用户名: 密码: 验证码:
车用发动机智能冷却系统基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆及发动机技术的发展、能源与环境问题的涌现和人们使用需求的提升使冷却系统的功能定义不断演变、技术路径不断进化、性能要求不断提升,冷却系统已不再是以冷却为唯一目标的辅助配置,而是在车辆起动、行驶、停机等各个工作阶段,需满足排放法规、经济性需求、动力需求、舒适性需求以及可靠性与耐久性的综合性系统。智能化是兼顾各种问题与需求的关键技术,是车辆及发动机冷却系统的进化与发展趋势。但智能化并非孤立的技术手段,而与其他技术路径相辅相承;智能冷却系统各部件的运行亦非孤立,而是依据车辆行驶路况及发动机运行工况的变化协同工作。正因如此,在车辆及发动机运行的全工况下针对多个目标作系统化协调控制运行成为智能冷却系统技术的关键问题。
     本文通过试验研究为主数值仿真为辅的手段,研究了车用发动机智能冷却系统的基础问题,制定了基于电子水泵、电子风扇、电子节温器和电加热器的发动机全工况智能冷却系统控制策略,并予以试验验证,旨在按需调节冷却液温度实现精确冷却,并在起动阶段缩短暖机时间,在停机之后避免热浸现象,从而提高燃油经济性、整机可靠性并减少污染物排放。本文的主要工作内容包括:
     1.建立了包含发动机台架试验系统、车载试验系统和风洞试验系统的乘用车智能冷却系统试验研究平台,提出用环境温度、冷却液散热量、冷却风速、发动机的转速与负荷率等参数在三个试验系统之间传递数据的方法,并为提高冷却液散热量的测量计算精度设计了一种基于对联热电偶的小温差测量新方法,并验证了其测量误差可控制在士0.04℃。
     2.开展了智能冷却控制系统脉谱图(MAP)研究。基于上述三个试验系统分别开展了发动机热平衡研究、车辆迎风冷却强度研究以及包含冷却模块散热性能、冷却水泵特性和冷却风扇特性在内的机外冷却系统部件工作特性研究,制定了智能冷却控制系统MAP。研究表明:以环境温度、车速、发动机转速和负荷率为输入量,以风扇转速和水泵转速为输出量,可用8个关系式确定地描述其内在联系,并以此为基础以风扇与水泵功率之和最小化为原则,制定了由冷却液散热量MAP、水泵转速MAP和风扇转速MAP组成的智能冷却控制系统MAP。
     3.开展了稳态工况下发动机内部冷却状况的数值仿真研究。使用计算流体动力学(CFD, Computational Fluid Dynamics)和数值传热学(NHT, Numerical Heat Transfer))方法对冷却水套内冷却液的流动与传热进行了模拟分析。结果表明:冷却液流量对发动机内部冷却状况影响显著,若以过热区域为评价标准,在发动机工作过程中存在安全流量qcs。本文提出了以冷却液散热量Qc为基准进行工况划分的方法,获得qcs-Qc曲线,并依此对智能冷却控制系统MAP作安全修正。
     4.开展了发动机暖机及后冷却控制技术研究。研究对比了采用电加热器进行同步加热、预加热以及联合加热的多个辅助加热方案对暖机过程温升时间和燃油消耗的影响,并开展了采用模糊控制的电子节温器在暖机过程中对冷却液温度实行精确调节的研究,最后研究了基于电子风扇和电子水泵联合调节的热态停机后冷却控制技术。结果表明:采用电加热器的各个辅助加热方案均可显著缩短暖机时间,同时降低燃油消耗,但改善水平各有千秋,暖机时间减幅和净节油率最高可达66.1%和32.7%;采用模糊控制的电子节温器可有效降低节温器初次开启时的温度波动至2.2℃以内,并迅速稳定在目标值附近,波动小于1℃;多个后冷却技术方案中,单独开启水泵以最低转速续流的方式为最优,既可有效避免停机热浸现象发生,又可节约能耗。
     5.开展了智能冷却系统集成控制技术研究。将上述结果与结论进行综合研究,形成了基于电子水泵、电子风扇、电子节温器和电加热器的发动机全工况控制策略,并在实验室中建立了控制系统,选取典型工况进行了试验验证。结果表明:相比原机冷却系统而言,以MAP前馈+PID反馈和模糊控制为主要控制策略的智能冷却系统能够明显缩短暖机时间、更精确地控制发动机冷却液温度、有效抑制发动机停机后的热浸现象,并且更加节能。
In order to face the energy and environmental challenges and to meet the demanding customer needs, engine cooling system has been expanding and extending its functional envelop along with the rapid development of vehicle and engine technology. With the rigorous performance requirements, the technical roadmap of cooling system has been evolving, from an auxiliary component only for cooling as before, to a comprehensive thermal management system to help vehicle meet the demands of emission regulations, fuel economy, traction performance, ride comfort, reliability and durability during all operating conditions (e.g. start-up, driving, and stop). Intelligent cooling management is the key technology to take all crucial demands into consideration, and it is the very future technology with the evolution and development of cooling system. Intelligent cooling management is meant to coordinate different cooling components according to the variation of the road and engine conditions. Therefore, it is important to design and develop a systematic and coordinated control system, aiming to satisfy multiple objectives under all operating conditions of engine.
