用户名: 密码: 验证码:
管壳式换热器中单相流体强化传热的数值模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳式换热器广泛应用于我国各个工业生产部门,强化其传热速率可以有效提高能源利用效率,进而缓解能源供需矛盾。本文从数值模拟和实验测量两方面入手,分别就提高管侧和壳侧热流体综合性能,开展管壳式换热器单相强化传热研究,主要研究工作情况如下:
     (1)采用数值方法从提高综合性能指标和减小熵产(数)两个方面研究一种新型管内插物,即锥形扰流片,层流条件下的强化传热性能。研究表明锥形片内插物可以有效强化管内层流换热,同时流动阻力也有一定幅度增加。与错排锥形片相比,顺排锥形片对管内流体的扰动较强烈,传热速率增加较多,综合性能较好。顺排锥形片强化管各雷诺数平均的Nu数比光管最多强化了4.51倍,平均f因子增加比为2.31-14.77,综合性能指标PEC值在1.17到2.97之间。锥形片内插物结构参数,特别是锥形片张角和间距,对强化管热流体性能影响较大,倾角30°、张角60°、无量纲间隙0.10和片距1.5是本次研究得到的最佳内插物参数组合。
     熵产计算表明在层流条件下,粘性熵产和传热熵产都随着强化管Re数的增加而加大,后者数值远大于前者,在整个不可逆损失中占有主导地位。锥形片张角较大、无量纲间隙和片距较小时,强化管的熵产较小,不可逆损失较少,从有用能损失最小的角度看综合性能较优。
     (2)采用实验测量和数值计算两种方法系统研究了一种新型管束支撑元件,即三叶孔支撑板,湍流条件下的壳侧强化传热性能。实验研究表明三叶孔板可以有效强化壳侧传热性能,并得到了三叶孔板换热器壳侧流动、传热性能的试验准则关系式。三叶孔板换热器实验样机在大Re数下传热速率较高,然而它的综合性能随Re数的增加而变坏,壳侧组合参数Nu/△p在16kPa-1~34kPa-1范围之间。
     数值研究表明三叶孔板形成的射流和强烈回流,可以冲刷管壁,提高流体湍流强度水平,这加速了主流流体混合,同时使边界层厚度减小,最终有效强化了换热管外表面的传热速率。就本文所研究的案例来看,改变三叶孔板板距对壳侧强化传热性能的影响不是很明显,但对流动阻力增加的影响较大。板距较大时,壳侧压力损失较小,因而综合性能较优。四叶孔板换热器壳侧表面传热系数h仅比三叶孔板有少量增加,而压力损失Δp增加却很多,单位压力损失的表面传热系数(h/△p):和单位泵功传热能力(hA/W)分别只有后者的68%和10%。
     (3)采用数值模拟和实验验证相结合的方法研究花隔板换热器壳侧湍流强化传热性能。数值研究借助多孔介质的概念,引入分布阻力和分布热源,建立了基于空隙率和渗透率的管壳式换热器流动传热性能计算的数值模型。数值模型对花隔板换热器进行了计算,壳侧主要参数的模型预测值与实验值的最大相对误差在14%范围内。本文还利用计算得到的速度温度云图,分析了花隔板强化壳侧传热的物理机制,并与折流板换热器的预测流场温度场进行了比较。折流板换热器虽然表面传热系数较大,但壳侧流动阻力增加更多,壳侧综合性能指标h/Δp只有花隔板换热器的82%。
     本文创新点主要体现在以下两个方面:
     (1)从不同角度系统研究了一种新型管内插物(锥形扰流片)和两种新型管束支撑元件(三叶孔支撑板和花隔板)强化传热性能。包括采用不同评价体系(热力学第一定律与第二定律评价方法),应用不同研究方法(数值模拟与实验研究),调查强化元件结构参数的影响,分析强化传热物理机制(场协同角计算与流场-温度场云图分析)等。
     (2)灵活应用各种CFD建模方法开展强化传热研究,以满足不同对象不同计算工作量和计算精度要求。本文采用的数值建模方法大致包括单元流道方法、流固热耦合方法、周期性模型方法、基于多孔概念的简化方法、UDF(S)、并行计算、批处理、单层和两层k-ε湍流模型等。
Heat exchangers are widely applied in a variety of industrial fields. Heat transfer enhancement improves their thermal efficiencies effectively, and energy consumptions are decreased. As a result, the imbanance between the supply and demand is eased up. In the current study, numerical simulation and experimental investigation are conducted to research the single-phase thermal augmentation for shell-and-tube heat exchangers, and special attentions are paid to the improvement of overall performances on the shell and tube sides. The main contents of present work are listed as below:
     1. A new type of tube insert, i.e., conical strip inserts, is numerically studied for the laminar heat transfer enchancement on the tube side. Larger and minimal entropy generation are adopted as the performance evaluation criteria. Investigation results demonstrate that conical strip inserts can enhance the heat transfer rate effectively, while the flow resistance increases as well. Compared with strip inserts of staggered alignment, non-staggered ones result in larger increment of heat transfer rate amd better PEC value. The maximum averaged Nu ratio between enhanced tube and smooth tube is equal to4.51, while the dimensionless PEC lies in the range between1.17and2.97. Compared with slant angle and strip-wall gap, the geometry angle and strip pitch have larger influence on the thermo-hydraulic performances of enhanced tubes, and the parameter combination of slant angle30°, geometry angle60°, dimensionless strip-wall gap0.10and strip pitch1.5generates the best PEC value in the current investigation.
