用户名: 密码: 验证码:
番茄采摘机器人真空吸持系统分析与优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄的成穗生长等特性使其成为机器人采收难度最大的果蔬种类之一。机器人真空吸持系统是在采摘机器人对成穗生长的番茄果实作业时避免相邻果实干涉的重要辅助装置,本文以自行开发的以微型空压机+真空发生器为核心的新型真空吸持系统为对象,以大量的试验结果为基础,对该真空吸持系统的运行规律进行了系统的分析与模型描述,并进而完成了控制参数及模式的优化,从而为实现高成功率、高效、节能的真空吸持拉动,提高番茄采摘机器人的作业成功率提供了技术基础。
     本文的研究工作及取得的成果主要包括:
     (1)进行了番茄果实和果梗(柄)的形态结构特性、番茄果实的挤压与果皮摩擦特性、以及果梗(柄)的弯折、拉、扭特性的试验研究,为采摘机器人末端执行器的设计开发和真空吸持拉动的控制参数及模式优化提供了基础参数;对番茄采摘机器人末端执行器进行了总体方案优选,对夹持器、真空吸持系统和果柄激光切断装置进行了型设计与结构设计,开发完成了番茄采摘机器人末端执行器,并与六自由度机械手和双目视觉系统配置形成了番茄采摘机器人实验系统。
     (2)充分考虑真空吸持系统吸持拉动过程中齿条-吸盘-果实(果梗)-植株间的相互力学作用,在拉脱力-吸盘直径试验、拉脱力-真空度关系试验和吸盘压缩试验基础上,建立了真空吸持拉动作业过程的吸持拉力多因素模型,从而有效反映了吸持拉力与拉动距离、真空度、果实大小、果实重量、果梗(柄)长度、果梗(柄)弯曲弹性刚度、初始姿态等多个因素的复杂关系,为以高成功率为目标的吸持拉动优化控制提供了理论依据。
     (3)根据真空发生器供气压力-真空负压试验、真空压力传感器标定试验、空压机-储气罐充气性能试验、真空发生器吸气/吹气/放气三种状态的耗气性能试验结果,以储气压力变化为指标,通过基础模型→基本模型→递推模型→压力-时间模型的推理顺序,建立了实际作业过程的连续充气-间歇耗气模型,精确描述了真空吸持拉动作业中的储气压力变化规律,并有效反映出各个充/耗气参数对储气压力变化的影响,从而为硬件配置和控制参数与模式的优化提供了理论基础。
     (4)完成了单向阀的真空维持能力试验、供气/吸气的真空吸着响应时间试验、敝口/闭口的真空吸着响应时间试验、不同供气时间的真空吸着响应试验和真空解除响应时间试验,根据试验结果建立了真空吸着响应模型,依据该模型对管路长度、真空发生器抽吸能力与真空吸持系统作业性能的关系进行了分析,并进而对管路长度进行了优化。
     (5)利用概率论方法和正态分布函数,建立了综合吸持拉动成功率和夹持干涉率的实际夹持成功率理论评价模型,并以其和作业效率、能耗水平为判断指标,以真空吸持系统的力-运动、储气压力变化和真空动作响应规律为基础,通过理论推导和实验验证,对吸持拉动的运动参数和真空开/闭参数进行了优化,优化确定了“先接触,后供气”的吸盘吸持与齿条运动协调模式、“先夹持,后自动释放”的吸盘释放与手指夹持协调模式和“自动充停”的真空吸持系统节能控制模式。
     论文建立了农业装备及其控制的完整优化流程,针对农业对象的高度差异性特征,创新性地以概率方法为手段构建了作业成功率的综合评估指标,以果实物理与力学特性、硬件参数、力-运动规律、充耗气规律和真空响应规律为共同基础完成了控制参数与模式的优化,实现了高成功率、高效、节能的真空吸持及夹持作业,解决了番茄机器人采摘中的关键难题,具有重要的学术价值与实际意义。
Tomato robotic harvesting is most difficult due to its feature of several fruits touching each other in one cluster. Vacuum suction system is a vital device for tomato harvesting robot to avoid interference with other fruits in gripping object fruit on same cluster. In this dissertation, systematical analysis and modeling of the running process of a certain vacuum suction system, which has been developed and takes one mini air pump and one vacuum ejector as vacuum generation, is performed. And then control parameters and modes optimization of this newly developed system is finished based on extensive test results, which will be tribute to achieve high success-ratio, high-efficient and energy-saving sucking/pulling to tomato fruits and improve success ratio of robotic harvesting.
