用户名: 密码: 验证码:
复合材料身管的损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料身管在使用过程中,受到高温、高压火药燃气脉冲式高速冲击作用,弹丸的挤进作用,弹带的导转作用,以及反后坐装置的轴向拉伸作用。恶劣的工作环境导致复合材料身管极易因微缺陷扩展、疲劳和过载而破坏失效,造成难以估量的生命财产损失。本文结合国内外复合材料身管的最新研究成果,借助先进的计算技术、分析方法和仿真手段,对复合材料身管的损伤问题进行了全面深入系统的分析研究,并取得一些有用的结论,为复合材料在火炮身管的应用中如何减少损伤、规避风险、预测寿命,提供强有力的理论指导和技术支撑。
     本文的研究内容和结论体现在以下方面:
     (1)复合材料中的损伤模式主要包括基体开裂、分层损伤、界面脱离、纤维断裂、纤维拔出、基体屈服等几种主要形式,根据材料不同的损伤模式,结合不同的载荷作用,建立相应的强度失效准则;基于连续介质损伤力学的理论和方法,针对复合材料身管的结构和材料组成特点,运用不可逆热力学的观点,引入损伤变量,推导出弹塑性各向同性和各向异性损伤模型;将损伤作为微细观结构属性的一部分,引入到连续介质模型之中,并用损伤演变规律来描述缺陷的形成、扩展和聚合过程。
     (2)复合材料身管静、动态力学特性的研究是建立在力学本构模型基础上的,层合复合材料为一种多组分的各向异性材料,文中描述了分布于整个材料介质内部的微细缺陷损伤,用损伤广义力表征微细观缺陷损伤的作用和影响;基于连续损伤介质力学,建立复合材料身管含损本构模型和损伤演化方程;采用能量的方法,推导出损伤函数和疲劳寿命的表达式;采用非线性有限元分析软件ABAQUS分别模拟了带金属内衬的复合身管在静力载荷和疲劳载荷加载下损伤破坏的全过程,分析了复合身管的损伤模式及破坏机理,并阐述了结构损伤过程中的能量耗散规律。
     (3)复合材料身管中破坏产生的主要原因是复杂应力作用下微裂纹的萌生和生长、基体开裂和纤维断裂,在后续加载作用下发生损伤扩展。基于断裂力学的概念和基本理论,考虑三种不同的载荷边界条件,采用能量的方法,分别推导出复合身管的裂纹动、静力学扩展模型和疲劳扩展模型,并建立了复合身管的裂纹扩展准则。采用基于线弹性破坏力学的扩展有限元法,通过本构关系预测裂纹的应力强度因子和能量释放率,结合有效应力强度因子同裂纹扩展准则建立位移矢量函数,利用软件ABAQUS进行建模仿真计算,分别研究了静载、冲击载荷和疲劳载荷作用下复合身管内的裂纹扩展问题,对比分析了起始裂纹所处位置的不同对复合材料身管损伤的影响,比较了全金属身管和复合身管破坏特性的优劣,得出复合身管中的裂纹扩展规律。
     (4)从应力波的生成和传播机理出发,结合复合身管的正交各向异性和材料多重性的特点,推导出柱坐标系下,复合身管中应力波传播的有限元微分方程和应力波传播速度表达式。采用动力学有限元分析软件LS-DYNA对移动压载作用下复合身管的简化模型进行建模仿真分析,关于复合身管的动载分析揭示了当压力前缘沿身管轴向移动时身管中应力应变幅值的发展规律,以及伴随应力波传播而生的共振效应。由于多重材料层合结构界面处的剪切和拉伸强度较低,高温下材料属性下降较快,且加载速率对复合材料属性影响更大,因此应力波造成的损伤扩展对复合材料身管来说更加致命。
     (5)开展了冲击响应实验研究,获得纤维增强复合材料和金属材料的损伤产生、扩展、演化、断裂全过程动力学参量;以复合身管的简化模型复合圆筒为研究对象开展力学仿真实验,研究不同内压冲击载荷与损伤模式、破坏过程之间的影响规律,并验证了数值仿真实验模型的合理性和有效性。
In shot process, Composite barrel comes under propellant gas with high temperature and high pressure pulse style high speed impact, the projectile packed into action, cartridge belt guiding turns action, and axial tension action of the recoil mechanism. Poor working conditions easily lead to a composite barrel failure because of micro defects evolution, fatigue and overload, cause incalculable loss of life and property. This paper combined with the latest research achievements at home and abroad about the composite barrel, by dint of advanced calculation technology, analysis methods and means of simulation, conducted a systematic comprehensive analysis about the damage problem of composite barrel, and acquired some useful conclusions. Above of these provide strong theoretical guidance and technical support for composite materials in the application of gun tube how to reduce injury, avoid risks, life forecast.