     Entropy generation computation indicates that both viscous and heat transfer entropy generations increase with Re, and the latter has much larger value than the former and dominates the irreversible loss of convection heat transfer. The larger the geometry angle, or the smaller the strip-wall gap and strip pitch, the smaller the entropy generation of enchanced tube is, and thus the better the overall performance is from the viewpoint of minimal exergy loss.
     2. Experimental measurement and numerical simulation are successively performed to investigate the shell-side heat transfer enhancement of heat exchangers with trefoil-hole baffles in the turbulent regime. Experimental results demonstrate that trefoil-hole baffles could enhance the heat transfer rate effectively, and experimental correlations of pressure loss and heat transfer rate are obtained, which indicate that the shell-side overall performance of heat exchanger with trefoil-hole baffles becomes worse at larger Re, despite the heat transfer rate has larger value under such conditions. The combined parameter Nu/△p varies between16kPa-1and37kPa-1in the investigated Re range.
     Numerical study is conducted for the mechanism of heat transfer enhancement on the shell side, as well as for the effects of baffle pitch and tube arrangement on the thermo-hydraulic performances. Numerical results demonstrate that trefoil-hole baffles generate jet flow and intensive recirculation, which can wash the tube wall and increase the turbulence intensity level substantially. Thus, the bulk temperature becomes more uniform, and thermal boundary layer is decreased. As a result, the heat transfer rate is considerably enhanced, meanwhile the flow resistance rises as well. For the investigated cases, larger baffle pitch can decrease the increment of flow resistance effectively, while the heat transfer rate is still notably enhanced. Thus larger pitch facilitates to obtain better overall performance. However, baffle pitch is confined by the strength and stiffness of tubes. Fourfoil-hole baffles generate slightly larger convective heat transfer coefficients (h), while the increments of flow resistance (Ap) are much larger. The combined paramenters of h/△p and hA/W of fourfoil-hole baffles are equal to about68%and10%of the counterparts of the trefoil-hole baffles, respectively.
     3. Flower baffles are numerically studied for the shell-side turbulent thermal augmentation of heat exchangers, and numerical model is constructed based on the stolen concepts of volumetric porosity and surface permeability, as well as the introduction of distributed flow resistance and heat source. The numerical model is validated by the experimental data of a heat exchanger with flower baffles, and the maximum relative deviations of pressure loss and convection heat transfer coefficient are less than14%. With the numerical results, the mechanism of shell-side heat transfer enhancement of heat exchanger with flower baffles is revealed and comparisons of flow and temperature fields with the counterparts of segmental-baffle heat exchanger are conducted.
     Main innovative points of the present research lie in below:
     1. One new type of tube insert (i.e., conical strip insert) and two new types of tube bundle supports (including trefoil-hole baffle and flower baffle) are investigated for the thermal augmentation on the tube and shell sides of shell-and-tube heat exchangers, respectively. And varied viewpoints are adopted in the research, such as evaluation criterion of the first law of thermodynamics vs that of second law; numerical study vs experimental investigation; research on the effects of geometrical parameters vs analysis of thermal augmentation mechanism, etc.
     2. A variety of CFD techniques are applied in the current research on the thermal augmentation of heat exchangers, in more details, including unit channel method, periodical modeling method, conjugate heat transfer, simplified modeling method based on the stolen concept of porous media, user-defined-function, parallel-computing, batch processing, single-layer and two-layer κ-ε turbulent models, etc.
引文
[1]黄素逸.能源科学导论[M].北京:中国电力出版社,1999
    [2]王秀强.2011年能源结构调整未达标:非化石能源比重不升反降,21世纪经济报道,2012年02月03日
    [3]发改委:十二五节能减排重点工程总投资23660亿—国家发展改革委有关负责人就《节能减排“十二五”规划》答记者问,http://news.china.com.cn/2012-08/26/ content_26337176.htm,2012年8月26日
    [4]董其伍,刘敏珊.换热设备CAD系统开发技术[M].北京:化学工业出版社,2004
    [5]钱颂文.换热器设计手册[M].北京:化学工业出版社,2002
    [6]过增元,黄素逸等.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004
    [7]董其伍,刘敏珊,苏立建.管壳式换热器研究进展[J].内蒙古石油化工,2006,1:1-4
    [8]D. A. Donohue. Heat transfer and pressure drop in shell-and-tube heat exchanger [J]. Petrol Refiner,1956,34 (2):10-11
    [9]孙启鹏.管壳式换热器壳侧流动分析[J].制造中国科技信息,2008,1:59-61
    [10]T. Tinker. Shell Side Characteristics of Shell-and-Tube Heat Exchangers, Parts Ⅰ,Ⅱ, Ⅲ. Proceedings of the General Discussion on Heat Transfer, Institution of Mechanical Engineers, London,1951,89-116.
    [11]J. W. Palen, J. Taborek. Solution of Shell Side Flow Pressure Drop and Heat Transfer by Stream Analysis Method. CEP Symposium Series 65, No.92, Heat Transfer— Philadelphia,1969,53-63.
    [12]K. J. Bell. Heat exchanger design for the process industries[J], Journal of Heat Transfer,2004,126:877-885.
