用户名: 密码: 验证码:
板带连轧机半物理仿真平台系统建模与集成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高我国冷轧板带生产技术在国际上的竞争力,在满足经济发展过程中,包装、制造行业对高质量冷轧板带需求的同时,建造具有自主知识产权的冷连轧生产线,实现冷轧过程的现代化、自主化是国内轧钢人共同追求的目标。
     板形、板厚精度是衡量板带材质量的重要标准。轧机系统作为一个复杂的多变量、非线性、强耦合系统,其动态调整过程,各参数的变化均对目标板形、板厚质量产生影响。然而,国内对轧机系统的研究,往往只偏重于单项、局部或其静态特性分析,没有针对轧机大系统,建立其机、电、液一体化模型,模拟冷连轧全过程板形、板厚综合调整的研究成果。本文有基于此,在参照实用冷连轧机物理模型的基础上,抽取其机、电、液设备和控制系统数学模型,依据实用冷轧设备的物理连接情况和轧制理论的参数影响关系,构建其机、电、液一体化半物理仿真平台,实现冷连轧全过程的板形、板厚动态过程仿真。
     随着计算机技术的日益成熟,各种智能优化算法的工业化应用得以实现,并不断深入到生产、生活的各个领域中。针对冷连轧领域实用的轧制规程预设定方法过于老化,无法适应新的轧制工艺和轧制新材料的需求,本文将混合智能优化算法,引入压下负荷分配过程中,在满足目标板形、板厚质量的同时,可降低设备总能耗,并充分发挥各机架在轧制变形过程中的作用。混合智能优化算法在1220mm冷连轧机上的优化结果与实用规程相比,总能耗降低20%左右。现已将此混合智能优化算法,应用到某厂1100双机架可逆式HC轧机轧制工艺参数研究系统中。
     以实用1420mm五机架冷连轧机的厚度调整过程为参考,在simulink仿真平台中,建立其机、电、液一体化动态过程仿真模型,模拟粗轧阶段,用扩展物流AGC的方式进行厚度增量控制;精轧阶段,用AGC的控制方式A实现厚度动态调整。从平台运行的过程参数仿真曲线来看,与解析模型计算结果的规律相符,此模型可被用来实现冷连轧厚度调整过程的动态仿真。
     影响函数法是板形分析过程中常用的手段,本文采用影响函数法,建立宽板轧机的板形在线数据库,并依靠神经网络的函数逼近功能,构造板形在线模型,并建立相应的神经网络在线控制器。同时,依照现有的板形、板厚解析关系模型,给出其综合控制中的增量调整模型,并在虚拟轧机半物理仿真平台中,实现板形、板厚综合调整的动态过程仿真。平台运行的过程参数仿真曲线与解析模型的计算结果规律一致,表明此平台可被用来实现冷连轧板形、板厚综合调整过程的动态仿真。
     在300mm单机架四辊轧机上,对虚拟轧机系统建模所用的轧机刚度数值模型,板形、板厚综合调整模型、液压AGC的动态调整模型和主电机转速模型,进行了实验验证,实验数据与仿真结果基本相符,表明用此类模型建立的虚拟轧机,模拟工业现场的冷轧过程是有效的。
To improve our cold-rolled strip production technology in internationalcompetitiveness, the construction of proprietary modern automatic cold tandem mill,which can also meet the need of packaging and manufacturing industry during economicdeveloping, is the common goal of domestic steel rolling industry.
     Shape and thickness accuracy is the important standard of the strip’s quality. Rollingmill system as a complex multivariate, nonlinear and close coupling system, its dynamicadjustment process and the change of the parameters all have some influences on thequality of the target shape and thickness. However, the research of domestic mill system,often confines to individual, local or static characteristics analysis. We don’t have theideal research results about the shape and thickness’comprehensive adjustment during thecold rolling process. This paper is based on this point. It discuss that in the light of thepractical application of cold rolling mill physical model, selecting the mechanical,electrical, hydraulic equipment and control system mathematical model, according to therelationship between the physical connection of practical situation cold rolling equipmentand the parameters of rolling theory, how to construct the mechanical, electrical, hydraulicintegration semi-physical simulation platform of cold rolling mill ,than achieve the shapeand thickness dynamic process simulation of the whole process of cold rolling.
     With increasingly matures computer technology, a variety of industrial application ofintelligent optimization algorithms can be realized and continue deep into the productionand in all areas of life. In cold tandem rolling field, the practical rolling schedule isbehindhand, and can not adapt to the new rolling technology and new materials rollingdemand. This paper expounds that if we apply the hybrid intelligent optimizationalgorithms to rolling schedule, while ensuring the quality of the target shape and thickness,the total energy consumption will be reduced and all the rolling racks will give full play totheir roles during the deformation process. Comparing the optimization results of thehybrid intelligent optimization algorithm in 1220 mm cold tandem mill to practicalprocedures, the total energy consumption reduces by 20% or so. Now this hybridintelligence optimization algorithm has already been applied to a factory in 1100 two-stand reversing HC rolling mill’s rolling technology parameters research system.