     This dissertation studied the fundamental problems of intelligent cooling system through experimental investigation and simulation. The control strategy of cooling system was designed to cover all operating conditions of engine, and then the validation experiments were completed. The target of control strategy is to adjust the temperature of coolant to realize accurate cooling, and to shorten the warm-up time during start-up and to avoid heat soak after engine shutdown. Therefore, the fuel economy and reliability of engine can be improved, and the pollutant emission can be reduced.
     The main contents of the thesis are as follows:
     1. The experimental platform of intelligent cooling system on passenger vehicles was established, which included the engine test system, vehicle mounted test system and wind-tunnel test system. Then the data fusion method among the three sub-systems was proposed using parameters such as ambient temperature, heat rejection of coolant, velocity of cooling air, engine speed and load. In addition, a new test method of small temperature difference was designed to improve the test accuracy of heat rejection of coolant based on compound thermal couple, it was validated that the measurement error is within the range of±0.04℃.
     2. The study of intelligent cooling system MAP was completed. Based on the three systems mentioned above, research have been completed on (1) engine heat balance,(2) vehicle windward cooling and (3) the characteristics of external cooling system (including heat rejection performance of cooling module, cooling pump and fan properties). Then the system MAP was designed and improved. The results show:with ambient temperature, vehicle speed, engine speed and load as the inputs, and cooling fan and pump speed as the outputs, the internal relation between inputs and outputs can be described using8equations. Based on these results, the MAPs of coolant heat rejection, pump and fan speed were made in order to minimize the total power consumption of cooling pump and fan. Then the MAPs were combined to the MAP of the entire cooling system.
     3. The cooling control technology of engine warm-up and post-cooling was studied. Using the electric heater as the heating device, different auxiliary heating schemes, including synchro heating, preheating and combined heating, were compared in the respect of the coolant temperature warm-up period and fuel consumption. An electric thermostat based on fuzzy control was designed to realize the accurate adjustment of coolant temperature. Finally, the post-cooling cooling control technology was studied based on combined regulation of electric fan and pump. The results show that the auxiliary heating schemes could apparently shorten the warm-up time and lower the fuel consumption. However, the effects of different schemes were different, with maximum time reduction of66.1%and fuel consumption reduction of32.7%, respectively. The coolant temperature fluctuation can be reduced to2.2℃with the application of electric thermostat, and it can rapidly approach to the steady target state, with the fluctuation less than1℃. The best post-cooling scheme is the running only pump at minimum speed, and it can avoid overheat after engine shutdown, as well as save power consumption.
     4. The numerical simulation was carried out to study engine internal cooling under steady conditions. The flow and heat transfer of coolant inside the water jacket was analyzed according to theories of Computational Fluid Dynamics and Numerical Heat Transfer. The results show that the mass flow rate of coolant has obvious and significant effect on the cooling status inside engine. There is a safety mass flow rate qcs during the working process of engine, considering the overheat area minimization as the criterion. A method of engine operating conditions division was proposed with heat rejection of coolant Qc as reference, and then the qcs-Qc curve was acquired and used to modify the cooling system MAP.
     5. The integrated control technology of intelligent cooling system was studied. The results and conclusions found above were composed to form the complete control strategy covering all operating conditions of engine. The control system was established and validated with tests under typical conditions. The results show that compared to the original cooling system, the control strategy combining MAP-based forward, PID-based backward and fuzzy control can reduce the warm-up time, adjust coolant temperature more accurately, and effectively avoid heat soak after engine shutdown, as well as lower the power consumption.