     This dissertation mainly includes the following contents and results:
     (1) Test study on physical properties of tomato fruits and stems, compression and friction properties of tomato fruits and mechanical properties of tomato stems include pulling, bending and twisting was performed, which provides basic data to device design and control optimization. Then principle design to the end-effector for tomato harvesting robot, type and structure design to the gripper, vacuum suction system and stem laser-cutting device were finished. The end-effector is installed together with a manipulator and a binocular visual system to construct the experimental system of tomato harvesting robot.
     (2) Considering mechanical relation among the rack, the suction pad, fruit (stem) and plant, a multi-factor pulling force model is constructed based on test results of relation between pull-off force and diameter of the suction pad, relation between pull-off force and vacuum degree and compression property of the suction pad, which discovers the complicated relationship among pulling force and pulling distance, vacuum degree, fruit size, fruit weight, stem length, elastic flexure-resisting stiffness of stem and initial posture and provides theoretical basis to optimal control of sucking and pulling operation.
     (3) Based on tests results of relation between air supply pressure and vacuum degree, calibration test of vacuum pressure sensor, inflation property of air pump to air tank, air consumption during sucking, blowing and deflating, a continuous inflation-intermittent consumption complex model is built through basic models-primary models-recursion models-pressure-time models gradually which takes air pressure in the air tank as aim index. It describes law of air pressure change in the air tank accurately during sucking and pulling operation and reflects effects on air pressure change in the air tank by different parameters of air inflation and consumption, which provides theoretical basis to hardware configuration and optimization of control of control parameters and modes.
     (4) Tests of pressure maintenance ability of the check valve, tests of suction response time under air supply control Vs suction control, in exposure Vs closure conditions, in different long time and release response time test have been finished. According to these test results, vacuum suction response model is built, based on which relations among tube length, suction capability and operating performance of the vacuum suction system are analysed and tube length is optimized.
     (5) One model of actual success ratio in gripping combining success ratio of sucking and pulling with ratio of interference in gripping is built applying probability theory and normal distribution function. Taking this success ratio, working efficiency and energy consumption level as evaluating indicators and laws of force-motion, air pressure change in the air tank and vacuum action response as base, motion parameters and vacuum action parameters in sucking and pulling operation are optimized, and "fruit touch-air supply" control mode to coordinate action of the vacuum system with motion of the rack, "grip-passively release" control mode to coordinate releasing of the suction pad and gripping of the fingers, "inflate-passively stop" control mode to save energy of the vacuum suction system are decided by theoretical and testing optimizing at last.
     In this dissertation, a systemic optimization process of agricultural equipment is constructed. In view of large difference of features of agricultural objects, a composite indicator to evaluate success ratio of sucking/pulling/gripping operation is constructed innovatively with probability method. Based on all of physical and mechanical properties, parameters of the device, force-motion law, air inflation-consumption law, vacuum response law, optimization to control parameters and modes is finished to achieve high success ratio, high working efficiency and energy-saving sucking/pulling/gripping operation. This study has important theoretical and practical value.
引文
[1]联合国粮农组织数据库http://www.fao.org/corp/statistics/en/.
    [2]农业部种植业管理司《水果数据库》http://zzys.agri.gov.cn/shuiguo_cx.aspx.
    [3]Shigehiko Hayashi, Kenta Shigematsu, Satoshi Yamamoto, et al. Evaluation of a Strawberry-Harvesting Robot in a Field Test[J]. Biosystem Engineering,2010,105:160-171.
    [4]K.F. Sanders. Orange Harvesting Systems Review[J]. Biosystems Engineering,2005,90 (2): 115-125.