     The contents and conclusions of this paper are embodied in the following aspects:
     (1) Damage modes in composite materials including matrix cracking, delamination, interface debonding, fiber fracture, fiber pullout, matrix yielding and so on, according to the different damage mode of materials, combining different loads, corresponding strength failure criterion is established; Based on continuum damage mechanics theory and method, according to the characteristics of structure and material composition in the composite barrel, using irreversible thermodynamics, introducing damage variable, the elastic-plastic isotropic and anisotropic damage model are proposed to predict the progressive failure properties of the carbon fiber reinforced composite material barrel; Damage as part of a micro structure property is introduced to the continuous medium model and the damage evolution law is used to describe defect's formation, expansion and the polymerization process.
     (2) Study on the static, dynamic mechanical properties of the composite barrel is based on the mechanical constitutive model, laminated composite is a multicomponent anisotropic materials, this paper describes the micro damage distribution inside the materials, generalized damage force is used to describe the distinctive nature of the impact of micro defects; Based on continuum damage mechanics, damage constitutive model and damage evolution equation of the composite barrel are established; by using the energy method, function of damage and fatigue life is derived; by using nonlinear finite element analysis software ABQUS, the whole damage process of the composite tube with a metal liner under static load and fatigue load loading are simulated separately, damage mode and damage mechanism of the composite tube is analyzed, and the law of energy dissipation in the process of structure damage is expounded.
     (3) Damage initiation in the composite barrel under complex stress state mainly is the crack initiation and growth, matrix cracking and fiber breakage, then damage extension in the subsequent loading. Based on the theory and concept of fracture mechanics, considering three different load boundary conditions, using the energy method, crack dynamic, static expansion model and the fatigue propagation model of the composite tube are respectively deduced, and the crack propagation criterion of the composite tube is upbuilt. Using extended finite element method (XFEM) which is based on linear elastic fracture mechanics, the crack stress intensity factors and the energy release rate are predicted by the constitutive relation, combined with the effective stress intensity factor and crack propagation criterion the crack displacement vector function is established, modeling and simulation calculation are implemented by using software ABAQUS, crack propagation problem in the tube under static loading, impact loading and fatigue loading were studied separately, the different effects on the composite barrel damage about the initial crack location have been compared and studied, the damage characteristics quality about the all steel barrel and composite barrel have been compared, propagation law of crack in the composite barrel is acquired.
     (4) Starting from the generation and propagation mechanism of stress wave, combined with the orthotropic materials and multiple characteristics of the composite barrel, the finite element differential equations for the propagation of stress wave and the expression of stress wave propagation velocity in the composite barrel of are deduced within the cylindrical coordinate system. By using dynamic finite element analysis software LS-DYNA, modeling and simulation analysis of the simplified model of composite barrel under mobile inner pressure load is carried out, the dynamic analysis about composite barrel reveals the law of stress and strain amplitude development when the pressure front move along the axial of the barrel, and the resonance effect come with propagation of stress wave. The material properties at high temperature decrease rapidly because of the low shear and tensile strength at the interface of multi-material laminated structure and loading rate dependence in polymer on composite material properties, so the damage propagation of composite barrel caused by the stress wave is more deadly.
     (5) The impact response of experimental research is implemented, dynamic fracture parameters of the fiber reinforced composite material and steel material in the damage initiation, evolution, expansion whole process are obtained; Taking the simplified model of composite barrel as the object of study to carry out mechanical simulation experiment, the interactive law of damage process between different internal pressure impact load and damage mode is studied, and the rationality and validity of the numerical simulation model is verified.