引文
[1]陈家瑞.汽车构造[M].北京:机械工业出版社,2005.1
    [2]Jeremy Korzeniewski. World vehicle population tops 1 billion[EB/OL]. http://www.autoblog.com/,2011.8
    [3]Mark Wan. Multi-valve engines (Autozine.org,1997-2011) [EB/OL]. http://www.autozine.org/technical_school/engine/Multivalve.html/,2012
    [4]Mort Schultz. Engines:A Century of ProgressJ. Popular Mechanics[J],1985.1:95-97,120, 122
    [5]HAO Fu-quan, David L Harrington, LAI Ming-chia[M]. Automotive Gasoline Direct-injection Engines.2002
    [6]FSI. http://www.audi.com/com/brand/en/tools/advice/glossary/fsi.browser.html/fEB/OL], 2012
    [7]Stratified charge engine. http://en.wikipedia.org/wiki/Stratified_charge_engine/[EB/OL], 2012
    [8]周龙保.内燃机学(第三版)[M].北京:机械工业出版社,2011
    [9]姚仲鹏,王新国.车辆冷却传热[M].北京:北京理工大学出版社,2001
    [10]轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段)[S].中华人民共和国国家标准,GB 18352.3-2005
    [11]Gumus, M. Reducing cold-start emission from internal combustion engines by means of thermal energy storage system[J]. Applied Thermal Engineering,2009(4):652-660
    [12]Eichiseder W. Optimization of Heat Management of Vehicles Using Simulation Tools[C]. VTMS4 Conference, London UK,1999
    [13]SAE PAPER,/IMechE Vehicle Thermal Management Systems Conference (VTMS) [EB/OL]. http://www.expoua.com/Event/lang/en/id/75578/,1993
    [14]Matthieu Chanfreau, Bertrand Gessier, Alain Farkh, et al. The Need for an Electrical Water Valve in a THErmal Management Intelligent System (THEMISTM)[J]. SAE Paper, 2003-01-0274
    [15]Ngy-Srun Ap, Michelle Tarquis. Innovative Engine Cooling Systems Comparison[J]. SAE Paper,2005-01-1378
    [16]H H Pang, C J Brace. Review of engine cooling technologies for modern engines. Proceedings of the Institution of Mechanical Engineers, Part D:J. Automobile Engineering,2004(218):1-7
    [17]David J. Allen, Michael P. Lasecki. Thermal Management Evolution and Controlled Coolant Flow[J]. SAE Paper,2001-01-1732
    [18]Kiran K. Katta, Myoungjin Kim. Exhaust Heat Co-Generation System Using Phase Change Cooling for Heavy Duty Vehicles[J]. SAE Paper,2008-01-2450
    [19]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998
    [20]Nukiyama S. Maximum and minimum values of heat q transmitted from metal to boiling water under atmospheric pressure[J]. J.Soc.Mech.Eng.Jpn,1934(37):53-54,367-374.
    [21]Rohsenow W.M..A method of correlating heat transfer data for surface boiling of liquid[C]. Trans.ASME,1952
    [22]Kutateladze, S. S. Boiling heat transfer[J]. International Journal of Heat and Mass Transfer,1961(4):31-45
    [23]Chen J.C..A correlation for boiling heat transfer to saturated fluids in convective flow[J].Industrial and engineering chemistry Process Design and Development,1966(3): 322-329.
    [24]Bennett D L, Chen J C. Forced convective boiling in vertical tubes for saturated pure components and binary mixtures[J]. AIChE J,1980(3):454.
    [25]Collier J G, Thome J R. Convective boiling and condensation[M]. Clarendon Press Oxford,D 1994.