    [13]高绪栋,程林,许明田,郭江峰.管壳式换热器壳侧流体的流动及其熵产分布[J].中国工程热物理学会传热传质学学术会议论文,2008,No.473
    [14]E. Ozden, I. Tari. Shell side CFD analysis of a small shell-and-tube heat exchanger[J]. Energy Conversion Management,2010,51:1004-1014
    [15]文宏刚,周帼彦,朱冬生,覃新川.折流板切口方向对管壳式换热器传热性能影 响[J].化学工程,2012,40(4):23-26
    [16]许淑惠,周明连.强化管壳式热交换器传热的实验研究[J].北京建筑工程学院学报,2001,17(3):16-19
    [17]程林.换热器内流体诱导振动[M].北京:科学出版社,2001
    [18]赖永星,刘敏珊.换热器管束动态特性分析及流体诱导振动研究[D].南京工业大学博士学位论文,2006
    [19]R. Mukherjee. Use double-segmental baffles in the shell-and-tube heat exchangers[J]. Chemical Engineering Progress,1992,88:47-52
    [20]R. Mukherjee. Effectively design shell-and-tube heat exchanger[J]. Chemical Engineering Progress,1998,94(2):21-37.
    [21]H. Li, V. Kottke. Analysis of local shell side heat and mass transfer in the shell-and-tube heat exchanger with disc-and-doughnut baffles[J]. International Journal of Heat and Mass Transfer,1999,42:3509-3521
    [22]H. Li, V. Kottke. Effect of baffle spacing on pressure drop and local heat transfer in shell-and-tube heat exchangers for staggered tube arrangement[J]. International Journal of Heat and Mass Transfer,1998,41:1303-1311
    [23]H. Li, V. Kottke. Effect of the leakage on pressure drop and local heat transfer in shell-and-tube heat exchangers for staggered tube arrangement[J]. International Journal of Heat and Mass Transfer,1998,41:42-33
    [24]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998
    [25]J. P. Holman. Heat Transfer[M]. McGraw-Hill, New York,1997
    [26]Z.Y. Guo, D.Y. Li, B. X. Wang. A novel concept for connective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer,1998, (41): 2221-2225
    [27]Z.Y. Guo, S. Wang. Novel concept and approaches of heat transfer enhancement[M]. Int. Ping. Ch, ed. Proc. of Symposium on Energy and Engineering, Hemisphere, New York,1995
    [28]杨茉,赵明,殷俊等.场协同与对流换热的稳定性[J].中国工程热物理学会传热传质学学术会议论文,2001,136-140
    [29]吴明,何亚玲,陶文辁等.场协同理论对脉管制冷机研究的指导.中国工程热物理学会传热传质学学术会议论文集[J],2001,161-165
    [30]屈治国,何雅玲,陶文铨.平直开缝翅片传热特性的三维数值模拟及场协同原 理分析[J].工程热物理学报,2003,24(5):825-827
    [31]W.Q. Tao, Z.Y. Guo, B.X. Wang. Field synergy principle for enhancing convective heat transfer-its extension and numerical verification[J]. International Journal of Heat and Mass Transfer,2002,45:3849-3856
    [32]W. Q. Tao, Y.L. He, Q.W. Wang, et al.. A unified analysis on enhancing single phase convective heat transfer with field synergy principle[J]. International Journal of Heat and Mass Transfer,2002,45:4871-4879
    [33]W. Liu, Z. C. Liu, T. Z. Ming, et al.. Physical quantity synergy in laminar flow field and its application in heat transfer enhancement[J]. International Journal of Heat and Mass Transfer,2009,52(20):4669-4672
    [34]刘伟,刘志春,过增元.对流换热层流流场的物理量协同与传热强化分析[J].科学通报,2008,53(1):1-9
    [35]刘伟,刘志春,马雷,多场协同原理在管内对流强化传热性能评价中的应用[J],科学通报,2012,57(10):867-874
    [36]刘伟,刘志春,黄素逸.湍流换热的场物理量协同与传热强化分析[J].科学通报,2010,55(3):281-288
    [37]A. Bejan. A study of entropy generation in fundamental convective heat transfer[J]. Journal of Heat Transfer,1979,101:718-725
    [38]A. Bejan. Entropy generation through heat and fluid flow[M]. John Wiley & Sons, New Jersey,1994
    [39]A. Bejan. Entropy generation minimization[M]. CRC Press, Boca Raton, Florida, 1996
    [40]T.H. Ko, K. Ting. Entropy generation and thermodynamic optimization of fully developed laminar convection in a helical coil[J]. International Communications in Heat and Mass Transfer,2005,32:214-223
    [41]O. N Sara, S. Yapici, M. Yilmaz, T. Pekdemir. Secondary law analysis of rectangular channels with square pin-fins [J]. International Communication of Heat and Mass Transfer,2001,28(5):617-630
    [42]A.Z. Sahin. Entropy generation and pumping power in a turbulent fluid flow through a smooth pipe subjected to a constant heat flux[J]. Exergy,2002,2:314-321
    [43]J. Cervantes, F. Solorio. Entropy generation in a plane turbulent oscillating jet[J]. International Journal of Heat and Mass Transfer,2002,45:3125-3129
    [44]过增元,梁新刚,朱宏晔.火积—描述物体传递热量能力的物理量[J].自然科学进展,2006,16(10):1288-1296
    [45]程新广,过增元.火积及其在传热优化中的应用[D].清华大学,博士学位论文,2004
    [46]过增元,程新广,夏再忠.最小热量传递势容耗散原理及其在导热优化中的应用[J].科学通报,2003,48(1)21-25
    [47]朱宏晔,陈泽敬,过增元.耗散极值原理的电热模拟实验研究[J].自然科学进展,2007,17(12):1692-169
    [48]陈群,过增元.对流传递过程的不可逆性及其优化[D].清华大学,博士学位论文,2008
    [49]苏欣,孟继安,程新广,过增元.圆筒内层流对流换热的最佳速度场及工程应用[J].清华大学学报(自然科学版),2005,45(5):677-680
    [50]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].清华大学,博士学位论文,2003
    [51]陈群,任建勋,过增元.流体流动场协同原理及其在减阻中的应用[J].科学通报,2008,53(4):489-492
    [52]J. A. Meng, J. X. Ren, Z. Y. Guo. The mass entransy dissipation extremum principle and its application to decontamination ventilation designs of space station cabins[J], Chinese Science Bulletin,2009,54(16):2862-2870.
