70]Childs S M. Convert pumps to turbines and recover HP [J]. Hydrocarbon Processing and Petroleum Refiner,1962,41(10):173-174.
    [71]Yang Sunsheng, Kong Fanyu, Jiang Wanming et al. Research on impeller trimming to the influence of pump as turbine [J]. Computer & Fluids,2012(67):72-78.
    [72]杨孙圣,孔繁余,宿向辉等,泵及泵用作透平时的数值模拟与外特性实验[J].西安交通大学学报,2012,3(46):36-41.
    [73]杨孙圣,孔繁余,陈斌.叶片包角对可逆式泵性能影响的数值研究[J].流体机械,2011(6):17-20.
    [74]盛树仁.利用水泵逆转及水轮机回收能量的研究[J].流体机械,1984(6):41-45.
    [75]袁亚飞.基于离心泵的水力透平的流场分析及性能预测[D].兰州理工大学,2010.
    [76]黄铭科.加氢裂化装置能量回收透平关键技术的研究[D].江苏大学,2010.
    [77]杨军虎,王晓晖.叶片形状对能量回收水力透平性能的影响[J].排灌机械工程学报,2011,4(29):287-291.
    [78]齐学义,李凤成,谢小梅等.多级能量回收透平水力模型方案的开发[J].2011,37(4):56-60.
    [79]刘玉莹,李仁年,李琪飞等.双流道转轮水力透平机的全流道数值模拟[J].流体机械,2012,1(40):22-25.
    [80]Natanasabapathi SR, Kshirsagar JT. Pump as turbine-an experience with CFX-5.6 [C]//Corporate Research and Eng. Division, Kirloskar Bros. Ltd.2004.
    [81]ANSYS,2003, Help Navigator, ANSYS CFX, Release 5.6 CFX-Solver Modeling Guide, ANSYS, Inc., Canonsburg, PA.
    [82]Simpson R G, Williams A A. Application of computational fluid dynamics to the design of pico propeller turbines[C]//Proceedings of the International Conference on Renewable Energy for Developing Countries,2006:1-10.
    [83]Sonia Rawal, Kshirsagar J T. Numerical simulation on a pump operating in a turbine mode [C]//Proceedings of the Twenty-third International Pump Users Symposium,2007:1-7.
    [84]Derakhshan S, Nourbakhsh A. Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation [J]. Experimental Thermal and Fluid Science,2008,32 (5):1620-1627.
    [85]Jose Gonzalez, Jesus Manuel Fernandez Oro, Katia M Arguelles-Diaz. Flow analysis for a double suction centrifugal machine in the pump and turbine operation modes [J]. International Journal for Numerical Methods in Fluids,2009 (61):220-236.
    [86]Joaquin Fernandez, Raul Barrio, Eduardo Blanco et al. Experimental and numerical investigation of a centrifugal pump working as a turbine [C]//Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting FEDSM 2009, Vail, Colorado, USA,August 2-6, 2009:1-9.
    [87]Alexander K V, Giddens E P. Optimum penstocks for low head micro-hydro schemes [J]. Renewable Energy,2008 (33):507-519.
    [88]Alexander K V, Giddens E P. Microhydro:Cost-effective, modular systems for low heads [J]. Renewable Energy,2008 (33):1379-1391.
    [89]Alexander K V, Giddens E P. Radial- and mixed-flow turbines for low head microhydro systems [J]. Renewable Energy,2009 (34):1885-1894.
    [90]Singh P, Nestmann F. Experimental optimization of a free vortex propeller runner for micro hydro application [J]. Experimental Thermal and Fluid Science,2009 (33):991-1002.
    [91]Singh P, Nestmann F. Experimental investigation of the influence of blade height and blade number on the performance of low head axial flow turbines [J]. Renewable Energy,2011 (36): 272-281.
    [92]Singh P, Nestmann F. Exit blade geometry and part-load performance of small axial flow propeller turbines:An experimental investigation [J]. Experimental Thermal and Fluid Science, 2010(34):798-811.
    [93]Made Suarda, Nengah Suarnadwipa, Wayan B et al. Experimental work on modification of impeller tips of a centrifugal pump as a turbine[C]//The 2nd Joint International Conference on Sustainable Energy and Environment (SEE 2006) Bangkok, Thailand,21-23, November,2006: 1-5.
    [94]Singh P, Nestmann F. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines [J]. Experimental Thermal and Fluid Science,2011,35(1):121-134.
    [95]Singh P. Optimization of the internal hydraulic and of system design in pumps as turbines with field implementation and evaluation [D]. University of Karlsruhe, Karlsruhe,2005.
    [96]Derakhshan S, Mohammadi B. Incomplete sensitivities for 3D radial turbomachinery blade optimization [J]. Computers & Fluids,2008 (37):1354-1363.
    [97]Derakhshan S, Mohammadi B, Nourbakhsh A. The comparison of incomplete sensitivities and Genetic algorithms applications in 3D radial turbomachinery blade optimization [J]. Computers & Fluids,2010(39):2022-2029.
    [98]Derakhshan S, Mohammadi B. Efficiency Improvement of Centrifugal Reverse Pumps[J]. Journal of Fluids Engineering,2009,131(2):1-9.