    [26]Ablinger S. Kalibrierung and Verifikation von Siedemodellen fur die 3D strmungssimulation[D]. Graz:Graz University of Techinology,2002
    [27]陈海波.汽油机固-液耦合及沸腾传热研究[D].博士学位论文.吉林大学,2009
    [28]T.G. Theofanous, J.P. Tu, A.T. Dinh. The boiling crisis phenomenon Part I:nucleation and nucleate boiling heat transfer[J]. Experimental Thermal and Fluid Science,2002(26): 775-792
    [29]Gihun Son a, Vijay K. Dhir. Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes[J]. International Journal of Heat and Mass Transfer,2008(51): 2566-2582
    [30]K. Robinson, N. A. F. Campbell, J. G. Hawle. A Review of Precision Engine Cooling[J]. SAE Paper,1999-01-0578
    [31]D Gentile, S Zidat. Advanced Engine Cooling System[J]. IMechE, C389/281 (SAE Paper, 925066)
    [32]H Couetouse, D Gentile. Cooling System Control in Automotive Engines[J]. SAE Paper, 920788
    [33]NJ Owen, K Robinson, NS Jackson. Quality Assurance for Combustion Chamber Thermal Boundary Conditions-A Combined Experimental and Analytical Approach[J]. SAE Paper,931139
    [34]M Pretscher, NS Ap. Nucleate Boiling Engine Cooling System-Vehicle Study[J]. SAE PAPER,931132
    [35]NAF Campbell, DG Tilley, SA MacGregor, et al. Incorporating Nucleate Boiling in a Precision Cooling Strategy for Combustion Engines[J]. SAE Paper,971791
    [36]K Robinson, J G Hawley, N A F Campbell. Experimental and modelling aspects of flow boiling heat transfer for application to internal combustion engines [J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2003(217):877-889
    [37]麦华志,李国祥.缸盖冷却水的单相流沸腾模型[J].山东内燃机.2005(2):8-11
    [38]Guo-xiang Li, Song Fu, Yun Liu. A homogeneous flow model for boiling heat transfer calculation based on single phase flow[J]. Energy Conversion and Management,2009(50): 1862-1868
    [39]刘永,李国祥,付松.一种适用于缸盖水腔沸腾传热计算的模型[J].内燃机学报.2008(1):76-82
    [40]李智,黄荣华,程晓军等.内燃机缸盖水腔内过冷沸腾数值模型研究[J].内燃机学报,2010(3):247-252
    [41]李智,黄荣华,王兆文等.内燃机冷却水腔内沸腾传热数值模型研究[J].内燃机学报,2011(3):270-275
    [42]董非,郭晨海,蔡忆昔等.缸盖鼻梁区水腔结构对腔内沸腾传热影响的数值研究[J].内燃机学报,2010(5):435-440
    [43]董非,郭晨海,范秦寅等.发动机冷却水腔内沸腾传热的模拟研究[J].内燃机学报,2011(8):76-82
    [44]刘国庆,舒歌群,张志福等.考虑沸腾换热的内燃机流固耦合传热分析[J].内燃机学报,2011(6):545-548
    [45]陈海波.汽油机固-液耦合及沸腾传热研究[D].博士学位论文.吉林大学,2009.
    [46]T Priede, D Anderton. Likely Advances in Mechanics,Cooling, Vibration and Noise of Automotive Engines[J]. ProcInstn Mech Engrs,1984(7)
    [47]CH Moore, PC McAvoy. Effect of Cylinder Head Design on Heat Rejection and Durability for High Speed Diesel Engines. Proc. Practical Limits of Efficiency of Engines IMechE,1986
    [48]Y Iwashita, M Kanda, H Kartagiri, et al. Improvement of Coolant Flow for Reducing Knock[J] IMechE Autotech,1989
    [49]MJ Clough. Precision Cooling of a Four Valve per Cylinder Engine [J]. SAE Paper, 931123
    [50]T Huttner, J Hancock. Design and Evaluation of a Low Emission Spark Ignition Engine Cylinder Head[J]. SAE Paper,960605
    [51]Fewer cylinders, more gear ratios, in-house innovation pace Ford's 2013[EB/OL]. powertrainshttp://www.SAE Paper,.org/mags/aei/9890/,2011
    [52]Ford's new 1.0-litre ecoboost petrol engine powered by multiple innovations[EB/OL]. http://media.ford.com/article_display.cfm?article_id=36058/,2011
    [53]Robert D. Chalgren, Gordon G. Parker, Oner Arici, et al. A Controlled EGR Cooling System for Heavy Duty Diesel Applications Using the Vehicle Engine Cooling System Simulation[J]. SAE Paper,2002-01-0076
    [54]Carlos Castano, Alvaro Sanchez, Jose A. Grande. Advantages in the EGR Cooler Performance by Using Internal Corrugated Tubes Technology [J]. SAE PAPER, 2007-26-019
    [55]韩松,俞小莉,张宇等.废气再循环阀多功能试验装置[P].中国专利:2008101203440,2009
    [56]韩松,武亚娇,张字等.废气再循环阀及冷却器联合试验装置[P].中国专利:200810120195.8,2010
    [57]韩松,张宇,武亚娇等.一种用于EGR阀测试的燃烧装置[P].中国专利:200810063301.3,2010
    [58]韩松,黄瑞,张宇等.用于EGR阀高温废气周期性冲击疲劳耐久性测试的连续旋转阀[P].中国专利:200810063432.1,2009
    [59]Robert D. Chalgren, Gordon G. Parker, Oner Arici, et al. A Controlled EGR Cooling System for Heavy Duty Diesel Applications Using the Vehicle Engine Cooling System Simulation[J]. SAE PAPER, technical paper,2002-01-0076
    [60]U. Kruger, S. Edwards, E. Pantow, R. Lutz, et al. High Performance Cooling and EGR Systems as a Contribution to Meeting Future Emission Standards[J]. SAE Paper, technical paper,2008-01-1199
    [61]Ngy-Srun Ap, Philippe Jouanny, Michel Potier, et al. UltimateCoolingTM System for New Generation of Vehicle[J]. SAE Paper,2005-01-2005
    [62]Ngy-Srun Ap, Michelle Tarquis. Innovative Engine Cooling Systems Comparison. Ngy-Srun Ap and Michelle Tarquis[J]. SAE Paper,,2005-01-1378
    [63]U. Kruger, S. Edwards, E. Pantow, et al. High Performance Cooling and EGR Systems as a Contribution to Meeting Future Emission Standards[J]. SAE Paper,2008-01-1199
    [64]Bryan Joslin. Technical features-Inside the N52 Engine [EB/OL]. http://www.mwerks.com/artman/publish/features/printer_960.shtml/,2006
    [65]Alex Eiser, Joachim Doerr, Michael Jung, et al. The new 1.81 TFSI engine from Audi Part 1:Base engine and Thermomanagement[J]. MTZ Industry-Gasoline Engines, 2011(72):32-39
    [66]Volkswagen AG.1.4L TSI Engine with Dual-charging-Design and Function[M].