    [53]W. Liu, Z. C. Liu, H. Jia, A. W. Fan, A. Nakayama. Entransy expression of the second law of thermodynamics and its application to optimization in heat transfer process[J]. International Journal of Heat and Mass Transfer,2001, 54(13-14):3049-3059
    [54]H. Jia, W. Liu, Z. C. Liu. Enhancing convective heat transfer based on minimum power consumption principle[J]. Chemical Engineering Science,2002,69(1): 225-230
    [55]A. E. Bergles. Some perspectives on enhanced heat transfer second Generation heat transfer technology [J]. ASME Journal of Heat Transfer,1988,110:1082-1096
    [56]R. L. Webb, A. E. Bergles. Heat transfer enhancement:second generation technology [J]. Mechanical Engineering,1983,115(6):60-67
    [57]T. Inagaki, K. Komori. Experimental study of heat transfer enhancement in turbulent natural convection along a vertical flow plate:Part I the effect of injection or suction[J]. Heat Transfer Japanese Research,1993,22:387-397
    [58]C. R Ma, Q. Zhaeng, S. C. Lee, et al. Impingement heat transfer and recovery effect with submerged jets of large Prandtl number liquid[J]. International Journal of Heat and Mass Transfer,1997,40(6):1481-1500
    [59]J. S. Hong. The study of ultrasonic enhancement in phase-changer process[M], ASME paper N0.93-HT-2 1993
    [60]J. H. Lee, R. K. Singh. Mathematical models of scraped surface heat exchangers in relation to food sterilization[J]. Chemical Engineering Communications,1990, 87:21-52
    [61]J. Soria, M. P. Norton. The effect of transverse plate vibration on the mean laminar convective boundary layer heat transfer rate[J]. Experimental Thermal and Fluid Science,1991,4:226-238
    [62]程林.弹性管束换热器原理与应用[M].北京:科学出版社,2001
    [63]M. M. Ohadi, D. A. Nelson, S. Zia. Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge[J]. International Journal of Heat and Mass Transfer,1991,34:1175-1187
    [64]S. J. Eckels, T. M. Doerr, M. B. Pate. Heat transfer and pressure drop of r-134a and ester lubricant mixtures in a smooth and a micro-fin tube:Part I-evaporation[J]. ASHRAE Transactions,1994,100(2):265-281
    [65]S. J. Eckels, T. M. Doerr, M. G. Pate. In-tube heat transfer and pressure drop of r-134a and ester lubrication mixtures in a smooth tube and a micro-fin tube part II-condensation[J]. ASHRAE Transactions,1994,100(2):283-294
    [66]J. P. O'Connor, S. M. You. A painting technique to enhance pool boiling heat transfer in saturated FC-72[J]. ASME Journal of Heat Transfer,1995,117:387-393
    [67]M. E. Taslim, T. Li, S. D. Spring. Measurements of heat transfer coefficients and friction factors in passages rib-roughened on all walls. Journal of Turbo machinery[J]. Transactions of the ASME,1998,120(3):564-570
    [68]R. M. Eason, Y. Bayazitoglu, A. Miade. Enhancement of heat transfer in square helical ducts [J]. International Journal of Heat and Mass Transfer,1994, 37:2077-2087
    [69]A.E. Bergles. Advanced enhancement-Third generation heat transfer techno-logy, or the "Final Frontier"[J]. Transaction of the Institute of Chemistry Engineering (Part A),2001,79:437-444
    [70]A. E. Bergles. ExHFT for fourth generation heat transfer technology[J]. Experimental Thermal and Fluid Science,2002,26:335-344
    [71]张寅平,胡先旭等.等热流圆管内潜热型功能热流体层流换热的内热源模型及应用[J].中国科学E辑,2003,33(3):237-244
    [72]罗运禄,张秀云,崔乃瑛等.用于原油加热的横纹槽管换热器[J].石油化工设备,1993,22(4):27-28
    [73]刘艳革,许中义,孙翰书.新型螺旋槽管的轧制及其轧具的设计和制造[J].石油化工设备,1995,24(6):46-48
    [74]张昌德.列管换热器螺旋槽管的轧制[J].石油化工设备,1997,26(4):38-40
    [75]吴云辉,周强泰.50286型锅炉空气预热器的改造[J].锅炉技术,2002,33(4):22-24
    [76]修兴京,螺旋槽管应用于空气预热器的改造分析[J],西北电力技术,2002,30(4):56-58
    [77]李治滨.螺旋槽管强化传热原理及在石化装置上的应用前景[J].石油化工设备技术,2002,23(2):8-10
    [78]楼波,梁平,龙新峰等.螺旋槽管用于凝汽器强化传热的改造分析[J].中国电力,2001,34(10):80-82
    [79]T. S. Ravigururajan, A. E. Bergles. Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes[J]. Experimental Thermal and Fluid Science,1996,13:55-70