    [5]农业部新闻办公室.农业机械化发展实现历史性跨越.http://www.moa.gov.cn/zwllm/zwdt/201012/t20101224_1797207.htm
    [6]尹建军,毛罕平,王新忠等.不同生长状态下多目标番茄图像的自动分割方法[J].农业工程学报,2006,22(10):149-153.
    [7]Hongpeng Yin,Yi Chai, Simon X. Yang. Ripe Tomato Recognition and Localization for a Tomato Harvesting Robotic System[C]. International Conference of Soft Computing and Pattern Recognition,2009,557-562.
    [8]E.J. Van Henten, J. Hemming, B.A.J. Van Tuijl; J.G. Kornet, et al. Collision-free Motion Planning for a Cucumber Picking Robot[J]. Biosystems Engineering,2003,86 (2):135-144.
    [9]蔡健荣,赵杰文,Thomas Rath, et al水果收获机器人避障路径规划[J].农业机械学报,2007,38(3):102-105,135.
    [10]姚立健,丁为民,陈玉仑等.茄子收获机器人机械臂避障路径规划[J].农业机械学报,2008,39(11):94-98.
    [11]梁喜凤,王永维,苗香雯.番茄收获机械手避障运动规划[J].农业机械学报,2008,39(11):89-93.
    [12]E.J. Van Henten, E.J. Schenk, L.G. van Willigenburg, et al. Collision-free Inverse Kinematics of the Redundant Seven-link Manipulator Used in a Cucumber Picking Robot[J]. Biosystems Engineering,2010,106:112-124.
    [13]Yoshihiko Takahashi, Jun Ogawa, Kouichi Saeki. Automatic Tomato Picking Robot System with Human Interface Using Image Processing[C]. The 27th Annual Conference of the IEEE Idustrial Electronics Society,2001:433-438.
    [14]R. Ceres, J.L. Pons, A.R. Jimenez, et al. Design and Implementation of an Aided Fruit-harvesting Robot (Agribot) [J]. Industrial Robot,1998,25(5):337-346.
    [15]Ceres R., Pons J.L., Jimenez A.R.. Agribot:A Robot for Aided Fruit Harvesting[J]. Industrial Robot,1998,25(5):337-346.
    [16]Shigehiko Hayashi,Osamu Sakaue. Basic Operation of Tomato Harvesting System Using Robot:Manufacture of Two-finger Harvesting Hand with Auxiliary Cutting Device and Basic Experiment for Harvest[R]野菜·茶业试验场研究报告,1997,12:133-142.
    [17]Baozeng Jia, Anmin Zhu, Simon X. Yang, et al. Integrated Gripper and Cutter in a Mobile Robotic System for Harvesting Greenhouse Products[J]. Proceedings of the IEEE International Conference on Robotics and Biomimetics December,2009:19-23.
    [18]Monta M, Kondo N, Ting K C. End-effectors for Tomato Harvesting Robot[J]. Artificial Intelligence Review,1998,12:11-25.
    [19]N.Kondo, K.C.Ting. Robotics for Bioproduction System[M]. ASAE,1998.
    [20]Jan Krikke. Robotics Research Exploits Opportunities for Growth[J]. Pervasive Computing, 2005,7-9:7-11.
    [21]Peter P. Ling, Reza Ehsani, K. C. Ting, et al. Sensing and End-Effector for a Robotic Tomato Harvester[C]. ASAE Annual International Meeting,2004:1-12.
    [22]N. Kondo, Y. Nishitsuji, P. P. Ling, et al. Visual Feedback Guided Robotic Cherry Tomato Harvesting[J]. Transaction of the ASAE,39(6):2331-2338.
    [23]Naoshi Kondo, K.C.Ting. Robotics for Plant Production[J]. Artificial Intelligence Review, 1998,12:227-243.
    [24]Kanae Tanigaki, Tateshi Fujiura, Akira Akase, et al. Cherry-harvesting Robot[J]. Computers and electronics in agriculture,2008,63:65-72.
    [25]Naoshi Kondo, Shigemune Taniwaki, Koichi Tanihara, An End-Effector and Manipulator Control for Tomato Cluster Harvesting Robot[C]. ASABE Annual International Meeting, 2007:1-14.
