用户名: 密码: 验证码:
多级离心式森林消防泵的抗汽蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽蚀是水轮机、水泵等水力机械中产生的一种特有现象。离心泵在使用时,如果安装高度过高或者吸水管路布置不合理,泵内容易产生汽蚀现象。汽蚀现象的出现严重影响了泵的正常工作,降低了泵的寿命。泵汽蚀余量大小是评价离心泵性能好坏的一项重要指标。
     本文以BJL三级离心式森林消防泵为研究对象,分别使用试验方法与数值模拟方法对其汽蚀性能进行分析。在现有水泵测试平台的基础上,完成了开式泵汽蚀试验系统的搭建设计工作,对消防泵进行了性能测试试验和汽蚀试验。使用CFD软件ANSYS CFX对消防泵进行了整机流场的单相流模拟以及首级叶轮的两相汽蚀模拟,将模拟结果与试验结果进行了对比,验证了使用数值模拟方法分析该系列消防泵的可行性。数值模拟的结果显示了泵内部的压力分布与叶轮内汽蚀现象产生的气泡分布,为下一步消防泵的综合优化提供参考依据和研究方法。得到了三级离心式森林消防泵的临界汽蚀余量,对该水泵在实际使用中安装高度的确定提供计算依据,并计算得到了水泵在特定使用条件下的许用安装高度,结果显示消防泵的安装高度达到了设计要求。
Cavitation is a peculiar phenomenon which appears in turbine, water pumps and other hydraulic machineries. If installed too high or bibulous pipeline layout is not reasonable, cavitation may occur in centrifugal pump.Cavitation has seriously affected the normal performance of the pump and reduces the pump life, especially for low specific speed pump. NPSH is an important indicator to evaluate the performance of centrifugal pump.
     This research analyzes the BJL three-stage centrifugal forest fire-extinguishing pump cavitation performance by using testing method and numerical simulation. On the basis of the existing pump testing platform, I designed and constructed the open-type pump cavitation test system, and completed the performance test and cavitation test of centrifugal pump. Besides, I simulated the single-phase flow in the internal flow field of multi-stage centrifugal pump and cavitation in the flow field of the first-stage impeller by using ANSYS CFX software. Results of simulations and experiments were compared to verify the numerical simulation results are relatively feasible and reliable. The numerical simulation results show the pressure and bubble volume fraction distribution in the internal flow field of centrifugal pump, which provides a reference and research method for the integrated optimization design of centrifugal pump. Obtained the value of NPSHc of three-stage centrifugal forest fire-extinguishing pump, which provides a basis for determining the installation height of this series of centrifugal pumps,and calculated the allowable installation height of centrifugal pump in some particular using conditions, Results shows that the centrifugal pump suction height achieves the design requirement.
引文
[1]关醒凡.泵的理论与设计[M].北京:机械工业出版社,1987:47-53.
    [2]张克危.流体机械原理[M].北京:机械工业出版社,2000:137-146.
    [3]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995:164-165.
    [4]郑梦海.泵测试实用技术[M].北京:机械工业出版社,2011:141.
    [5]黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社,1991:113-114.
    [6]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004:120-124.
    [7]GB/T3216-2005.回转动力泵水力性能验收试验1级和2级[S].北京:中国标准出版社,2005:
    [8]乔启宇.移动式长距离供水灭火系统的研究[J].森林防火,1996,(1):13-15.
    [9]朱祖超.小流量高扬程泵的特点和应用[J].水泵技术,1998,(5):11-12.
    [10]马富银等.泵的空化现象研究进展[J].流体机械,2011,39(4):30-32.
    [11]王勇,刘厚林.泵汽蚀研究现状及展望[J].水泵技术,200,8(1):1-4.
    [12]朱玉峰.离心泵中的汽蚀及其防护技术[J].河北科技大学学报,2004,25(3):4-46.
    [13]赵会军.用电测法预测离心泵汽蚀性能的研究[J].水泵技术,1996,(3):33-36.
    [14]汤立宏.浅谈水泵的汽蚀现象及防治措施[J].科技纵横,2009,(3):102-103.
    [15]孙寿.水泵汽蚀研究的现状[J].水泵技术,1995,(3):39-46.
    [16]杨孙圣,孔繁余等.离心泵气蚀性能的数值计算与分析[J].华中科技大学学报,2010,38(10):93-95.
    [17]黄忠富,姜哲等.利用小波分析诊断水泵初始阶段的汽蚀故障[J].排灌机械,2010,23(2):4-7.