    [80]T. S. Ravigururajan, A. E. Bergles. Optimization of in-tube enhancement for large evaporators and condensers[J]. Energy,1996,21(5):421-432
    [81]D.L. Gee, R.L. Webb. Forced convection heat transfer in helically rib-roughened tubes[J]. International Journal of Heat and Mass Transfer,1980,23:1127-1136
    [82]S. Ganeshan, M. R. Rao. Studies on thermo-hydraulics of single-and multi-start spirally corrugated tubes for water and time-independent power law fluids [J]. International Journal of Heat and Mass Transfer,1982,25:1013-1022
    [83]崔海亭,袁修干,姚仲鹏.旋流管强化传热与流体动力学试验研究[J].北京航空航天大学学报,2002,28(4):459-461
    [84]刘佳驹,张晓屿,周路遥,刘伟.螺旋波纹管对流换热强化的数值计算分析[J].中国工程热物理学会学术会议论文集,2011,西安
    [85]C. Shivkumar, M.R. Rao. Studies on compound augmentation of laminar flow heat transfer to generalized power law fluids in spirally corrugated tubes by twisted tape inserts[M]. ASME Proceedings of the 1998 National Heat Transfer Conference,1988, 685-692
    [86]黄维军,邓先和,周水洪.缩放管强化传热机理分析[J].流体机械,2006,34(2):76-79
    [87]罗小平,邓先和,邓颂九.缩放管阻力系数的预测[J].华南理工大学学报,1997,25(10):67-72
    [88]付卉,罗小平,邓先和.缩放管传热系数的预测[J].石油化工设备,2004,33(1):24-26
    [89]张凯,李白增.新型高效波节管换热器[J].压力容器,1994,11(4):77-78
    [90]高阳.波节管换热器的强化换热分析[J].北京节能,2002,3:18-19
    [91]张登庆,李忠堂.波节管管内换热与阻力特性的实验研究[J].石油机械,2002,30(4):4-6
    [92]田刚,刘海军.波纹管内强制对流换热的试验研究[J].低温建筑技术,2004,4:86-87
    [93]金志浩,金文等.波纹换热管管内强化传热实验研究[J].节能,2005,1:6-8
    [94]L. Wang, B. Sunden. Performance comparison of some tube inserts[J]. International Communication of Heat and Mass Transfer,2002,29(1):45-56
    [95]R.M. Manglik, A.E. Bergles. Heat transfer and pressure drop correlations for twisted tape inserts in isothermal tubes:part I-laminar flows[J]. ASME Journal of Heat Transfer,1993,115:881-889
    [96]R.M. Manglik, A.E. Bergles. Heat transfer and pressure drop correlations for twisted tape inserts in isothermal tubes:part Ⅱ— transition and turbulent flows[J]. ASME Journal of Heat Transfer,1993,115:890-896
    [97]S. Martemianov, V.L. Okulov. On heat transfer enhancement in swirl pipe flows[J]. International Journal of Heat and Mass Transfer,2004,47:2379-2393
    [98]S.K. Saha, U.N. Gaitonde, A.W. Date. Heat transfer and pressure drop characteristics of laminar flow in a circular tube fitted with regularly spaced twisted tape elements[J]. Experimental Thermal Fluid Science,1989,2:310-322
    [99]S. Eiamsa-ard, C. Thianpong, P. Promvonge. Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements[J]. International Communications in Heat and Mass Transfer,2006,33: 1225-1233
    [100]S. K. Saha, A. Dutta, S. K. Dhal. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted tape elements[J]. International Journal of Heat and Mass Transfer,2001,44:4211-4223
    [101]Z. H. Ayub, S. F. Al-Fahed. The effect of gap width between horizontal tube and twisted tape on the pressure drop in turbulent water flow[J]. International Journal of Heat and Fluid Flow,1993,14:64-67
    [102]S. Eiamsa-ard, K. Wongcharee, S. Sripattanapipat.3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes[J]. International Communications in Heat and Mass Transfer, 2009,36:947-955
    [103]S. W. Chang, Y. J. Jan, J. S. Liou. Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape[J]. International Journal of Thermal Science,2007, 46:506-518
    [104]S. Eiamsa-ard, P. Promvonge. Thermal characteristics in round tube fitted with serrated twisted tape[J]. Applied Thermal Engineering,2010,30(13):1673-1682
    [105]M. Rahimia, S.R. Shabaniana, A.A. Alsairafib. Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts[J]. Chemical Engineering Processing,2009,48:762-770
    [106]J. Guo, A.W. Fan, X.Y. Zhang, W. Liu. A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape[J]. International Journal of Thermal Sciences,50 (2011) 1263-1270
    [107]S.W. Chang, T.L. Yang, J. S. Liou, Heat transfer and pressure drop in tube with broken twisted tape insert[J]. Experimental Thermal Fluid Science,2007,32: 489-501