    [26]Naoshi Kondo, Kazuya Yamamoto, Koki Yata,et al. A Machine Vision for Tomato Cluster Harvesting Robot[C]. ASABE Annual International Meeting,2008:1-9.
    [27]Naoshi Kondo, Koki Yata, Michihisa Iida, et al. Development of an End-Effector for a Tomato Cluster Harvesting Robot[J]. Engineering in Agriculture, Environment and Food, 2010,3(1):20-24.
    [28]Naoshi Kondo, Kazuya Yamamoto, Hiroshi Shimizu, et al. A Machine Vision for Tomato Cluster Harvesting Robot[J]. Engineering in Agriculture, Environment and Food,2009,2(2): 60-65.
    [29]Schertz C. E, Brown G. K. Basic Considerations in Mechanizing Citrus Harvest[J]. Transactions oftheASAE,1968,11 (3):343-346.
    [30]Brian Siu-him Lee, Uriel A. Rosa, Kabilesh Cheetancheri. End-effector for Automated Citrus Harvesting [C]. ASABE Annual International Meeting,2006.
    [31]Chen P. Selective Harvesting of Valencia Oranges with a Flexible Hook Device[J]. Transactions oftheASAE,1973,16 (4):645-647.
    [32]Chen P., Mehlschau J, Ortiz-Canavate J. Harvesting Valencia Oranges with Flexible Curved Fingers[J]. Transactions oftheASAE,1982,25 (3):534-537.
    [33]Harrell, R. Economic-analysis of Robotic Citrus Harvesting in Florida[J]. Transactions of theASAE,1987,30(2):298-304.
    [34]T. Burks, F. Villegas, M. Hannan, et al. Engineering Horticultural Aspects of Robotic Fruit Harvesting:Opportunity and Constraints [J]. Horltechnology,2005,15(1):79-87.
    [35]近藤直,门田充司,野口伸.晨业■事例[M]. Tokyo:Conrona Publising Co, Ltd,2006.
    [36]Fujiura T, Ura M, Kawamura N, et al. Fruit Harvesting Robot for Orchard[J]. Japanese Society of Agricultural Machinery,1990,52 (2):35-42.
    [37]Allotta B, Buttazzo G,. Dario P, et al. A Force/torque Sensor-based Technique for Robot Harvesting of Fruits and Vegetables[C]. Proceedings of the IEEE Int. Workshop on Intelligent, Robots and Systems,1990:231-235.
    [38]G Muscato, M. Prestifilippo, Nunzio Abbate, et al. A Prototype of an Orange Picking Robot Past history, the New Robot and Experimental Results[J]. Industrial Robot:An International Journal,2005,32(2):128-138.
    [39]李芳繁,王智立.探摘柑橘果关机器手臂之研制[J].■,1999,8(3):1-8.
    [40]Development of a picking device of an orange harvesting machine(2003)
    [41]Michael W. Hannan, Thomas F. Burks. Current Developments in Automated Citrus Harvesting[C]. ASAE/CSAE Annual International Meeting,2004:1-10.
    [42]B. S. Lee, U. A. Rosa. Development of a Canopy Volume Reduction Technique for Easy Assessment and Harvesting of Valencia Citrus Fruits[J]. Transactions of the ASABE,2006, 49(6):1695-1703.
    [43]Brian Siu-him Lee, Uriel A. Rosa. Kabilesh Cheetancheri. End-effector for Automated Citrus Harvesting[J]. ASABE Annual International Meeting,2006:1-13.
    [44]D. M. Bulanon, T. Kataoka. A Fruit Detection System and an End Effector for Robotic Harvesting[J]. Agricultural Engineering International:the CIGR Ejournal,2010, XII:1-14.
    [45]Duke M. Bulanon, Takashi Kataoka, Hiroshi Okamoto, et al. Feedback Control of Manipulator Using Machine Vision for Robotic Apple Harvesting[C]. ASAE Annual International Meeting,2005:1-8.