    [67]Ward's 10 Best Engines [EB/OL]. http://en.wikipedia.org/wiki/Ward's_10_Best_Engines/, 2011
    [68]Floyd A. Sherman. Constant torque pulley[P]. US Patent 9792095,1957
    [69]尹静,孙燕,郭新民.发动机冷却系统驱动方式的现状及研究方向[J].山东内燃机,2003(4):4-6
    [70]Timothy C. Scott, Zhe Xie. Viscous Fan Drive Model for Robust Cooling Air Flow Simulation[J]. SAE Paper,2007-01-0595
    [71]Behr. Engine Cooling-comprehensive knowledge for garages[M].
    [72]Behr. New electronically controlled Visco(?) fan for Euro 5 commercial vehicles-Brief Information[M].
    [73]韩松,陆国栋,俞小莉等.智能型工程机械冷却系统[P].中国专利:ZL200920116820.1,2010
    [74]韩松,陆国栋,俞小莉等.工程机械冷却系统支架[P].中国专利:ZL200920116819.9, 2010
    [75]Wikipedia, Electromagnetic clutch [EB/OL]. http://en.wikipedia.org/wiki/Electromagnetic_clutch/,2011.8
    [76]王永钦.汽车冷却风扇驱动机构总成[P].中国专利:200410038986.8,2004
    [77]Rainer O. Willingham, Tacoma, Wash. Fan Assembly [P]. US Patent 4257554,1981
    [78]卢广峰,郭新民,孙运柱等.汽车发动机冷却系统的发展与现状[J].农机化研究,2002(2):129-131,134
    [79]罗尔夫,布赫海姆.机动车辆驱动电动机的冷却装置[P].中国专利:CN85109051A,1987
    [80]Roger clemente. Electric fan assembly for over-the-road trucks[P]. US Patent 4875521, 1989
    [81]Wolfgang P. Weinhold. Engine ventilation an automotive vehicle[P]. US Patent 5269264, 1993
    [82]Roger Clemente. Electric fan assembly for over-the-road trucks [P]. US Patent:4875521, 1989
    [83]Matthieu Chanfreau, Alex Joseph, Darren Butler, et al. Advanced Engine Cooling Thermal Management System on a Dual Voltage 42V-14V Minivan. SAE Paper, 2001-01-1742
    [84]Robert D., Chalgren Jr., David J. Allen. Light Duty Diesel Advanced Thermal Management [J]. SAE Paper,2005-01-2020
    [85]Todd Stephens, Travis Cross. Fan and Heat Exchanger Flow Interactions [J]. SAE Paper, 2005-01-2004
    [86]郭新民,高平,孙世民等.自控电动冷却风扇在汽车发动机上的应用[J].内燃机工程.1993(1):79-82
    [87]郭新民,孙世民,邢娟等.农用运输车冷却风扇的电动控制[J].农业机械学报,1997(1):211-213
    [88]郭新民,邢娟,王会明等.汽车发动机自控电动冷却风扇的发展与研究[J].内燃机工程,1999(3):12-15
    [89]翟丽,齐自成,王新源等.汽车发动机冷却系统的单片机控制[J].农机化研究,2001(2):38-39,46
    [90]Hamamoto Tohru, Omura Seiji, Lshikawa Norikatsu, et al. Development of the Electronically Controlled Hydraulic Cooling Fan System [J]. SAE Paper,901710
    [91]大村清治等.一种电控液驱风扇冷却系统的开发[J].自动车技术会论文集,1992,23(1):15-23.