    [108]S.W. Chang, K.W. Yu, M. H. Lu, Heat transfer in tubes fitted with single, twin and triple twisted tapes[J]. Journal of Experimental. Heat Transfer,2005,18:279-294
    [109]刘晓华,李淞平,沈自求等.螺旋线圈强化管内单相流体传热的研究[J],石油化工高等学校学报,2001,14(3):57-59
    [110]M.R. Rethu, M.R. Rao. Turbulent flow heat transfer and fluid friction in helical wire coil inserted tubes[J]. International Journal of Heat and Mass Transfer,1983, 26(1):133-1845
    [111]R.L. Webb. Principle of enhanced heat transfer[M]. John wiley&Sons, New York, 1994
    [112]R.C. Prasdad, J. H. Shen. Performance evaluation using energy analysis-application to wire-coil insert in forced convection heat transfer [J]. International Journal of Heat and Mass Transfer,1994,37(15):2297-2303
    [113]A. Garcia, P.G Vicente. Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different numbers[J]. International Journal of Heat and Mass Transfer,2005,48:4640-4651
    [114]孙中宁,黄渭堂,阎昌琪等.管内插入螺旋丝紊流对流换热性能研究[J].核动力工程,1996,17(4):337-347
    [115]张至英,戴干策.管内插入螺旋线圈强化传热的研究[J].化工装备技术,1991,12(4):10-15
    [116]Y. M. Xuan. Q. Li. Heat transfer enhancement of nanofluids[J]. International Journal of Heat and Fluid Flow,2000,21(1):58-64
    [117]肖宏亮.管内移动弹簧插入物在线清洗及其传热与流阻特性的分析[D].广州:华南理工大学,1989
    [118]徐建民,黄伟,熊雯.内插螺旋弹簧换热管传热特性试验研究[J].化工装备技术,2010,31(2):15-16,20
    [119]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006
    [120]F. E. Megerlin. Augmentation of heat transfer in tube by use of mesh and brush inserts[J]. Journal of Heat Transfer,1974,96:145-151
    [121]B.I. Pavel, A.A. Mohamad. An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media[J]. International Journal of Heat and Mass Transfer,2004,47:4939-4952
    [122]W. Liu, K. Yang, A. Nakayama. Enhancing heat transfer in the core flow by forming an equivalent thermal boundary layer in the fully developed tube flow[M]. 6th International Conferrence on Enhanced, Compact and Ultra-Compact Heat Exchangers, Potsdam, Germany,2007
    [123]陈庚,罗棣庵.用大空隙率多孔体强化管内换热的研究[J].工程热物理学报, 1995,16(3):344-348
    [124]刑守祥,罗棣庵.多孔体通道内流动特性实验研究[J].佳木斯工学院学报,1998,16(2):260-263
    [125]江楠,易宏,甄亮,岑汉钊.管壳式换热器壳程强化传热研究进展[J].化肥工业,1998,25(6):27-32
    [126]彭威,关昌峰,阎华,杨斯博,杨卫民.管壳式换热器强化传热研究进展[J].中国化工装备技术应用与发展,2011,13(6),13-16
    [127]赵国辉,隋军.管壳式换热器技术进展[J].化学工业与工程技术,2000,21(4):12-14
    [128]盛艳军,陈亚平,操瑞兵,董聪,吴嘉峰.异形孔隔板换热器壳侧传热与阻力性能的试验研究[J].东南大学学报(自然科学版),2012,42(2)318-322
    [129]曾舟华,钱颂文.低传热“死区”异型孔板纵向流管壳式换热器传热研究.化工设备设计[J].1997,34(2):15-17
    [130]董其伍,吴金星,刘敏珊等.孔板支撑换热器壳程流场的数值预测[J].压力容器,2003,20(8):4-7
    [131]王翠华,戴玉龙,李志安,战洪仁,李雅侠.矩形孔板支撑换热器壳程流体单元流道的数值分析[M].创新沈阳文集,2009,78-82
    [132]王翠华,张平,吴剑华,张先珍.网状孔板纵向流换热器壳程流体流动及换热特性的数值模拟[J].化工进展,2011,9:736-741
    [133]戴玉龙,李志安,王翠华,李玉博.梅花形孔板支撑换热器壳程流场的数值分析[J].沈阳化工学院学报,2007,21:25-28
    [134]C.C. Gentry, M.C. Gentry, G. E. Scanlon. Shell and tube heat exchanger applications[J]. Heating the Process and Fluid Flow,1999,95-101.
    [135]C.C Gentry. Rod baffle heat exchanger technology [J]. Chemical Engineering Process,1990,86(7):48-57.
    [136]C.C. Gentry. Rod baffle heat exchangers utilizing dual support strip. United State Patent 5,553,665,1996
    [137]王定标,胡祥报,郭茶秀,董其伍,刘敏珊.大型纵流壳程换热器三维流动与传热数值模拟[J].郑州大学学报(工学版),2002,23(3):13-18
    [138]L. Ma, Y. Wang, J. Yang, Z. Liu, W. Liu. Numerical simulation of rod baffle heat exchanger and its optimum design[J]. Journal of Engineering Thermophysics (in Chinese),2011,32:462-464.
    [139]古新,董其伍,刘敏珊,周雅宁.导向型折流栅强化换热器壳程传热的数值模拟[J].核动力工程,2010,31(2):113-117
    [140]古新,董其伍,刘敏珊.管壳式换热器数值模拟与斜向流换热器研究[D].郑州大学,博士学位论文,2006
    [141]刘乾,刘敏珊.壳程纵流异径管束换热器强化传热研究[D].郑州大学,硕士学位论文,2006
    [142]严良文,吴金星,王志文.波形折流杆与弓形折流板换热器的综合性能比较[J].压力容器,2004,21(4):10-12
    [143]贾晖,刘伟,刘志春,范爱武.管壳式换热器管束间添加扰流叶片的数值分析与结构优化[M].中国工程热物理学会传热传质学学术会议论文,No.093280
    [144]王秋旺.螺旋折流板管壳式换热器壳程传热强化研究进展[J].西安交通大学学报,2004,39(19):881-886.
    [145]徐彬,张麦贵.螺旋折流板换热器在常减压装置中的应用[J].石油化工设备,2003,32(5):53-54
    [146]M. Reppich, S. Zagermann. A new design method for segmentally baffled heat exchangers[J]. Computers and Chemical Engineering,1995(19):137-142.
