用户名: 密码: 验证码:
京尼平对壳聚糖/藻酸盐组织工程支架制备的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:美国的学者在20世纪80年代提出了“组织工程”的概念,组织工程是一门交叉学科,包括了生命科学、材料学等学科知识。组织工程研究主要包括:种子细胞、支架材料、细胞外基质。其中,支架材料是该领域近年来研究的热点。
     本实验通过冷冻干燥法制备壳聚糖/藻酸盐复合支架材料,并采用新型天然交联剂京尼平对材料进行交联,探究京尼平、紫外线两种交联方法对支架材料制备的影响。
     目的:1.比较京尼平和紫外线交联后的壳聚糖/藻酸盐复合支架材料的降解率、孔隙率、含水量、细胞毒性以及生物力学等特性;2.探究交联温度对京尼平交联壳聚糖/藻酸盐组织工程支架的影响。
     方法:取1只成年健康Wistar大鼠骨髓,分离、培养BMSCs.采用冷冻干燥法制备壳聚糖/藻酸盐复合支架。1.①按照交联方法不同分为:京尼平组、紫外线组。②扫描电镜下观察材料的表面结构以及检测材料的降解率、孔隙率、含水量、细胞毒性以及生物力学。2.运用冷冻干燥法制备壳聚糖/藻酸盐支架材料,分别在4℃、25℃、37℃条件,于0.5%京尼平溶液中交联24h,作为实验组。以未用京尼平交联的支架材料作为对照组,评价支架材料降解率、细胞毒性、孔隙率、含水量以及生物力学性能的特点。
     结果:1.①紫外线组与京尼平组均表现为多孔隙结构,无明显差异。②紫外线组降解率高于京尼平组。③京尼平组与紫外线组的孔隙率差异无统计学意义,含水量差异比较有统计学意义。④两组均表现为较低的细胞毒性,良好的生物相容性。⑤京尼平交联组的生物力学特性较紫外线组显著提高。2.①伴随交联温度升高,支架材料的颜色从浅紫色变为紫黑色,未交联的支架材料为白色;②降解率4周后在4℃组为21.54%±3.07%、25℃组为9.9%±1.2%、37℃组为8.98%±0.79%。其中,37℃和25℃组抗降解能力优于4℃组(P<0.05)。各实验组均优于对照组(P<0.01)。③弹性模量在4℃组为0.84±0.55,25℃组为1.44±0.06,37℃组为1.53±0.02,对照组为0.79±0.16。对照组与25℃组与37℃组之间差异计较有统计学意义(P<0.05)。④孔隙率、含水量、细胞毒性各实验组间未见明显差异。
     结论:1.京尼平交联的壳聚糖/藻酸盐复合支架材料,具有良好的生物学特性,为组织工程脊髓领域提供了非常具有潜力的材料。2.随着交联温度的提高,支架材料的抗降解能力、抗拉伸性能增加,且对支架材料的结构、细胞毒性、孔隙率以及含水量无明显影响。
Background American scholars proposed "tissue engineering" concept in the1980s, tissue engineering is an interdisciplinary subject, including life science, materials science and other disciplines of knowledge. Tissue engineering research includes: seed cells, scaffolds, extracellular matrix. Among them, the scaffold material is a hot research topic in recent years in this field.
     Chitosan/alginate composite scaffolds was produced by freeze drying.In this study,we adopt a new natural crosslinking agent genipin crosslinking of the materials, to explore the effect of preparation of scaffold by genipin, UV two crosslinking methods.
     Objective1. To investigate genipin(GP) and ultraviolet rays(UV) crosslinked effects of chitosan/alginate scaffolds for tissue engineering by detecting the change of the chitosan/alginate scaffolds material degradation rate, porosity, water content, cytotoxicity and biomechanics properties.2. we try to explore cross-linking temperature of genipin crosslinked effects of chitosan/alginate scaffolds for tissue engineering.