    [92]Liu, R., Alleyne,A. Nonlinear force/pressure tracking of an electro-hydraulic actuator [J]. ASME Journal of Dynamic Systems, Measurement, and Control,2000(122-1):232-237.
    [93]Yao,B., Bu,F., Reedy,J., Chiu,G. Adaptive robust motion control of single-rod hydraulic actuators:Theory and experiments [J]. IEEE/ASME Transactions on Mechatronics, 2000(5-1):79-91.
    [94]Yao,B., Bu,F., Chiu,G. Nonlinea radaptive robust control of electro-hydraulic systems driven by double-rod actuators [J]. International Journal of Control,2001(74-8):761-775.
    [95]Chiang, M., Lee,L., Huang.K. Development of a hydraulic-piezoelectric-actuator for hybrid positioning control with large stroke, high loading and sub-micrometer accuracy [J]. In Proceedings of the IEEE international conference on mechatronics,2005(6):45-49
    [96]Frick,P., Bassily,H., Watson,H., et al. A hydraulic fan driven heat exchanger for automotive cooling systems [J]. In Proceedings of the ASME IMECE, dynamics systems and control division, IMECE2006-13464,2006
    [97]Kaddissi, C., Kenne', J.-P., Saad,M. Identification and real-time control of an electro hydraulic servo system based on nonlinear backstepping [J]. IEEE/ASME Transactions on Mechatronics,2007(12-1):12-22.
    [98]John Feuerstein. Electronically Controlled Hydrostatic Fan Drive System for the Internal Combustion Engine [J]. SAE Paper,901586
    [99]M.H. Salah, P.M.Frick, J.R.Wagner, et al. Hydraulic actuated automotive cooling systems—Nonlinear control and test[J]. Control Engineering Practice.2009(17):609-621
    [100]张洪信.发动机风扇温控液驱系统研制[D].硕士学位论文,山东农业大学,1997
    [101]万福君,张铁柱,张洪信.发动机冷却风扇温控液力驱动系统[J].汽车工程,1999(2):93-96
    [102]张洪信,张铁柱,万福君等.发动机液驱风扇系统的设计及性能研究[J].汽车工程,2001(4):244-246
    [103]张铁柱,张洪信.内燃机冷却风扇驱动系统[J].青岛大学学报,2002(2):16-19,25
    [104]张铁柱,张洪信.内燃机冷却风扇温度控制液压驱动系统技术研究[J].2002(3):273-277
    [105]孟建,郭新民,傅旭光等.工程机械发动机及液压系统的冷却系统的智能控制[J].山东内燃机,2005(1):17-20
    [106]郭新民,魏新华,傅旭光等.大型收获机电液混合驱动智能冷却系统[J].农业机械学报,2006(4):60-63
    [107]刘永进. 工程机械电液混合驱动冷却装置控制系统研究[D].硕士学位论文,山东农业大学,2006
    [108]李淑廷,工程机械电液驱动智能冷却系统的研究[D].硕士学位论文,山东农业大学,2007
    [109]杨文霞.工程机械电液混合驱动冷却系统液压驱动装置的研究[D].硕士学位论文,山东农业大学.2008
    [110]权龙,李凤兰.电液比例技术控制发动机冷却风扇的原理及特征[J].汽车技术,1995(7):10-13
    [111]景军清,徐新跃,朱艳平等.工程车辆液压驱动风扇冷却系统[J].工程机械,2004(9):40-41
    [112]路华鹏,马彪,陈漫等.军用车辆静液驱动冷却风扇系统设计[J].液压与气动, 2007(5):22-24
    [113]Robert D, Chalgren Jr. Thermal Comfort and Engine Warm-Up Optimization of a Low-Flow Advanced Thermal Management System[J]. SAE Paper,2004-01-0047
    [114]J. R. Wagner, M. Ghone, D. Dawson, et al. Coolant Flow Control Strategies for Automotive Thermal Management Systems [J]. Soc. Automot. Eng., SAE Paper, 2002-01-0713,2002
    [115]Salah, M., Mitchell,T., Wagner,J., et al. Nonlinear control strategy for advanced vehicle thermal management systems [J]. IEEE Transactions on Vehicular Technology, 2008(57-1):127-137.