    [147]P. Stehlik, J. Nemcansky, D. Kral. Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles[J]. Heat Transfer Engineering,1994,15(1):55-65.
    [148]王良.螺旋折流板换热器传热与阻力性能实验研究[D].西安:西安交通大学,2001
    [149]许淑惠,周明连.强化管壳式热交换器传热的实验研究[J].北京建筑工程学院学报,2001,17(3):15-19
    [150]赵晓曦,邓先和.多种新型管壳式换热器的壳程传热强化问题研究[D].华南理工大学,博士学位论文,2003
    [151]郑期方.空心环缩放管管壳式换热器生产应用[J].中国化工装备,2007,3:19-26
    [152]邓先和,陈详明,张志孝.空心环管壳式换热器工业化应用回顾[J].有色冶炼,2001,3:4-5
    [153]王杨君,邓先和,李志武,洪蒙纳.旋流片支撑管束的传热与流阻性能[J].化工学报,2007,58(1):21-26
    [154]周水洪,邓先和,徐伟.管壳式换热器中旋流片强化管外传热的数值模拟[J]. 陕西科技大学学报(自然科学版),2007,2:42-46
    [155]安福,周理.刺孔膜片式管壳换热器壳方特性研究[D].天津大学硕士学位论文,1991
    [156]刘庆亮,朱冬生,杨蕾.螺旋扭曲扁管换热器的研究进展与工业应用[J].流体机械,2010,38(3):37-42
    [157]李春兰.新型高效螺旋扁管换热器的设计与应用[J].化工机械,2005,162-165
    [158]钱颂文,方江敏,江楠.扭曲管与混合管束换热器[J].化工设备与管道,2000,37:20-21
    [159]易宏,江楠,邓波.变截面管换热器不同管间支撑物下的实验研究[J].石油化工设备技术,2006,27(1)9-10,14
    [160]江楠,李伟军,任佩琳.变截面管换热器传热与阻力性能[J].石油炼制与化工,2001,32(6):33-36
    [161]梅娜,陈亚平.螺旋折流片强化壳侧传热研究[J].石油化工设备,2004,33(5)1-4
    [162]陈亚平,梅娜,施明恒.螺旋折流片强化壳侧传热的四管模型数值模拟[J].工程热物理学报,2007,28(1)119-121
    [163]O.P. Bergelin, G.A. Brow, H.L. Hull, F.W. Sullivan. Heat transfer and fluid friction during viscous flow across banks of tube-Ⅲ (A study of tube spacing and tube size) [J]. Transaction of ASME,1950,881-888
    [164]O.P. Bergelin, G.A. Brow, S.C. Doberstein, D. Newark. Heat transfer and fluid friction during viscous flow across banks of tube-IV(A study of the transition zone between viscous and turbulent Flow)[J]. Transaction of ASME,1952,953-960.
    [165]O.P. Bergelin, G.A. Brow, M.D. Leighton. Heat transfer and fluid friction during viscous flow across banlks of tube—Ⅴ(A study of a cylindrical baffled exchchger without internal leakage) [J]. Transaction of ASME,1954,841-880
    [166]O.P. Bergelin, K.J. Bell, M.D. Leighton. Heat transfer and fluid friction during viscous flow across banks of tube-VI(The effect of internal leakage within segmental baffled exchangers) [J]. Transaction of ASME,1958,33-60
    [167]R.K. Gupta, D.L. Katz. Flow pattern for predicting shell-side heat transfer coefficients for baffled shell and tube heat exchangers [J]. Industrial and Engineering Chemistry,1957,49 (6):998-999
    [168]H.D. Li, V. Kottke. Local heat transfer in the first baffle compartment of the shell-and-tube heat exchangers for staggered tube arrangement [J]. Experi-mental Thermal and Fluid Science,1998,16:342-348.
    [169]X. Deng, S. Deng. Investigation of heat transfer enhancement of roughened tube bundles supported by ring or rod supports[J]. Heat Transfer Engineering,1998,19 (2):21-27.
    [170]S.V. Patankar, D.B. Spalding. A calculation for the transient and steady-state behavior of shell-and-tube heat exchangers[M]. in:A.A. Afgan, E.U. Schluner (Eds.), Heat Transfer Design and Theory Sourcebook, Hemisphere Publishing Corporation, Washington,1974,155-176.
    [171]W.T. Sha, C.I. Yang, Multidimensional numerical modeling of heat exchanger[J]. Journal of Heat Transfer:Trans the ASME,1982,104:417-425
    [172]D.B. Rhodes, L.N. Carlucci. Predicted and measured velocity distributions in a model heat exchanger[M]. in:International Conferrence on Numerical Methods in Engineering, Canadian Nuclear Society/American Nuclear Society,1983, 935-948.
    [173]M. Prithiviraj, M.J. Andrews. Three dimensional numerical simulation of shell-and-tube heat exchanger. Part Ⅰ:foundation and fluid mechanics [J], Numer. Heat Transfer, Part A,1998,33:799-816
    [174]M. Prithiviraj, M.J. Andrews. Three-dimensional numerical simulation of shell-and-tube heat exchangers, Part Ⅱ:heat transfer [J]. Numerical Heat Transfer, Part A,1998,33:817-828
    [175]Z. Stevanovic, G. Ilic, N. Radojkovic,M. Vukic, V. Stefanovic, G. Vuckovic. Design of shell-and-tube heat exchanger by using CFD technique-Part one: thermo-hydraulic calculation [J], Mechanical Engineering,2001,1(8):1091-1105
    [176]邓斌,陶文铨.管壳式换热器壳侧湍流流动的数值模拟及实验研究明[J].西安交通大学学报,2003,37(9):889-893
    [177]解衡,高祖瑛.管壳式换热器流程三维数值模拟[J].核科学与工程,2002,22(3):240-243
    [178]Q.W. Dong, M.S. Liu, X.D. Zhao. Research on the characteristic of shellside support structures of heat exchanger for longitudinal flow of shellside fluid[J]. ASME Transaction,2005,8(2):1491-1498.