     Methods BMSCs were separated and cultured from one Wistar rat.Chitosan/alginate scaffolds was produced via freeze drying.1.①ccording to different cross-linking methods, biomaterials were divided into (GP)group,(UV)group.②he surface structure of two groups was detected by scanning electron microscope(SEM). The material degradation rate, porosity, water content, cytotoxicity, and biomechanics properties were detected.2.We make the chitosan/alginate scaffolds of tissue engineering by freeze-drying, respectively, in4℃,25℃,37℃conditions, at0.5%solution of genipin crosslinked24h, as the experimental group. The scaffolds of not cross-linked with genipin as a control group to evaluate the degradation rate of scaffolds, cytotoxicity, porosity, water content and biomechanics properties.
     Rssults1.①UV group and GP group showed more pore structure, and there was no difference.②Degradation rate of UV group was higher than that in GP group.③The porosity for GP group and UV group was no difference. The difference of water content is meaningful in
     Statistics.④GP group and UV group showed low cytotoxicity, good biocompatibility.⑤CP group of biomechanics properties were significantly inproved compared with UV group.2.①The color of scaffolds material from light purple to purplish black, according with the rise of the cross-linking temperature, however, not cross-linked scaffold material is white;⑤The degradation rate after4weeks at4℃group was21.54%±3.07%,25℃group was9.9%±1.2%,37℃group was8.98%±0.79%. Among them, the37℃group of degradation resistant capacity is better than the4℃group (P<0.05). The experimental groups were better than the control group (P<0.01).③Elastic modulus at4℃group was0.84±0.55,25"C group was1.44±0.06,37℃group was1.53±0.02.37℃group and25℃group of tensile properties better than control group (P<0.05).④Forosity,water content,cytotoxicity between the experimental groups had no significant difference.
     Conclusion1. Genipin crosslinked chitosan/alginate composite scaffold material has good biological characteristics. It is a very potential material in tissue engineering spinal cord field.2. With the cross-linking temperature increasing, scaffold degradation resistant capacity and tensile properties to strengthen, but on the scaffold material structure, cytotoxicity, porosity and water content were not altered significantly.
引文
[1]谢德明.生命科学新领域—组织工程[J].生物学通报,2001,36(10):7.
    [2]Todd C Holems.Novel peptide-based biomaterial scaffolds for tissue engineering[J].Trend in biotechnology,2002,20 (1):16.
    [3]Sachlos E, Reis N, Ainsley C, et al.Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication[J].Biomaterials,2003,24 (8):1487.
    [4]Terada S, Sato M, Sevy A, et al.Tissue engineering in the twenty first century[J].Yonsei Med J,2000,14:685.
    [5]Burg k J L, Porter S, Kellan J F[J].Biomaterials,2000,21:2347.
    [6]Kim BS, Mooney DJ.Development of biocompatible synthetic extra cellular matrices for tissue engineering.[J].Trends Biotechnol, 1998;16(5):224-232.
    [7]Thomson RC, Wake MC, Yaszemski MJ, et al.Biodegradable polymer scaffolds to regenerate organs[J].Adv Polym Sci] 1995; 122:245-274.
    [8]Hong Kyoon No, Na Young Park, Shin He Lee. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights[J]. International Journal of Food Microbiology,2002,74(1-2):65-72.
    [9]Ormrod DJ, Holmes CC,Miller TE. Dietary chitosan inhibits hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis[J]. Atherosclerosis,1998,138(2):329-334.
    [10]Okamoto Y, Watanabe M, Miyatake K,et al. Effects of chitin / chitosan and their oligomers / monomers on migrations of fibroblasts and vascular endothelium[J]. Biomaterials,2002,23(9): 1975-1979.
    [11]叶芬,尹玉姬,孙光洁,等.壳聚糖支架在组织工程中的应用[J].功能材料,2002,33(5):459-461.
    [12]Knill CJ, Kennedy JF, Mistry J, et al. Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings[J].Carbohydrate Polymers,2004,55:65-76.
    [13]Ciofani G, Raffa V, Pizzorusso T, et al. Characterization of an alginate—based drug delivery system for neurological applications [J]. Medical Engineering and Physics.2008,30(7):848-55.