    [99]王福军,张玲,张志民.轴流泵不稳定流场的压力脉动特性研究[J].水利学报,2007,38(8):1003-1009.
    [100]]王福军,张玲,黎耀军等.轴流式水泵非定常湍流数值模拟的若干关键问题[J].机械工程学报,2008,44(8):73-77.
    [101]王春林,易同祥,吴志旺等.混流式核主泵非定常流场的压力脉动特性分析[J].动力工程,2009,29(11):1036-1040.
    [102]陈向阳,袁丹青,杨敏官等.300MW级核电站主泵压力脉动研究[J].核动力工程,2010, 31(3):78-82.
    [103]邵春雷,顾伯勤,陈晔.离心泵内部非定常压力场的数值研究[J].农业工程学报,2009,25(1):75-80.
    [104]王洋,代翠.离心泵内部不稳定流场压力脉动特性分析[J].农业机械学报,2010,41(3):91-95.
    [105]周凌九,王占民,江东智.离心泵非定常流动计算及性能预测[J].排灌机械工程学报[J].2010,28(4):286-290.
    [106]袁建平,付燕霞,刘阳等.基于大涡模拟的离心泵蜗壳内压力脉动特性分析[J].排灌机械工程学报,2010,28(4):310-314.
    [107]张兄文,李国君,李军.离心泵蜗壳内部非定常流动的数值模拟[J].农业机械学报,2006,37(6):63-68.
    [108]丛国辉,王福军.双吸离心泵隔舌区压力脉动特性分析[J].农业机械学报,2008,39(6):60-65.
    [109]杨敏,阂思明,王福军.双蜗壳泵压力脉动特性及叶轮径向力数值模拟[J].农业机械学报,2009,40(11):83-88.
    [110]邵春雷,顾伯勤,陈晔.离心泵压水室内部定常和非定常流动PIV测量[J].农业工程学报,2010,26(7):128-133.
    [111]陈党民,李新宏,黄淑娟.部分流泵整机非定常流动数值模拟[J].工程热物理学报,2005,26增刊:89-92.
    [112]陈党民,李新宏,黄淑娟.部分流泵非定常流动分析[J].西安交通大学学报,2005,39(9):954-958.
    [113]赵斌娟,袁寿其,刘厚林等.双流道泵内非定常流动数值模拟及粒子图像测速测量[J].机械工程学报,2009,45(9):82-89.
    [114]刘厚林,任芸,谈明高等.双流道泵内压力脉动的CFD计算及测试[J].排灌机械工程学报,2010,28(4):277-281.
    [115]王新,李同春,赵兰浩等.大型灯泡贯流泵站全流道非定常湍流数值模拟[J].水电能源科学,2010,28(4):119-132.
    [116]黄剑峰,张立翔,何士华.混流式水轮机全流道三维定常及非定常流数值模拟[J].2009,29(2):87-94.
    [117]刘树红,邵奇,杨建明等.三峡水轮机的非定常湍流计算及整机压力脉动分析[J].水力发电学报,2004,23(5):97-102.
    [118]刘树红,邵奇,杨建明等.原型水轮机的非定常湍流计算和尾水管压力脉动分析[J].水力发电学报,2005,24(1):74-79.
    [119]李金伟,刘树红,周大庆等.混流式水轮机飞逸暂态过程的三维非定常湍流计算[J].水力发电学报,2008,27(6):148-153.
    [120]廖伟丽,姬晋廷,逯鹏等.混流式水轮机的非定常流动分析[J].机械工程学报,2009,45(6):134-150.
    [121]吴玉林,吴晓晶,刘树红等.水轮机内部涡流与尾水管压力脉动相关性分析[J].水力发电学报,2007,26(5):122-126.
    [122]王正伟,周凌九,何成连.尾水管压力脉动的模拟与现场实测[J].清华大学学报(自然科学版),2005,45(8):1138-1142.
    [123]潘罗平.水轮机压力脉动试验方法的研究,水力发电学报[J].2003,(3):107-114.
    [124]陈庆光,吴玉林,刘树红.轴流式水轮机全流道内非定常空化湍流的数值模拟[J].机械工程学报,2006,42(6):211-216.
    [125]吴墒锋,吴玉林,林琳.轴流式水轮机三维非定常湍流计算及压力脉动预测[J].工程热物理学报,2006,27(6):956-958.
    [126]吴墒锋,吴玉林,刘树红等.轴流式水轮机摆度对压力脉动的影响[J].工程热物理学报,2007,28(2):238-240.
    [127]Raul Barrio, Jorge Parrondo, Eduardo Blanco. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points [J]. Computers & Fluids,2010 (39):859-870.
    [128]Arndt N, Acosta A J, Brennen C E et al. Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers [J] Journal of Fluids Engineering, 1990(112):98-108.
    [129]Arndt N, Acosta A J, Brennen C E et al. Rotor-stator interaction in a diffuser pump [J].Journal of Turbomachinery,1989(111):213-221.
    [130]Spence R, Amaral-Teixeira J. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests [J]. Computers & Fluids,2008 (37):690-704.