引文
[1]Ch. Hochard, Y. Thollon. A generalized damage model for woven ply laminates under static and fatigue loading conditions [J], International Journal of Fatigue, 2010,32:158-165
    [2]L.N. McCartney. Energy methods for fatigue damage modeling of laminates [J]. Composites Science and Technology,2008,68:2601-2615
    [3]P. Maimi, P.P. Camanho, J.A. Mayugo. C.G. Davila. A continuum damage model for composite laminates:Part Ⅰ-Constitutive model [J]. Mechanics of Materials,2007, 39:897-908
    [4]P. Maimi, P.P. Camanho, J.A. Mayugo, C.G. Davila. A continuum damage model for composite laminates:Part Ⅱ-Computational implementation and validation [J]. Mechanics of Materials,2007,39:897-908
    [5]K. Azouaoui, Z. Azari, G. Pluvinage. Evaluation of impact fatigue damage in glass/epoxy composite laminate [J]. International Journal of Fatigue,2010, 32:443-452
    [6]C.S. Lopes, O. Seresta, Y. Coquet. Z. Gurdal, P.P. Camanho, B. Thuis. Low velocity impact damage on dispersed stacking sequence laminates:Part Ⅰ-Experiments [J]. Composites Science and Technology,2009,69:926-936
    [7]C.S. Lopes, P.P. Camanho, Z. Gurdal, P. Maimi, E.V. Gonzalez. Low velocity impact damage on dispersed stacking sequence laminates:Part Ⅱ-Numerical simulations [J]. Composites Science and Technology,2009,69:937-947
    [8]F. Laurin, N. Carrere, J.F. Maire. A multiscale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models [J]. Composites:Part A,2007,38:198-209
    [9]B. Kilic, A. Agwai, E. Madenci. Peridynamic theory for progressive damage prediction in center-cracked composite laminates [J]. Composite Structures,2009, 90:141-151
    [10]C.T. McCarthy, R.M. O Higgins, R.M. Frizzell. A cubic spline implementation of non-linear shear behavior in three-dimensional progressive damage models for composite laminates [J]. Composite Structures,2010,92:173-181
    [II]Alessandro Airoldi, Giuseppe Sala, Paolo Bettini. Evaluation of a numerical approach for the development of interlaminar damage in composite laminates [J]. Composites Science and Technology,2009
    [12]T. Okabe, M. Nishikawa, N. Takeda. Numerical modeling of progressive damage in fiber reinforced plastic cross-ply laminates [J]. Composites Science and Technology, 2008,68:2282-2289
    [13]Wang Lipeng, Yan Ying, Wu Dafang, Wu Hao. Low-velocity Impact Damage Analysis of Composite Laminates Using Self-adapting Delamination Element Method [J]. Chinese Journal of Aeronautics,2008,21:313-319
    [14]A. Blazquez, V. Mantic, F. Paris, N. L. McCartney. BEM analysis of damage progress in 0/90 laminates [J]. Engineering Analysis with Boundary Elements,2009, 33:762-769
    [15]A.J. Moffat, P. Wright, L. Helfen, T. Baumbach, G. Johnson, S.M. Spearinga and I. Sinclaira. In situ synchrotron computed laminography of damage in carbon fibre-epoxy [90/0] s laminates [J]. Scripta Materialia,2010,62:97-100