    [14]王海宝,马学强.雪旺细胞-海藻酸钠凝胶移植对大鼠脊髓损伤后神经丝蛋白表达的影响[J].中医正骨,2008,20(6):1-3.
    [15]张春江.食品着色剂手册[M].北京中国计量出版社,2006,102-108.
    [16]史卉研,何鑫,欧阳冬生.京尼平苷及其衍生物的药效学研究进展[J].中国药学杂志,2006,41(1):4-6.
    [17]王建光,刘天起,王雪梅,等.京尼平与戊二醛鞣制牛心包材料的对比研究[J].山东大学学报(医学版),2011,49(5):126-135.
    [18]金勋杰,杨显生,姬烨,等.蛋白胶联剂京尼平与戊二醛的生物学特性比较(1).中国临床康复,2006,10(25):60-62.
    [19]Sung HW, Huang RN, Huang LL, et al. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation [J]. J Biomater Sci Polym Ed,1999, 10(1):63-78.
    [20]Mi FL, Sung HW, Shyu SS. Drug release from chitosan-alginate complex beads reinforce by a naturally occurring cross-linking agent[J].Carbohydrate Polymers,2002,48:61-72.
    [21]Silva CM, Ribeiro AJ, Figueiredo M, et al. Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation[J]. The AAPS Journal,2006,7(4):903-13.
    [22]刘袖洞,于炜婷,王为,等.海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用[J].化学进展,2008,20(1):126-139.
    [23]Seo SJ, Akaike T, Shirakawa M,et al. Alginate microcapsules prepared with xyloglucan as a synthetic extracellular matrix for hepatocyte attachment[J].Biomaterials, 2005,26(17):3607-3615.
    [24]Jiang T, Abdel FW, Laurencin CT. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering[J].Biomaterials, 2006,27(28):4894-4903.
    [25]Chavez DME, Mora GJ, Gomez PU, et al. Facial nerve—regeneration through progesterone—loaded chitosan prosthesis. A preliminary report[J]. Journal of Biomedical Materials Research,2003,67(2):702-711.
    [26]Bozkir A, Saka OM. Chitosan-DNA nanoparticles:Effect on DNA integrity,bacterial transformation and transfection efficiency[J]. Journal of Drug Targeting, 2004, 12(5):281-288.
    [27]Kawase M, Michibayashi N, Nakashima Y, et al. Application of glutaradehyde Crosslinked Chitosan as a Scaffold for hepatocyte Attachment[J]. Biol Pharm Bull, 1997,20 (6):708-710.
    [28]李冰一,蔺嫦燕.组织工程支架材料的研究进展[J].生物医学工程与临床,2007,11(30):241-245.
    [29]陈强,吕伟娇,张文清.醛交联剂对壳聚糖复合膜性能的影响[J].华东理工大学学报:自然科学版,2005,31(3):398-402.
    [30]王培伟,陈宗刚.静电纺壳聚糖/胶原蛋白复合纳米纤维的细胞相容性[J].中国组织工程研究与临床康复,2008,12(1):5-9.
    [31]邓建华,黄建呜,余喜讯,等.京尼平生物型人工食管生物相容性的实验评价.肿瘤预防与治疗,2010,23(2):107-112.
    [32]付朝华,胡德贵,蒋小林.材料力学试验[M].北京:清华大学出版社,2010:4-14.
    [33]Zhang H, Du YG, Yu XJ. Masaru mitsutome and Sei—ichi Aiba,Preparation of chitooligosaccharides from chitosan by a complex enzyme[J]. Carbohydrate Research,1999, 320(3-4):257-260.
    [34]Kurita K,Kaji Y,Mori T,et al. Enzymatic degradation of β-chitin:susceptibility and the influence of deacetylation. Carbohydrate Polymer,2000,42(1): 19-21.