    [116]Robert D. Chalgren, Jr., Lawrence Barron, Jr., Daniel R. Bjork. A Controllable Water Cooled Charge Air Cooler (WCCAC) for Diesel Trucks [J]. SAE Paper,2004-01-2614
    [117]Setlur,P., Wagner,J., Dawson,D., et al. An advanced engine thermal management system: Nonlinear control and test [J]. IEEE/ASME Transactionson Mechatronics,2005(10-2): 210-220.
    [118]Minimalism technologies-Switchable water pump [EB/OL]. http://www.miniusa.com/learn-minimalism.htm#/learn/minimalism/minimalism-m
    [119]John H. Chastain, John R. Wagner. Advanced Thermal Management for Internal Combustion Engines-Valve Design, Component Testing and Block Redesign [J]. SAE Paper,2006-01-1232
    [120]A. Kenny, C. F. Bradshaw, B. T. Creed. Electronic Thermostat System for Automotive Engines[J]. Soc. Automot. Eng., SAE Paper,880265
    [121]Vaughan, N., Gamble,J. The modeling and simulation of aproportional solenoid valve [J]. ASME Journal of Dynamic Systems, Measurement and Control,1996(118-1):120-125.
    [122]John R. Wagner, Venkat Srinivasan, Darren M. Dawson. Smart Thermostat and Coolant Pump Control for Engine [J]. SAE Paper,2003-01-0272
    [123]J. Wagner, I. Paradis. E. Marotta, et al. Enhanced automotive engine cooling systems-a mechatronics approach[J]. Int. J. of Vehicle Design,2002(28):234-240
    [124]袁燕利,邢娟,郭新民等.新型电控节温器的研究设计[J].农机化研究,2001(1):51-53
    [125]王帅.内燃机电子节温器设计开发与试验验证[D].硕士学位论文,浙江大学,2011
    [126]H.Couetoux, D.Gentile. Cooling System Control in Automotive Engines, SAE Paper, 920788
    [127]P.Y.GEELS. Advanced Control strategy for modern engine cooling thermal systems, and effect on CO2 and pollutant reduction[C], VTMS6 congress 2003 Brighton
    [128]M.Chanfreau, B.Gessier, A.Fark, et al. The need for an Electrical Water Valve in a THErmal Management Intelligent System (THEMISTM)[J]. SAE Paper,2003-01-0274
    [129]Ngy-Srun Ap, Michelle Tarquis. Innovative Engine Cooling Systems Comparison. Ngy-Srun Ap and Michelle Tarquis [J]. SAE Paper,2005-01-1378
    [130]Chanwoo Park, Jon Zuo, Paul Rogers, et al. Two-Phase Flow Cooling for Vehicle Thermal Management [J]. SAE Paper,2005-01-1769
    [131]Sergio Bova, Rocco Piccione, Antonio Vulcano. A Zero-Dimensional Two-Phase Model of the Thermal Transient of an I.C.E. Cooling System after a Rapid Switch-off [J]. SAE Paper,2006-01-2999
    [132]Pretscher M., APN. S.. Nucleate Boiling Engine Cooling System-Vehicle Study [J]. SAE Paper, technical paper,931132
    [133]AP N. S., Golm N. C. New concept of engine cooling system (NewCool)[J]. SAE Paper, technical paper,971775
    [134]Ap N. S., A. Maire, P. Jouanny, et al. Economical Engine Cooling System[J]. SAE Paper, technical paper,2001-01-1708
    [135]Robert D., Chalgren Jr., David J. Allen. Light Duty Diesel Advanced Thermal Management [J]. SAE Paper,2005-01-2020
    [136]Robert W. Page, Wsewolod "Jeep" Hnatczuk, Jeffrey Kozierowski. Thermal Management for the 21st Century — Improved Thermal Control & Fuel Economy in an Army Medium Tactical Vehicle [J]. SAE Paper,2005-01-2068
    [137]傅寿宇,郭新民,张坤等.柴油机双回路冷却系统的设计和试验[J].内燃机学报,2010(3):265-268