    [16]A. Plumtree, M. Melo, J. Dahl. Damage evolution in a [±45]2s CFRP laminate under block loading conditions [J]. International Journal of Fatigue,2010, 32:139-145
    [17]L. Farge, J. Varna, Z. Ayadi. Damage characterization of a cross-ply carbon fiber/epoxy laminate by an optical measurement of the displacement field [J]. Composites Science and Technology,2010,70:94-101
    [18]Huiwen Hu, Jieming Wang. Damage detection of a woven fabric composite laminate using a modal strain energy method [J]. Engineering Structures,2009, 31:1042-1055
    [19]孙志刚.复合材料高精度宏-细观统一本构模型及其应用研究[D].南京航空航天大学博士学位论文,2005
    [20]高希光.陶瓷基复合材料损伤耦合的宏细观统一本构模型研究[D].南京航空航天大学博士学位论文,2005
    [21]吕丽华.横向冲击下三维纺织结构复合材料动态响应及有限元计算[D].东华大学博士学位论文,2007
    [22]周小详.复合材料板冲击拉伸性能的实验研究与数值模拟[D].西北工业大学硕士学位论文,2008
    [23]黄桥平,赵桂平,卢天健.考虑应变率效应的复合材料层合板冲击动态响应[J].西安交通大学学报,2009,43:72-76
    [24]田金梅,邢誉峰,谢文剑.复合材料叠层梁的冲击响应特性[J].振动与冲击,2006,25(4):1-4
    [25]蔡忠云,唐文勇,赵永刚等.含脱层损伤复合材料层合梁冲击动力响应实验研究[J].实验力学,2007,22(2):111-118
    [26]胡哲.基于振动方法进行复合材料力学性能检测的研究[D].武汉理工大学硕士学位论文,2009
    [27]张彦.纤维增强复合材料层合结构冲击损伤预测研究[D].上海交通大学博士学位论文,2007
    [28]程起有,童小燕,姚磊江等.复合材料层合板低速冲击响应的有限元分析[J].飞机设计,2008,28(1):33-36
    [29]赵颖华.复合材料损伤细观力学分析[D].清华大学博士学位论文,1996
    [30]李记全,丁华东,郑晓辉等.B4C/A1复合板中应力波行为分析(Ⅰ)[J].装甲兵工程学校学报,2009,23(4):39-46
    [31]李记全,丁华东,柳青青,郑晓辉.B4C/Al复合板中应力波行为分析(Ⅱ)[J].装甲兵工程学校学报,2009,23(4):53-56
    [32]梅志远,朱锡,张立军.FRC层合板抗高速冲击机理研究[J].复合材料学报,2006,23(2):34-40
    [33]Holmquist T J, Templeton D W, Bishnoi K D. Constitutive Modeling of Aluminum Nitride for Large Strain, High-Strain Rate, and High-Pressure Applications [J]. Int J Impact Eng,2001,25:211-231
    [34]Gupta Y M, Ding J L. Impact Load Spreading in Layered Materials and Structures: Concept and Quantitative Measure [J]. Int J Impact Eng,2002,27:277-291
    [35]L.H. Donnell. Stability of thin walled tubes under torsion [R], NACA TR479, Washington DC
    [36]E.E. Lundquist. Strength tests on thin walled duralumin cylinders in toesion [R], NACA TN427, Washington DC
    [37]W.A. Nash. An experimental analysis of the buckling of thin initially imperfect cylindrical shells subjected to torsion [J]. Pro Sci Exp Stress Anal,1959,16:55-68
    [38]N.Yamaki. Elastic Stability of Circular Cylindrical Shells [M]. North-Holland (1984).
    [39]N.Yamaki, J.Tani and K.Nagai. Dynamic stability of circular cylindrical shells under Periodic shearing foeces [J]. Sound and Vibrations,1976,45:51-527
    [40]N.Yamaki, J.Tani and H.Doki. Dynamic stability of fluid filled circular cylindrical shells under periodic shearing forces(in Japanese) [J],1979,45:406-413.
    [41]M.Chiba, T.Yamashiba, H.Sugiyama and H. Tani. Dynamic stability of liquid-filled cylindrical shells under periodic shearing forces [J]. Press Vess Tech, ASME,1989, 111:420-427.
    [42]L. Leyko and S. Spryzynski. Energy method of analysis of dynamic stability of a cylindrical shell subjected to torsion [J]. Arch Mech,1974,26:13-24.