    [35]Shigemasa Y,Usui H,Morimota M et al.Chemical modification of chitin and chitosan 1: preparation of partially deacetylated chitin derivative via a ring—opering reaction with cyclic acid anhydrides in lithium chloride/N,N-dimethylacetamide[J]. Carbohydrate Polymer,1999,39(3): 237-243.
    [36]Muzzarelli R A,Muzzarelli C,Tarsi R,et al.Fungistatic activity of modified chitosans against Saprolegnia parasitica[J]. Biomacromolecules,2001,2(1):165-169.
    [37]Mi FL,Tan YC, Liang HF, et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant[J]. Biomaterials, 2002,23 (1):181-191.
    [38]Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering[J].Trends Biotechnology,1998,16(5):224-230.
    [39]Reed e, Vun Jak-Novakovic G. Biodegradable polymer scaffolds for tissue engineering[J]. Biotechnology, 1994, 12(7):689-693.
    [40]Nerem RM,Sambanis A.Tissue engineering:from biology to biological substitutes[J].Tissue Eng,1995,1 (1):3-13.
    [41]Uebersax L, Hagenmuller H, Hofmann S, et al. Effect of scaffold design on bone morphology in vitro[J]. Tissue Eng, 2006, 12(12):3417-3429.
    [42]曹谊林.组织工程学[M].北京:科学出版社,2007:625-636.
    [43]Kuo YC, Ku IN. Effects of gel concentration, human fibronectin, and cation supplement on the tissue—engineered cartilage [J]. Biotechnol Progress, 2007, 23:238-245.
    [44]厉孟,刘旭东,刘兴炎,等.京尼平与戊二醛交联明胶微球的性能比较[J].中国修复重建外科杂志,2009,23(1):87-91.
    [45]王家荣,金谊,刘望才,等.海藻酸钠一壳聚糖一海藻酸钠生物微胶囊的制备[J].宁波大学学报,2007,20(4):516-519.
    [46]陈平,李新华,刑万红.京尼平交联的脱细胞牛心包生物支架材料的实验研究[J].中国医药导报,2010,7(6):28-29.
    [47]刘更,段嫄螈,贾骏,等.京尼平交联改性可溶性蛋壳膜蛋白冻干支架的制备及检测[J].临床口腔医学杂志,2011,27(9):518-521.
    [1]汪大彬,文益民,蓝旭,等.壳聚糖-藻酸盐复合BMSCs修复急性脊髓损伤的实验研究[J].中国修复重建杂志外科杂志,2010,24(2):190-196.
    [2]Sung HW, Huang RN, Huang LL, et al. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation [J]. J Biomater Sci Polym Ed,1999, 10(1):63-78.
    [3]Kuo YC, Ku IN. Effects of gel concentration, human fibronectin, and cation supplement on the tissue-engineered cartilage[J]. Biotechnol Prog,2007,23:238-245.
    [4]付朝华,胡德贵,蒋小林.材料力学试验[M].北京:清华大学出版社,2010:4-6.
    [5]姚芳莲,李学强,于潇等.京尼平对壳聚糖及明胶的交联反应[J].天津大学学报,2007,40(12):1485-1488.
    [6]陈平,李新华,刑万红.京尼平交联的脱细胞牛心包生物支架材料的实验研究[J].中国医药导报,2010,7(6):28-29.
    [1]姜忠义,成国祥[M].纳米生物材料.北京:化学工业出版社,2003.
    [2]郭琰,顾其胜.几丁聚糖在组织工程中的应用[J].上海生物医学工程,2003,23(1):37-41.
    [3]陈强,吕伟娇,张文清.醛交联剂对壳聚糖复合膜性能的影响[J].华东理工大学学报:自然科学版,2005,31(3):398-402.
    [4]谢德明.生命科学新领域—组织工程[J].生物学通报,2001,36(10):7.
    [5]Todd C Holems.Novel peptide-based biomaterial scaffolds for tissue engineering[J].Trend in biotechnology,2002,20 (1):16.
    [6]Sachlos E, Reis N, Ainsley C, et al.Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication[J].Biomaterials,2003,24 (8):1487.