    [18]朱红耕.泵汽蚀余量及其试验方法浅议[J].排灌机械,1995,(1):23-26.
    [19]徐宇,吴玉林等.用两相流模型模拟混流式水轮机内空化流动[J].水利学报,2002,(2):57-62.
    [20]刘宜,张文军.离心泵内空蚀流动的数值模拟[J].甘肃科学学报,2008,20(3):93-95.
    [21]王勇,刘厚林等.离心泵内部空化特性的CFD模拟[J].排灌机械工程学报,2011,29(2):99-103.
    [22]黄思,管俊.基于空化模型的多级离心泵气蚀性能分析[J].流体机械,2011,39(1):29-30.
    [23]王晓琰,丁亚娜等.离心泵汽蚀性能改善与基于CFD的汽蚀性能预测研究[J].流体机械,2010,38(12):9-12.
    [24]李军,刘立军等.离心泵叶轮内空化流动的数值预测[J].工程热物理学报,2007, 28(6):947-950.
    [25]朱荣生,付强等.低比转数离心泵叶轮内汽蚀两相流三维数值模拟[J].农业机械学报,2006,37(5):75-77.
    [26]谭磊,曹树良等.带有前置导叶离心泵空化性能的试验及数值模拟[J].机械工程学报,2010,46(18):177-182.
    [27]朴奇镛,宋元萍.离心泵实验室中的汽蚀试验[J].农机化研究,2005,(9):174-175.
    [28]郑梦海.开式试验台上泵的汽蚀试验[J].水泵技术,1998,(6):39-42.
    [29]苏永生.离心泵空化试验研究[J].农业机械学报,2010,41(3):77-78.
    [30]陈阳,郑源等.水泵汽蚀试验问题分析[J].人民黄河,2010,32(1):83-84.
    [31]王福军,黎耀军,王文娥.水泵CFD应用中的若干问题与思考[J].排灌机械,2005,(3):25-26.
    [32]黄道见.离心泵叶轮内汽蚀发生的理论探讨[J].农机化研究,2006,(6):88-89.
    [33]刘厚林.泵空化流数值讨算研究现状及展望[J].流体机械,2011,39(9):38-44.
    [34]吴玉萍等.水力机械抗汽蚀材料研究新进展.机械工程材料,2005,29(9):5-7.
    [35]徐朝晖.水泵与水轮机空化状态监测与诊断的研究[J].农业机械学报,2003,34(1):140-142.
    [36]刘宜,陈建新.离心泵内部空化流动的定常数值模拟及性能预测[J].新技术新工艺,2010,(8):41-43.
    [37]朱文杰,顾伯勤,邵春雷等.基于计算流体动力学的离心泵空化性能研[J].煤矿机械,2010,31(10):51-54.
    [38]B.E.Launder, D.B.Spalding.Lectures in Mathematical Models of Turbulence [J].Academic Press,London,1972.
    [39]V.Yakhot,S.A.Orzag,Renormalization group analysis of turbulence:basic theory.JScient COMPUT.1986,3-11.
    [40]Xav ier E sealer, Eduard Egusqu izaa, Moham ed Farhat, et al. Detection of cav itation in hydraulic turb ines[J]. Mechan ica ISystem s and Signal Processing,2006, 20(4):983-1007.
    [41]Okita K,Ugajin H,Matsumoto Y.Numerical analysis of the influence of the tip clearance flows on the unsteady cavitating flows in a three-dimensional inducer [J] Journal of Hydrodynamics,2009,21(1):34-40.
    [42]Medvitz R.B, Kunz R.F,Boger D A,et al.Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD [J] Journal of Fluids Engineering,2002, 124(2):377-383.
    [43]HirschiR,Dupont Ph,Avellan F,et al.Centrifugal Pump Performance Drop Due to Leading Edge Cavitaion:Numerical Predictions Compared with Model Tests [J].ASME Journal of Fluids Engineering,1998,120:705-711.
    [44]Brennen C E. Multifrequency instability of cavitating inducers[J]. ASME J ournal of Fluids Engineering,2007,129(6):731-736.
    [45]Philippe D, Tomoyo S. O. Cavitating Flow Calculations in Industry[J]. International Journal of Rotating Machinery,2003,9 (3):163-170.
    [46]Philip J. Zwart, Andrew G. Gerber.A Two-Phase Flow Model for Predicting Cavitation Dynamics [A].In:ICMF 2004 International Conference on Multiphase Flow [C].2004:152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700