    [43]马宏伟,王德禹,杨佳通.圆柱形薄壳冲击扭转屈曲的实验研究[J].固体力学学报,1993,14(4):297-303
    [44]徐新生,张耀先.弹性圆柱壳在应力波下的动态屈曲[J].河南大学学报(自然科学版),1997,27(1)
    [45]陈长安,苏先樾.圆柱壳轴向冲击下屈曲中的波动效应[R].中国科学院非线性连续介质力学开放实验室报告,1990
    [46]韩强,马宏伟,张善元,杨桂通等.冲击扭转作用下弹性圆柱壳中应力波导致的动力屈曲问题[M].应用数学和力学编委会编,1996,17(1)
    [47]李永池,朱林法,胡秀章等.粘塑形薄壁管中复合应力波的传播特性研究[J].爆炸与冲击,2003,23(1)
    [48]Rabotnov Yu N. On the Equations of State for Creep [J]. Prog In Appl Mech,1963: 307-315
    [49]McClintock F A. A criterion for ductile fracture by the growth of holes [J]. Appl Mech,1968,35:363-371
    [50]Rice J R and Tracey D M. On the ductile enlargement of voids in triaxial stress fields [J]. Mech Phys Solids,1969,17:201-217
    [51]Kachanov L M. Introduction to continuum damage mechanics [M]. Martinus Nijhoff Publishers, Dordrecht, The Netherlands,1986
    [52]Lemaitre J. A Course on damage mechanics [J]. Berlin Spring-Verlag,1992
    [53]Highsmith A L, Reifsnider K L. Stiffness-reduction mechanisms in composite laminates[R]. Damage in composite materials, ASTM STP 775. Philadelphia, PA: American Society for Testing and Materials,2002.11:03-17
    [54]Crocker L E, Ogin S L, Smith P A, Hill P S. Intra-laminar fracture in angle-ply laminates [J]. Composites A,2007,28(8):39-46
    [55]王永.考虑损伤效应的纤维增强复合材料板壳结构的非线性力学分析[D].湖南大学硕士学位论文,2005
    [56]Hashin Z. Failure criteria for unidirectional fiber composites [J]. Appl Mech,1980, 47:329-34
    [57]Schurmann H, Puck A. Failure analysis of FRP laminates by means of physically based phenomenological models [J]. Compos Sci Technol,2002,62:33-62
    [58]Bazant Z. Crack band theory for fracture of concrete [J]. Materiaux Constructions, 1983,16:55-77
    [59]Pijaudier-Cabot G. Comparison of various models for strain softening [J]. Eng Comput,1988,5:41-50
    [60]Oliver J. A consistent characteristic length for smeared cracking model [J]. Int J Numer Methods Eng,1989,28:61-74
    [61]徐亚栋.复合材料身管结构分析与优化研究[D],南京理工大学博士学位论文,2006
    [62]K.I. Tserpes, P. Papanikos, G Labeas, S. Pantelakis. Fatigue damage accumulation and residual strength assessment of CFRP laminates [J]. Composite Structures,2004, 63:219-230
    [63]Ramesh Talreja. Fatigue of Composite Materials [M]. New York Technomic Publishing Co. Inc,1987
    [64]M.V. Donadon, L. Iannucci, B.G. Falzon, J.M. Hodgkinson, S. F. M. de Almeida. A progressive failure model for composite laminates subjected to low velocity impact damage [J]. Composite Structures,2008,86:1232-1252
    [65]Broutman L.J, Sahu S. A new theory to predict cumulative fatigue damage in fiber-glass reinforced plastics [J]. Composite Materials:Testing and Design and Conference, ASTM STP,1972,497:170-188
    [66]Yang J.N, Liu M.D. Residual strength degradation model and theory of periodic proof tests for graphite/epoxy laminates [J]. Compos Mater,1977,11:176-203
    [67]Haha T. Fatigue behavior and life prediction of composite laminates [M]. AFML-TR-78-43,1978
    [68]Yang J N, Jones D L. A stiffness degradation model for graphite/epoxy laminates [J]. Journal of Composites,1990,24:753-769
    [69]Dae-Cheol Seo, Jung-Ju Lee. Damage detection of laminates using electrical resistance measurement and neural network [J]. Composite Structures,1999, 47:525-530
    [70]P W Mast, G E Nash, J G Michopoulos. Characterization of strain-induced damage in composites based on the dissipated energy density, Part Ⅱ—Composite specimens and navals structures [J]. Theoretical and applied fracture mechanics, 1995,22(2):97-114
    [71]A. Pirondi, N. Bonora. Modeling Ductile Damage under Fully Reversed Cycling [J]. Computational Materials Science,2003,26:129-141
    [72]Manders P W, Chou T W, Jones F R, Rock J W. Statistical analysis of multiple fracture in 0/90/0 glass fibre/epoxy resin laminates [J]. Mat Sci,2003,182(8): 76-89
    [73]Lafarie-Frenot MC, Henaff-Gardin C. Formation and growth of 90° ply fatigue cracks in carbon/epoxy laminates [J]. Compos Sci Technol,2001,403:07-24