    [7]Terada S, Sato M, Sevy A, et al.Tissue engineering in the twenty first century[J].Yonsei Med J,2000,14:685.
    [8]Burg k J L, Porter S, Kellan J F[J].Biomaterials,2000,21:2347.
    [9]Kim BS, Mooney DJ.Development of biocompatible synthetic extra cellular matrices for tissue engineering.[J].Trends Biotechnol, 1998;16(5):224-232.
    [10]Thomson RC, Wake MC, Yaszemski MJ, et al.Biodegradable polymer scaffolds to regenerate organs[J].Adv Polym Sci] 1995;122:245-274.
    [11]Dr.B. C. Roy College of Pharmacy & Allied Health Sciences, et al.Potential aspects of chitosan as pharmaceutical excipient[J].Act Pol Pharm.2011,68 (5):619-622.
    [12]Bi Q,Zhang Q,Xu M,et al.Effect of combination therapy with alginate dressing and mouse epidermal growth factor on epidermal stem cells in patients with refractory wounds [J].Chinese Medical Journal,2012,,125 (2) :257-261.
    [13]Chen KY, Chung CM,Chen YS,et al.Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair[J].J Tissue Eng Regen Med,2012,Mar 6.
    [14]Yang Z,Xu LS,Yin F,et al.In vitro and in vivo characterization of silk fibroin/gelatin composite scaffolds for liver tissue engineering[J] Journal of digestive diseases,2012,13(3):168-178.
    [15]Unger R E, Wolf M, Peters K,et al.Growth of human cells on a non-woven silk fibroin net:a potential for use in tissue engineering[J].Biomaterials,2004,25(6):1069-1075.
    [16]Gil E S,Park S H,Marchant J,et al.Response of human corneal fibroblasts on silk film surface patterns[J].Macromol Biosci,2010,10(6):664-673.
    [17]Horan RL,Antle K,Collette A L,et al.In vitro degradation of silk fibroin[J]. Biomaterials,2005,26(17):3385-3393.
    [18]Altman GH,Diaz F,JakubaC,et al.Silk-based biomaterials[J].Biomaterials,2003,24(3):401-416.
    [19]Meinel L,Fajardo R,Hofmann S.et al.Silk implants for the healing of critical size bone defects[J].Bone,2005,37(5):688-698.
    [20]马佳,赵铱民,王小红,等.胶原凝胶复合快速成型材料异位成骨的研究[J].实用口腔医学杂志.2009,25(1):9-12.
    [21]汪向飞,张晓丹,周汉新,等.生物医用可吸收止血材料的研究与临床应用[J].中国组织工程研究与临床康复,2010,14(21):3973-3976.
    [22]Sims CD, Butler PE, Cao YL,et al. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes[J].Plastic and reconstructive surgery, 1998,101(6): 1580-1585.
    [23]高秋明,刘兴炎,董晓萍,等.纤维蛋白凝胶复合骨形态发生蛋白和庆大霉素缓释药物对感染性骨缺损的修复[J].中国临床康复,2005。14(9):239-241.
    [24]Yoganandan N, Knowles SA, Maiman DJ, et al. Anatomic study of the morphology of human cervical facet joint[J]. Spine.2003,28(20):2317-2323.
    [25]Bini TB, Gao SJ, Wang S, et al. Poly(l-lactide-co-glycolide) biodegradable emicrofibers and electrospun nanofibers for nerve tissue engineering: an in vitro study[J]. Journal of material science. 2006,41(19):6453-6459.
    [26]Wang CH, Hsiue GH.New amphiphilic poly(2-ethyl-2- oxazoline) poly(L-lactide) triblock copolymers[J].Biomacromolecules. 2003,4(6):1487-1490.
    [27]Basarkar A, Devineni D, Palaniappan R, et al.Preparation, characterization, cytotoxicity and transfection efficiency of poly(DL-lactide-co-glycolide) and poly(DL-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA[J].Int J Pharm. 2007 ;343(1-2):247-254.