    [46]D.M. Bulanon, T. Kataoka, H. Okamoto, et al. Determing The 3-D Location of the Apple Fruit during Harvest[C]. Proceedings of Conference on Automation Technology for Off-Road Equipment,2004:91-97.
    [47]鲍官军,高峰,荀一等.气动柔性末端执行器设计及其抓持模型研究[J].农业工程学报,2009,25(10):121-126.
    [48]杨庆华,金寅德,钱少明等.基于气动柔性驱动器的苹果采摘末端执行器研究[J].农业机械学报,2010,41(9):154-158,204.
    [49]Johan Baeten, Kevin Donne, Sven Boedrij, et al. Autonomous Fruit Picking Machine:A Robotic Apple Harvester[C].6th International Conference on Field and Service Robotics, 2007:1-9.
    [50]Achmad Irwan Setiawan, Tomonari Furukawa, Adam Preston. A Low-Cost Gripper for an Apple Picking Robot[C]. Proceedings of the 2004 IEEE International Conference on Robotics & Automation,2004:4448-4453.
    [51]马履中,杨文亮,王成军.苹果采摘机器人末端执行器的结构设计与试验[J].农机化研究,2009,12:65-67.
    [52]Naoshi Kondo, Kazunori Ninomiya, Shigehiko Hayashi, A New Challenge of Robot for Harvesting Strawberry Grown on Table Top Culture[C]. ASAE Annual International Meeting, 2005:1-9.
    [53]Seiichi Arima, Naoshi Kondo, Mitsuji Monta. Strawberry Harvesting Robot on Table-top Culture[C]. ASAE/CSAE Annual International Meeting,2004:1-8.
    [54]Seiichi Arima, Naoshi Kondo,et al. Traceability Based on Multi-Operation Robot; Information from Spraying, Harvesting and Grading Operation Robot[C]. Proceedings of the IEEEIASME Intemational Conference on Advanced Intelligent Mechatronics,2003: 1204-1209.
    [55]Guo Feng, Cao Qixin, Nagata Masateru Fruit Detachment and Classification Method for Strawberry Harvesting Robot[J]. International Journal of Advanced Robotic Systems,2008, 5(1):41-48.
    [57]Shigehiko Hayash, Kenta Shigematsu, Satoshi Yamamoto, et al. Evaluation of a Strawberry-harvesting Robot in a Field Test[J]. Biosystems engineering,2010,105:160-171.
    [58]Tomowo Shiigi, Naoshi Kondo, Mitsutaka Kurita, et al. Strawberry harvesting robot for fruits grown on table top culture[C]. ASABE Annual International Meeting,2008:1-9.
    [59]张凯良,杨丽,张铁中.草莓收获机器人末端执行器的设计[J].农机化研究,2009,4:54-56,60.
    [60]Seiichi Arima, Naoshi Kondo,Hiroshi Nakamura. Development of Robotic System for Cucumber Harvesting[J]. JARQ,1996,30:233-238.
    [61]E.J. Van Hentena, D.A. Van't Slot, C.W.J. Hold, et al. Optimal Manipulator Design for a Cucumber Harvesting Robot[J]. Computers and Electronics in Agriculture,2009,65:247-257.
    [62]E.J. Van Henten, B.A.J. Van Tuijl, J. Hemming, et al. Field Test of an Autonomous Cucumber Picking Robot[J]. Biosystems Engineering,2003,86 (3):305-313.
    [63]E. J. Van Henten, J. Hemming, B. A. J. Van Tuijl, et al. An Autonomous Robot for Harvesting Cucumbers in Greenhouses [J]. Autonomous Robots,2002,13:241-258.
    [64]Xiuying Tang, Tiezhong Zhang, ling Liu, et al. A New Robot System for Harvesting Cucumber[C]. ASABE Annual International Meeting,2009:1-13.
    [65]Shigehiko Hayashi,Katsunobu Ganno,Yukitsugu Ishii, et al. Robotic Harvesting System for Eggplants[J]..7ARQ,2002,36 (3):163-168.