    [179]郭崇志,梁泉水.折流杆换热器数值模拟新方法[J].化工进展,2007,26(8):1198-1200,1206
    [180]王为良,李国成.管壳式换热器壳侧流场数值模拟[D],中国石油大学(华东),硕士学位论文,2010
    [181]陶文铨.数值传热学第二版[M].西安:西安交通大学出版社,2011
    [182]Partankar S. V.著.张政译.蒋章焰校.传热与流体流动的数值计算[M].北京:科学出版社,1989
    [183]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1999
    [184]B.P. Leonard. A stable and accurate convective modeling procedure based on quadratic upstream interpolation[J]. Computer Methods in Applied Mechanics and Engineering,1979,29:59-98.
    [185]C.M. Rhie, W.L. Chow. A numerical study of turbulent flow past an isolated airfoil with trailing edge separation[J]. AIAA J,1983,21:1525-1552.
    [186]朱振荣,李国斌.基于同位网格的SIMPLE算法及应用研究[D].南京水利科学研究院,硕士学位论文,2010
    [187]李庆杨,王能超,易大义.数值分析[M].武汉:华中理工大学出版社,1986
    [188]A.N. Kolmogrov. Turbulent flow equations of incompressible fluid, Bulletin of Academic of Science of Soviet Union[J]. Physics Series,1942,6:(1-2):56-58(in Russian)
    [189]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2005
    [190]Fluent v.6.3 User Guide. Fluent Corporation, Lebanon, New Hampshire,2006.
    [191]P. Promvonge. Heat transfer behaviors in round tube with conical ring inserts[J]. Energy Conversion and Management,2008,49:8-15
    [192]K. Yakut, B. Sahin. Flow-induced vibration analysis of conical rings used for heat transfer enhancement in heat exchangers [J]. Applied Energy,2004,78:273-288
    [193]K. Yakut, B. Sahin, C. Celik, S. Canbazoglu. Performance and flow-induced vibration characteristics for conical-ring turbulators[J]. Applied Energy,2004,79: 65-76
    [194]P. Promvonge, S. Eiamsa-ard. Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert[J]. International Communications in Heat and Mass Transfer,2007,34:849-859
    [195]A.W. Fan, J.J. Deng, J. Guo, W. Liu. A numerical study on thermo-hydraulic characteristics of turbulent flow in a circular tube fitted with conical strip inserts[J]. Applied Thermal Engineering,2011,31:2819-2828
    [196]A. Bejan. Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics [J]. Revue Generale de Thermique,1996,35:637-646.
    [197]赖学江,李炜炜,黄素逸,郭兆均.花板换热器及折流板换热器总熵增率性能评价[J],石油化工设备,2009,38(3):1-4
    [198]王飞,杜文静,张士虎,程林.基于熵产的新型板式换热器优化设计[M],中国工程热物理学会传热传质学学术会议论文,2010
    [199]高绪栋,程林,许明田,郭江峰.管壳式换热器壳侧流体的流动及其熵产分布[M],中国工程热物理学会传质传热学学术会议论文,2008
    [200]倪振伟,焦芝林,换热器的熵增计算法与总熵增率,工程热物理学报,9:4-6,1988
    [201]S. J. Green, G. Hetsroni. PWR Steam Generators [J], International Journal of Multiphase Flow,1995,21:1-97
    [202]董其伍,杜庆飞,刘敏珊,王丹.三叶孔整圆形支撑板换热器壳程局部流场和温度场分析[M],中国工程热物理学会传热传质学学术会议论文编号:113105,2011
    [203]焦兰,黄素逸,赖学江.三叶孔整圆形支撑板换热器的实验及数值模拟研究[D].武汉:华中科技大学硕士学位论文,2011
    [204]A.J. Wheeler, A.R. Ganji, Introduction to Engineering[M], Prentice-Hall, Englewood Cliffs,2004
    [205]李炜炜,赖学江,黄素逸.一种新型壳侧支撑结构的管壳式换热器—花隔板换热器的实验研究[J],中国科技论文在线,2007,2(3):186-191
    [206]李炜炜,黄素逸.管壳式换热器壳程强化传热研究[D],武汉:华中科技大学硕士学位论文,2007
    [207]戴勇,黄素逸,赖学江.花隔板换热器壳程强化传热研究[D],武汉:华中科技大学硕士学位论文,2008
    [208]A. Zukauskas. Heat transfer from tubes in cross flow[M], in:J. P. Hartnett, T. F. Irvine Jr. (eds.), Advances in Heat Transfer, Academic Press, New York,1972(8), 93-158.
    [209]H. Halle, J.M. Chenoweth, M.W. Wambsganss. Shell side water flow pressure drop distribution measurements in an industrial sized test heat exchanger[M]. in:A Reappraisal of Shell Side Flow in Heat Exchangers,22nd Heat Transfer Conference and Exhibition, ASME, Niagara Falls,1984,37-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700