    [28]李良,李国明,黎茂荣,等.利福平/聚乳酸微球的制备研究[J].华南师范大学学报(自然科学版),2003,(3):102-107.
    [29]Vacanti CA, Upton J. Tissue—engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegrade ble polymer matrices [J]. Clinics in Plastic Surgery. 1994,21(3):445-462.
    [30]杨帆,汪朝阳,潘育方,等人.聚乳酸-乙醇酸的合成及在药物缓释微球中的应用[J].高分子材料科学与工程,2005,21(3):77-80.
    [31]于峥嵘,李淳德,石旭东,等.Ⅰ型胶原修饰聚乳酸聚乙醇酸微球支架上骨髓间充质干细胞的黏附和成骨分化[J].中国组织工程研究与临床康复,2011,15(42):7868-7872.
    [32]费正奇,胡蕴玉,吴道澄,等rhBMP-2/聚乳酸与聚乙醇酸共聚物载药微球的制备及成骨活性研究[J].生物医学工程与临床,2006,10(3):121-124.
    [33]王磊,李耀俊,章燕,等.新型多孔磷酸钙复合骨髓基质干细胞组织工程实验研究[J].华西口腔医学杂志,2010,28(3):315-318.
    [34]Perka C,Spitzer RS,Lindenhayn K,et al.Matrix-mixed culture:new methodology for chondrocyte culture and preparation of cartilage transplants[J].J Biomed Mater Res,2000,49(3):305-311.
    [35]Perka C,Arnold U, Spitzer RS,et al.The use of fibrin beads for tissue engineering and subsepuential transplantation[J].Tissue Eng,2001,7(3):359-361.
    [36]张志强,任志鹏,杨自全,等.Ⅰ型胶原-壳聚糖复合材料的生物相容性[J].生物骨科材料与临床研究,2011,8(4):3-7.
    [37]曹慧,许时婴.Ⅱ型胶原一硫酸软骨素支架的制备及组织工程软骨的构建[J].生物加工过程,2011,9(2):58-63.
    [38]李晓龙,穆长征,马云胜.胶原蛋白-硫酸肝素神经生物支架材料的制备[J].中国组织工程研究与临床康复,2011,15(12):2125-2128.
    [39]李毅,梁晓军,王坤正,等.β-磷酸三钙/聚磷酸钙纤维/聚左旋乳酸支架复合骨髓基质细胞修复节段性骨缺损[J].中国组织工程研究与临床康复,2011,15(38):7036-7040.
    [40]Stock UA, Nagashima M, Khalil PN,et al. Tissue-engineered valved conduits in the pulmonary circulation[J].The Journal of Thoracic Cardiovascular Surgery,2000,119(4 Pt 1): 732-740.
    [41]朱凌云,王彦平,张红梅.纳米磷酸盐/聚磷酸钙纤维/聚乳酸骨与软骨组织工程支架复合材料研究[J].兰州交通大学学报,2011,30(3):157-160.
    [42]张宁,梁星,李小玉,等.新型聚乳酸/β-磷酸三钙(PLLA/β—TCP)多孔支架材料的性能研究[J].稀有金属材料与工程,2008,37(1):702-705.
    [43]Hajiali H,Shahgasempour S,Naimi-Jamal MR,et al.Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering[J].International journal of Nanomedicine,2011,6,:2133-2141.
    [44]酆波,胡冬煦,张阳德,等.仿生支架材料骨形态发生蛋白7多肽/壳聚糖/纳米羟基磷灰石/胶原的制备及其细胞相容性[J].中国组织工程研究与临床康复,2011,15(8):1392-1396.
    [45]刘洋,赵彬.牙周组织工程中壳聚糖-丝素蛋白-磷酸三钙复合物应用研究[J].中国实用口腔科杂志,2011,4(6):345-347.
    [46]宋芹,颜军,郭晓强,等.羟基磷灰石/胶原蛋白复合支架上骨髓间充质干细胞的增殖与分化[J].中国组织工程研究与临床康复,2010,14(47):8795-8799.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700