    [66]Shigehiko Hayashi, Tomohiko Ota, Kotaro Kubota, et al. Robotic Harvesting Technology for Fruit Vegetables in Protected Horticultural Production [J]. Information and Technology for Sustainable Fruit and Vegetable Production, Frutic,2005,5:227-236.
    [68]Wan Ishak W.I, W. H. Kit, Awal M. A. Design and Development of Eggplant Harvester for Gantry System[J]. PertanikaJ. Sci. & Technol,2010,18 (2):231-242.
    [69]宋健,孙学岩,张铁中等.开放式茄子采摘机器人设计与试验[J].农业机械学报,2009,40(1):143-147.
    [70]宋健,孙学岩,张铁中等.茄子采摘机器人机械传动系统设计与开发[J].机械传动,2009,33(5):36-38.
    [71]宋健.茄子采摘机器人运动学分析与工作空间仿真[J].潍坊学院学报,2008,8(4):1-4.
    [72]宋健.开放式茄子采摘机器人关键技术研究[D].中国农业大学,2006:25.
    [73]K. Oka and S. Kitamura. Sweet Pepper Picking Robot in Greenhouse Horticulture[R]. Intelligent Control Laboratory研究报告,Kochi University of Technology.
    [74]Shinsuke Kitamura, Koichi Oka. Recognition and Cutting System of Sweet Pepper for Picking Robot in Greenhouse Horticulture[C]. Proceedings of the IEEE International Conference on Mechatronics & Automation,2005:1807-1812.
    [75]Shinsuke Kitamura, Koichi Oka. Improvement of the Ability to Recognize Sweet Peppers for Picking Robot in Greenhouse Horticulture[C]. SICE-ICASE International Joint Conference, 2006:18-21.
    [76]S. Kitamura, K. Oka, K. Ikutomo, et al. A Distinction Method for Fruit of Sweet Pepper Using Reflection of LED Light[C]. SICE Annual Conference,2008:491-494.
    [77]M.Monta, N.Kondo, Y.Shibano. Agricultural Robot in Grape Production System[C]. IEEE Internatlonal Conference on Robotics and Automation,1995:2504-2509.
    [78]S. I. Cho, S. J. Chang, Y. Y. Kim, et al. Development of a Three-degrees-of-freedom Robot for Harvesting Lettuce using Machine Vision and Fuzzy Logic Control[J]. Biosystems Engineering,2002,82 (2):143-149.
    [79]J. N. Reed, S. J. Miles, J. Butler, et al. Automatic Mushroom Harvester Developmen[J]. J. agric. Engng Res.,2001,78 (1):15-23.
    [80]R. Noble, J. N. Reed, S. Miles, et al. Influence of Mushroom Strains and Population Density on the Performance of a Robotic Harvester[J]. J. agric. Engng Res.,1997,68:215-222.
    [81]Noriyuki Murakami, Kanji Otsuka, Keiichi Inoue, et al. Robotic Cabbage Harvester.
    [82]Heon Hwang, Si-Chan Kim. Development of Multi-functional Tele-operative Modular Robotic System for Greenhouse Watermelon[C]. Proceedings of the IEEWASME International Conference on Advanced Intelligent Mechatronics,2003:1344-1349.
    [83]Mikio Umeda, Susumu Kubota, Michihisa Iida. Development of "STORK", a Watermelon-harvesting Robot[J].Artif Life Robotics,1999,3:143-147.
    [84]Naoshi Kondo. Robotization In Fruit Grading System[J]. Sens.& Instrumen. Food Qua,2009, 3:81-87.
    [85]曹其新,永田雅辉,石野文俊Study on Adsorption-type Hand for Tomato Sorting Robot[R]宫崎大学农学部研究报告,1999,46(1.2):53-59.
    [86]S. Davis, J.O. Gray and Darwin G. Caldwell. An End Effector Based on the Bernoulli Principle for Handling Sliced Fruit and Vegetables[J]. Robotics and Computer-Integrated Manufacturing,2008,24(2):249-257.
    [87]S. Davis, M.GKing, J.W.Casson, et al. End Effector Development for Automated Sandwich Assembly[J]. Measurement+Control,2007,40(7):202-206.