    [74]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995
    [75]N. Sukumarl, Z. Y. Huang, J. H. Prevost, Z. Suo. Partition of Unity Enrichment for Bi-material Interface Cracks [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING,2003,00:1-44
    [76]Lindley T C, McCartney L N. Mechanics and mechanisms of fatigue crack growth [chapter 5]. Developments in Fracture Mechanics [M]. Applied Science Publishers, 1981
    [77]N. Sukumar, D. J. Srolovitz, T. J. Baker and J. H. Prevost. Brittle fracture in polycrystalline microstructures with the extended finite element method [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING,2003,56:2015-2037
    [78]John Dolbow, Nicolas Moes, Ted Belytschko. An extended finite element method for modeling crack growth with frictional contact [J]. Computer methods in applied mechanics and engineering; 2001,6825-6846
    [79]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [80]楼志文.损伤力学基础[M].西安:西安交通大学出版社,1991
    [81]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003
    [82]范天佑.断裂动力学引论[M].北京:北京理工大学出版社,1990
    [83]McCartney LN. Mechanics for the growth of bridged cracks in composite materials: Ⅰ-basic principles [J]. J Comp Tech Res,1992,14:33-46
    [84]McCartney LN. Mechanics for the growth of bridged cracks in composite materials: Ⅱ—applications [J]. J Comp Tech Res 1992,14:47-54
    [85]McCartney LN. Stress transfer mechanics:models that should be the basis of life prediction methodology [J]. ASTM STP on Life Prediction Methodology for Titanium Matrix Composites,1996,10:85-113
    [86]McCartney LN. Predicting transverse crack formation in cross-ply laminates [J]. Comp Sci Tech,1998,58:69-81
    [87]McCartney LN. Physically based damage models for laminated composites [J]. Proc Instn Mech Engrs,2003,217:63-99
    [88]Daniel L, Hogg PJ, Curtis PT. The crush behavior of carbon fiber angle-ply reinforcement and the effect of interlaminar shear strength on energy absorption capability [J]. Compos Part B,2000,31(4):35-40
    [89]Martin R. Delamination fatigue [chapter 6]. Fatigue in composite materials [M]. Cambridge:Woodhead Publishing Ltd,2003
    [90]Warrior NA, Turner TA, Robitaille F, Rudd CD. Effect of resin properties and processing parameters on crash energy absorbing composite structures made by RTM [J]. Compos Part A,2003,34:43-50
    [91]Abdewi EF, Sulaiman S, Hamouda AMS, Mahdi E. Quasi-static axial and lateral crushing of radial corrugated composite tubes [J]. Thin-Walled Struct,2008,46: 20-32
    [92]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2001
    [93]王礼立.应力波基础[M].北京:国防工业出版社,1985
    [94]郭自强.固体中的波[M].北京:地震出版社,1982
    [95]马兴瑞,陶良,黄文虎.弹性波反演方法及其应用[M].北京:科学出版社,1998
    [96]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992
    [97]鲍亦兴,毛昭宙.弹性波的衍射与动应力集中[M].北京:科学出版社,1993
    [98]J.T. Tzeng. Dynamic response and fracture of composite cylinders [J]. Composites Science and Technology,1998,58:1443-1451
    [99]LADEVEZE P, DANTEC E L. Damage modeling of the elementary ply for laminated composites [J]. Composites Science and Technology,1992,43 (2): 257-267
    [100]王兴业,唐羽章.复合材料力学性能[M]:国防科技大学出版社,1988.6
    [101]张少琴,杨维阳等.复合材料的Z-断裂准则及专家系统[M].科学出版社,2003
    [102]R.W.卡恩,P.哈森,E.J.克雷默.复合材料的结构与性能[M].1999
    [103]王耀先.复合材料结构设计[M].化学工业出版社,2001
    [104]Boniface L, Ogin SL, Smith PA. Strain energy release rates and the fatigue growth of matrix cracks in model arrays in composite laminates [J]. Proc Roy Soc Lond, 1991,A432:27-44
    [105]Harris B. A historical review of the fatigue behaviour of fiber-reinforced plastics [chapter 1]. Fatigue in composite materials [M]. Cambridge:Woodhead Publishing Ltd.,2003
    [106]Beaumont PWR. Physical modeling of damage development in structural composite materials under stress [chapter 13]. Fatigue in composite materials [M]. Cambridge: Woodhead Publishing Ltd.,2003