    [131]Moises Solis, Farid Bakir, Sofiane Khelladi. Numerical study on pressure fluctuations reduction in centrifugal pumps:influence of radial gap and splitter blades [J]. ISRN Mechanical Engineering,2011:1-14.
    [132]Dazin A, Coutier-Delgosha O, Dupont P et al. Rotating instability in the vaneless diffuser of a radial flow pump [J]. Journal of Thermal Science,2008,17(4):368-374.
    [133]Dazin A, Cavazzini G, Pavesi G et al. High-speed stereoscopic PIV study of rotating instability in a radial vaneless diffuser [J].Experiments in Fluids,2011,51(1):83-93.
    [134]Rodriguez C G, Egusquiza E, Santos I F. Frequencies in the vibration induced by the rotor stator interaction in a centrifugal pump turbine [J]. Journal of Fluids Engineering, 2007(129):1428-1435.
    [135]Alireza Zobeiri, Jean-Louis Kueny, Mohamed Farhat et al. Pump-turbine Rotor-Stator Interactions in Generating Mode:Pressure Fluctuation in Distributor Channel[C]//23rd IAHR Symposium-Yokohama October,2006:1-10.
    [136]Ruprecht A, Heitele M, Helmrich T. Numerical simulation of a complete francis turbine including unsteady rotor-stator interactions[C]//Proceedings of the 20th IAHR Symposium on Hydraulic Machinery and Systems, Charlotte, USA,2000:1-8.
    [137]Oliver Kirschner, Albert Ruprecht, Eberhard Gode. Experimental investigation of pressure pulsation in a simplified draft tube[C]//3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno, Czech Republic, October 14-16,2009:1-10.
    [138]Carlos S M, Jesus M F O, Katia MAD. Numerical modelling and flow analysis of a centrifugal pump running as a turbine: Unsteady flow structures and its effects on the global performance[J]. International Journal for Numerical Methods in Fluids,2011,65:542-562.
    [139]Derakhshan S, Nourbakhsh A. Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation [J]. Experimental Thermal and Fluid Science,2008,32 (5):1620-1627.
    [140]Dixon S L. Fluid mechanics and thermodynamics of turbomachinery [M], Elsevier, Oxford, UK, 2005. Chapters 2,6 and 9.
    [141]Singh P, Nestmann F. Experimental optimization of a free vortex propeller runner for micro hydro application [J]. Experimental Thermal and Fluid Science,2009,33(6):991-1002.
    [142]Himanshu Nautiyall, Varun, Anoop Kumar et al. Experimental investigation of centrifugal pump working as turbine for small hydropower systems [J]. Energy Science and Technology, 2011,1(1):79-86.
    [143]杨孙圣,孔繁余,陈斌.分流叶片对泵反转式透平性能影响的数值研究[J].工程热物理学报,2010,(31):141-144.
    [144]杨孙圣,孔繁余,周水清等.离心泵气蚀性能的数值计算与分析[J].华中科技大学学报,2010,10(38):93-95.
    [145]Yang Sunsheng, Kong Fanyu, Chen Bin. Research on pump volute design method using CFD [J]. International Journal of Rotating Machinery,2011:1-10.
    [146]关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011.
    [147]Manual for micro-hydropower development [M], Japan International Cooperation Agency (JICA) 2003.
    [148]Yang Sunsheng, Derakhshan S, Kong Fanyu. Theoretical, numerical and experimental prediction of pump as turbine performance [J]. Renewable Energy,2012:507-513.
    [149]杨孙圣,孔繁余,邵飞等.液力透平的数值计算与试验[J].江苏大学学报(自然科学版),2012,2(33):165-170.
    [150]Yang Sunsheng, Kong Fanyu, Shao Fei et al. Numerical simulation and comparison of pump and pump as turbine[C]//ASME Fluids Engineering Summer meeting, Montreal, Canada, 2010:1-10.
    [151]刘大凯.水轮机[M].北京:中国水利水电出版社,第三版,1997:119-124.
    [152]Yang Sunsheng, Kong Fanyu, Chen Hao et al. Effects of blade wrap angle influencing pump as turbine [J]. Journal of Fluids Engineering,2012,(134):1-8.
    [153]Yang Sunsheng, Kong Fanyu, Su Xianghui et al. Effects of splitter blade number on the performance of a pump when used as turbine using CFD [J]. International Agricultural Engineering Journal,2012,1(21):1-6.
    [154]杨孙圣,孔繁余,薛玲等.长短叶片对液力透平性能影响的数值与实验研究[J].农业机械学报,2012,07(43):104-107.
    [155]Yang Sunsheng, Kong Fanyu, Chen Bin. Research on volute design method of pump as turbine using CFD [J]. International Agricultural Engineering Journal,2011, (20):25-32.
    [156]杨孙圣,孔繁余,张新鹏等.液力透平非定常流动的数值与实验研究[J].农业工程学报,2012,7(28):67-71.
    [157]Yang Sunsheng, Kong Fanyu, Fu Jianghui et al, Numerical research on effects of splitter blades to the influence of pump as turbine [J]. International Journal of Rotating Machinery,2012:1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700