    [88]王树才.禽蛋检测与分级智能机器人研究[D].华中农业大学,2006.
    [89]Mustafa Bülent Coskun. Determination of Relationships between Various Aerodynamics, Physio-Mechanical and Fiber Properties in Cotton[J]. TurkJ Agric,2002,26:363-368.
    [90]M Biilent Coskun. The Determination of Variety Effect of a Simple Cotton Picking Machine on Design Parameters[J]. Pakistan Journal of Biological Sciences,2003,6(7):640-643.
    [91]Giorgio Figliolini, Pierluigi Rea. Design and Test of Pneumatic Systems for Production Automation[R]. Research Report of CDENRyerson,2004.
    [92]Guoliang Chen, Xinhan Huang. Research on Vacuum Micro-Gripper of Intelligent Micromanipulation Robots[C]. Proceedings of the IEEE International Conference on Robotics and Biomimetics,2004:279-283.
    [93]P.Y. Chua, T. Ilschner, D.G. Caldwell. Robotic Manipulation of Food Products-A Review[J]. Industrial Robot:An International Journal,2003,30(4):345-354.
    [94]V. I. Rospasienko. Adoption of Labor-Saving Devices in Plate and Sheet Mills[J]. Kommunar Metallurgical Works. Translated from Metallurg,1967,6:27-29.
    [95]Y. Qiao, H. Bu. An Investigation on Suction Force of Vacuum Pumps for Micro-components [J]. Vacuum,2000,56:123-128.
    [96]Giacomo Mantriota. Optimal Grasp of Vacuum Grippers with Multiple Suction Cups[J]. Mechanism and Machine Theory,2007,42:18-33.
    [97]E. Cavallo, R.C. Michelini, R.M. Molfino, et al. Task-driven Design of a Re-configurable Gripper for the Robotic Picking and Handling of Limp Sheets[C]. Proc. of the Intl. CIRP Design Seminar:Design in the new economy,2001:79-82
    [98]Seungyeol Lee, Jungil Lee, Changsoo Han, et al. Human Robot Cooperative Control and Task Planning for a Glass Ceiling Installation Robot[C]. The 25th International Symposium on Automation and Robotics in Construction,2008:181-186.
    [99]Seungyeol Lee, Myeongsu Gil, Kyeyoung Lee, et al. Design of a Ceiling Glass Installation Robot[C].24th International Symposium on Automation & Robotics in Construction,2007: 247-252.
    [100]Md. Akhtaruzzaman, Nurullzzati Bt Samsuddin, Norsofiana Bt Umar, et al. Design and Development of a Wall Climbing Robot and its Control System[C]. Proceedings of 12th International Conference on Computer and Information Technology,2009:309-313.
    [101]Wei Wang, Kun Wang, Guang-Hua Zong, et al. Principle and Experiment of Vibrating Suction Method for Wall-climbing Robot[J]. Vacuum,2010,85:107-112.
    [102]William Morris. City-Climber:Development of a Novel Wall-Climbing Robot[J]. Journal of Student Research,2008,1:40-45.
    [103]Surachai Panich. Development of a Wall Climbing Robot[J]. Journal of Computer Science,2010,6 (10):1156-1159.
    [104]Hwang Kim, Dongmok Kim, Hojoon Yang, et al. A Wall Climbing Robot with Vacuum Caterpillar Wheel System Operated by Mechanical Valve[C]. Proceedings of the 9th International Conference on Climbing and Walking Robots,2006:28-33.
    [105]Tudor Catalin Apostolescu, Nicolae Alexandrescu, Constantin Udrea, et al. Study on Vacuum Attachment Cups for a Robot with Vertical Displacement[J]. U.P.B. Sci. Bull., Series D,2010,72(4):79-91.
    [106]Guillermo Aguilar, Lars O. Svaasand, J. Stuart Nelson. Effects of Hypobaric Pressure on Human Skin:Feasibility Study for Port Wine Stain Laser Therapy (Part Ⅰ)[J]. Lasers in Surgery and Medicine,2005,36:124-129.