    [107]Ladeveze P, Lubineau G. A computational mesodamage model for life prediction for laminates [chapter 15]. Fatigue in composite materials [M]. Cambridge:Woodhead Publishing Ltd.,2003
    [108]McCartney LN. Model of composite degradation due to environmentally assisted fatigue damage [J]. Composites Science and Technology,2008,68:2601-2615
    [109]罗祖道,王震明.复合材料力学进展[M].北京大学出版社,1992
    [110]A. J. Moffat, P. Wright, L. Helfen, T. Baumbach, G Johnson, S. M. Spearinga and I. Sinclaira. In situ synchrotron computed laminography of damage in carbon fiber-epoxy [90/0]s laminates [J]. Scripta Materialia,2010,62:97-100
    [111]邓增杰,周敬恩.工程材料的断裂与疲劳[M].机械工业出版社,1993
    [112]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12
    [113]Kashtalyan M, Soutis C. Analysis of local delamination in composite laminates with angle ply matrix cracks [J]. Int J Solids Struct,2002,39(6):15-37
    [114]Talreja R. Transverse cracking and stiffness reduction in composite laminates [J]. J Compos Mater,1985,19(4):55-75
    [115]Dharani LR, Tang H. Micromechanics characterization of sub-laminate damage [J]. Int J Fract,1990,46(2):23-40
    [116]冯培锋,王殿富,杜善义.复合材料层板基于剩余刚度比的剩余强度模型[J].应用力学学报,2001,18(1):41-44
    [117]Bianchi S, Corigliano A, Frassine R, Rink M. Modelling of interlaminar fracture process in composite using interface elements [J]. Compos Sci Technol,2006, 66:255-63
    [118]Jung-Seok Kim, Hyuk-Jin Yoon, Kwang-Bok Shin. A study on crushing behaviors of composite circular tubes with different reinforcing fibers [J]. International Journal of Impact Engineering,2011,38:198-207
    [119]杨宇宙,钱林方.复合材料厚壁圆筒的损伤问题[J].材料科学与工程学报,2012,30(2):256-261
    [120]Ghasemnejad H, Blackman BRK, Hadavinia H, Sudall B. Experimental studies on fracture characterizations and energy absorption of GFRP composite box structures [J]. Compos Struct,2009,88(2):53-61
    [121]F. Erdogan, G. C. sih. On crack extension in plates under plane loading and transverse shear [J]. Tram. ASME. Journal of Basic Engng,1963,85:519-527
    [122]Harris B, editor. Fatigue in composite materials [M]. Cambridge:Woodhead Publishing Ltd,2003
    [123]Ogin S.L, Smith PA, Beaumont PWR. A stress intensity factor approach to fatigue growth of transverse ply cracks [J]. Comp Sci Tech,1985,24:47-59
    [124]McCartney LN. Derivation of crack growth laws for linear viscoelastic solids based upon the concept of a fracture process zone [J]. Int J Fract,1980,16:75-82
    [125]McCartney LN. Crack growth predictions for viscoelastic materials exhibiting non-uniform craze deformation [J]. Int J Fract,1988,37:279-301
    [126]McCartney LN. Interaction of transverse cracks of finite size in a cross-ply laminate [R]. Proceedings of 10th International Conference on Composite Material, vol.1. Whistler, Canada, August 1995,13:399-406
    [127]McCartney LN. Model to predict effects of triaxial loading on ply cracking in general symmetric laminates [J]. Comp Sci Tech,2000,60:55-79
    [128]Broughton WR, Lodeiro MJ. Fatigue testing of composite laminates [R]. NPL Report CMMT(A)252, November 2000
    [129]Nairn JA, Hu S. The initiation and growth of delaminations induced by matrix microcracks in laminated composites [J], Int J Fract,1992,57(1):1-24
    [130]McCartney LN. The effect of periodic random loading on fatigue crack growth [J]. Int J Fract,1976,12(2):265-273
    [131]McCartney LN. A theoretical explanation of the delaying effects of overloads on fatigue crack propagation [J]. Int J Fract,1978,14(2):208-213
    [132]Soden P.D, Hinton M.J, Kaddour A.S, Lamina properties, lay-up configurations and loading conditions for a range of fiber reinforced composite laminates [J]. Comp Sci Tech,1998,58(7):11-22
    [133]Yuzhou YANG, Linfang QIAN, Yadong XU. Failure analysis of carbon fiber reinforced composite material barrel [R]. International Conference on Mechanical Engineering and Mechanics,2011,477-482

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700