    [138]Tom Mitchell. Advanced thermal management for internal combustion engines [D]. A Thesis Presented to the Graduate School of Clemson University,2007
    [139]郭新民,翟丽,高平等.汽车发动机智能冷却系统的研究[J].内燃机工程,2001(1):15-16,22
    [140]孙新年,郭新民,杨文霞等.装载机冷却系统控制装置设计与试验研究[J].内燃机学报,2008(2):188-191
    [141]杨胜.汽车热管理系统半物理仿真试验平台研究[D].硕士学位论文,清华大学,2004
    [142]谭建勋.工程机械热管理系统试验平台的开发[D].硕士学位论文,浙江大学,2005
    [143]张毅.车辆散热器模块流动与传热问题的数值分析与试验研究[D].博士学位论文,浙江大学,2006
    [144]张毅,俞小莉,陆国栋等.安装参数影响散热器模块性能的风洞研究[J].汽车工程,2006(5):455-459
    [145]张毅,俞小莉,陆国栋等.装载机散热器模块进出口位置匹配试验[J].农业机械学报,2007(1):41-44
    [146]陆国栋,俞小莉,张毅等.间距对轮式装载机冷却组性能影响的风洞试验[J].浙江大学学报(工学版),2007(4):574-576
    [147]肖宝兰,俞小莉,韩松等.散热带翅片参数对车用水箱散热器流动传热性能的影响[J].内燃机工程,2010(3):85-89
    [148]肖宝兰,俞小莉,韩松等.翅片参数对车用中冷器流动传热性能的影响[J].浙江大学学报(工学版),2010(11):2164-2178
    [149]黄鑫.发动机热平衡试验系统开发[D].硕士学位论文,浙江大学,2006
    [150]王迟宇,俞小莉.柴油机热平衡数值仿真与试验研究[D].硕士学位论文,浙江大学, 2007
    [151]吕锋.商用车冷却模块匹配设计方法研究[D].博士学位论文,浙江大学,2011
    [152]C.Arcoumanis, J. M. Nouri, J.H.Whitelaw. Coolant Flow in the Cylinder Head/Block of the Ford 2.5L DI Diesel Engine [J]. SAE Paper,910300
    [153]Sider J A, Tilley D G. Optimizing Cooling System Performance Using Computer Simulation [J]. SAE Paper,971802
    [154]Kenji Okumura. CFD Simulation by Automatically Generated Tetrahedral and Prismatic Cells for Engine Intake Duct and Coolant Flow in Three Days [J]. SAE Paper, 2000-01-0294
    [155]Stephen Shih. Engine Knock Toughness Improvement Through Water Jacket Optimization [J]. SAE Paper,2003-01-3259
    [156]M. Cardone, A. Senatore, D. Buono, et al. A Model for Application of Chen's Boiling Correlation to a Standard Engine Cooling System [J]. SAE Paper,2008-01-1817
    [157]王书义,王宪成.发动机冷却水三维流动数值模拟基础研究[J].内燃机学报,1994(1):57-63
    [158]白敏丽,吕继祖,丁铁新.六缸柴油机冷却系统流动与传热的数值模拟研究[J].内燃机学报,2004(6):525-531
    [159]赵以贤毕小平等.车用内燃机冷却系的流动与传热仿真[J].内燃机工程,2003(4):1-5
    [160]李婷,俞小莉.基于有限元法的活塞-缸套-冷却水系统固流耦合系统传热研究[J].内燃机工程,2006(5):41-45;
    [161]陈红岩,李迎,俞小莉.柴油机流固耦合系统稳态传热数值仿真[J].农业机械学报,2007年第38卷第2期
    [162]刘忠民,俞小莉,沈瑜铭.发动机排气热量测量方法[J].农业机械学报,2007(7):193-195
    [163]何学良.内燃机燃料[M].北京:中国石化出版社,1999
    [164]B.B.Kyle, Chemical and process Thermodynamics [J]. Englewood Cliffs, N.J:Prentice Hall.1984.
    [165]Ngy-Srun Ap, Pascal Guerrero, Philippe Jouanny. Influence of Fan System Electric Power on the Heat Performance of Engine Cooling Module[J]. SAE Paper,2003-01-0275
    [166]沙毅,闻建龙.泵与风机[M].合肥:中国科学技术大学出版社,2005
    [167]茆诗松,周纪芗,陈颖.试验设计DOE[M]北京:中国统计出版社,2004.4
    [168]邱轶兵.试验设计与数据处理.合肥:中国科学技术大学出版社,2008.12
    [169]Ngy Srun AP. A Simple Engine Cooling System Simulation Model[J]. SAE Paper 1999-01-0237
    [170]李军,刘铁刚.柴油机冷却水套模拟分析及结构优化[D].硕士学位论文,吉林大学,2006
    [171]张胜兰等.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社,2008
    [172]金忠青,N-S方程的数值解和紊流模型[M].南京:河海大学出版社.1989
    [173]Gtisoft. GT-SUITE reference munual for thermal library templates VERSION 6.2[M]. 2006.
    [174]曾丹苓.工程热力学(第三版)[M].北京:高等教育出版社,2002
    [175]杨连生.内燃机设计[M].北京:中国农业机械出版社,1980
    [176]王帅,韩松,俞小莉.内燃机冷却液循环流量控制策略研究[J].汽车工程.2012(1):30-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700