    [107]Giacomo Mantriota. Theoretical model of the grasp with vacuum gripper[J]. Mechanism and Machine Theory,2007,42:2-17.
    [108]Fr. Novotny, M. Horak. Computer Modelling of Suction Cups Used for Window Cleaning Robot and Automation Handling of Glass Sheets[J]. MM Sience Journal,2009,6: 112-118.
    [109]Daichin, Sang-Joon Lee. Experimental Analysis of Flow Fields inside Intake Heads[J]. Journal of Mechanical Science and Technology (KSME Int J),2005,19(3):894-904.
    [110]Ge Xiaohong, Huang Hongwu, Li Hui, et al. Design and Verification of an Auxiliary System for High Vacuum Die Casting[J]. Chinese Journal of Mechanical Engineering,2010, 23(*):1-7.
    [111]张世伟,温燕修,韩进.真空拾取器拾取动作响应时间与影响因素的研究[J].真空科学与技术学报,2010,30(1):92-95.
    [112]徐文灿.充排气特性方程组及其应用[J].北方工业大学学报,1992,4(1):80-88,95.
    [113]刘杰,张玉茹.机器人灵巧手抓持分类器的设计与实现[J].机器人,2003,25(3):259-263.
    [114]Ikuo Yamano, Takashi Maeno.Five-fingered Robot Hand using Ultrasonic Motors and Elastic Elements[C]. Proceedings of the IEEE International Conference on Robotics and Automation,2005:2684-2689.
    [115]彭光正,余麟,刘吴.气动人工肌肉驱动仿人灵巧手的结构设计[J].北京理工大学学报,2006,26(7):593-597.
    [116]Y. Bar-Cohen, T. Xue, M. Shahinpoor, et al. Flexible, Low-mass Robotic Arm Actuated by Electroactive Polymers[C]. Proceedings of SPIE′S 5 Annual International Symposium on Smart Structures and Materials,1998:1-5.
    [117]Kai Yang,Yanjue Wang. Design, Drive and Control of a Novel SMA-actuated Humanoid Flexible Gripper[J]. Journal of Mechanical Science and Technology,2008,22:895-904.
    [118]Nicola Pio Belefiore. An Atlas of Linkage-type Robotic Grippers[J]. Mech. Mach. Theory,1997,32(7):811-833.
    [119]陆建,倪晓武,贺安之.激光与材料相互作用的物理学[M].机械工业出版社,1996,11.
    [120]戴荣道.真空技术[M].北京:电子工业出版社,1986,8.
    [121]骆定祚.实用真空技术[M].长沙:湖南科学技术出版社,1980,8.
    [122]孟昭志.真空技术手册[M].哈尔滨:黑龙江科学技术出版社,1986,1.
    [123]陆鑫盛,周洪.气动自动化系统的优化设计[M].上海:上海科学技术文献出版社,2000,5.
    [124]徐克林.气动技术基础[M].重庆:重庆大学出版社,1997,2.
    [125]上海工业大学流控研究室.气动技术基础[M].北京:机械工业出版社,1982,3.
    [126]王成生,赵国胜,付长亮等.真空容器充气时间计算公式的讨论[J].真空,2008,45(5):20-22.
    [127]徐树深.真空容器充气时间计算[J].真空,2000,2:10-12.
    [128]赵雁纪,张利珍,周金辉.空气制冷机干燥器充放气时间的确定与供气平稳性设计[J].真空与低温,2008,14(3):180-183.
    [129]金英子,朱祖超,杨庆俊等.气动系统充放气过程中气体状态多变指数的简化与确定[J].机械工程学报,2005,41(6):76-80.
    [130]姚朝晖,何枫,陈远.真空发生器系统吸附响应时间的确定[J].真空科学与技术,2002,22(3):198-201.
    [131]孙军.真空发生器在工业自动化中的应用[J].机械设计与制造,1998,01:32-33.
    [132]李居泽,金晶立.缩短真空吸附动作时间的途径[J].沈阳工业大学学报,1994,16(1):38-42.
    [133]空压机节能变频解决方案http://www.airtop.com.cn/kongyajizhishi/116.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700