     In the light of the adjustment process of the practical 1420 mm five-stand coldtandem mill’s thickness, a mechanical, electrical, hydraulic integration simulation modelis set up in simulink. When the roughing is being simulated, it controls the incrementalthickness by the expansion logistics of AGC; when the finishing is being simulated, itarchives the thickness` dynamic adjustment with the A of AGC. Simulation resultsconform to the law of the analytical model’s calculated results, so this platform can beused to simulate the process of cold tandem rolling.
     Influence function is used to the shape analysis. In this paper, influence functionmethod is used to set up the online shape database. By neural network’s approximationfunction, the shape online model is set up. Meanwhile, in accordance with shape andthickness relation, by the given increase adjustment relationship of comprehensive control,then a online neural network controller is established in the simulink simulation platform,so that the dynamic process simulation of the shape and thickness’s comprehensiveadjustment can be achieved. The simulation results are consistent with the calculationresults, the platform can be used to simulate the comprehensive adjustment process of thecold tandem roling’s shape and thickness.
     We validated the model of rolling rigidity, the model of synthesize adjustment ofshape and thickness, the model of hydraulic servo system and the model of drive motor’sspeed in 300mm rolling mill. The experimental results conform to simulation results, itshowed that the virtual rolling mill which is established by these model can be used tosimulate cold tandem rolling process.
引文
[1]邢黎霞.中国经济增长与经济波动:30年的经验与当前宏观经济形势[J].经济师, 2010 (1):96-97.
    [2]苏亚红.我国冷轧板带生产状况及展望[J].冶金信息导刊, 2007, (5): 44-48.
    [3]姜万录,陈东宁.冷连轧机负荷分配优化研究进展[J].重型机械, 2007 (6): 14-18.
    [4]江潇.热轧带钢粗轧过程控制与模型[M].沈阳:东北大学出版社, 2007, 3-10.
    [5] Wang D D, TieuAK, FG de Boer, et al. Toward a Huristic Optimum Design of RollingSchedules for Tandem Cold Rolling Mills[J]. Engineering Applications of ArtificialIntelligence, 2000 (13): 397-406.
    [6]王育华. 2030冷连轧机的道次计算[J].宝钢技术, 1989 (3): 19-23.
    [7]华建新.宝钢2030mm冷连轧机的压下负荷分配[J].冶金自动化, 1991, 15 (3): 43-48.
    [8]矫志杰,赵启林,王军生,等.冷连轧机过程控制在线负荷分配方法[J].钢铁, 2005, 40 (3):44-48.
    [9]马虹蔚,王元仲,李劲. 1700mm冷连轧机设定控制系统的研究[J].轧钢, 2000, 17 (5):13-15.
    [10]边海涛,杨荃,刘华强,等.五机架冷连轧机的负荷分配计算[J].冶金自动化, 2007 (1):47-50.
    [11]李立新,刘雪峰,汪凌云.冷轧带钢板形最优的轧制工艺制度制订[J].武汉科技大学学报,2000, 23 (1): 15-17.
    [12]祝东奎,张清东,陈守群,等.兼顾板形的带钢冷连轧机最优化负荷分配[J].北京科技大学学报, 2000, 22 (1): 80-83.
    [13]刘晓星.冷轧机轧制规程的多目标模糊优化设计[J].钢铁, 2000, 35 (8): 34-36.
    [14] N. Chakraborti, B. Siva Kumar, V. Satish Babu, et al. Optimizing Surface Profiles During HotRolling: A Genetic Algorithms Based Multi-Objective Optimization[J]. ComputationalMaterials Science, 2006, 37 (12): 159-165.
    [15] A. Tsangrassoulis, V. Bourdakis, V. Geros, et al. A Genetic Algorithm Solution to the Design ofSlat-type Shading System[J]. Renewable Energy, 2006, 31 (14): 2321-2328.
    [16]段海滨,王道波,于秀芬.蚁群算法的研究现状及其展望[J].中国工程科学, 2007, 9 (2):98-102.
    [17]蒋艳玲,张军,钟树鸿.蚁群算法参数的分析[J].计算机工程与应用, 2007, 43 (20): 31-36.
    [18] M. Dorigo, M. Birattari, T. Stutzle. Ant Colony Optimization.Computational IntelligenceMagazine[C]. IEEE, 2006, (1): 28-39.
    [19] J. C. Zhou, W. J. Li, J. B. Zhu. Particle swarm optimization computer simulation of Ni clusters.Trans[J]. Nonferrous Met Soc, 2008, 18: 410-415.
    [20] A. H. Kashan, B. Karimi. A discrete particle swarm optimization algorithm for schedulingparallel machines[J]. Computers & Industrial Engineering, 2009, 56 (1): 216-223.
    [21] B. Jiao, Z. G. Lian, X. S. Gu. A dynamic inertia weight particle swarm optimization algorithm[J]. Chaos, Solitons and Fractals, 2008, 37: 698-705.
    [22] Liu Yutian,Ma Li,Zhang Jian jun. Reactive power optimization by GA/SA/TS combinedalgorithms[C]. International Joumal of Electrical Power and Energy System, 2002, 24 (9):765-769.
    [23] R.Chelouah, P.Siarry. A continous genetic algorithm designed for the global optimization ofmultimodal functions.J[J]. Heuristics 6, 2000, 191-213.
    [24]李勇,刘建昌,王昱.改进权重自适应GA及冷连轧轧制规程多目标优化[J].控制理论与应用, 2009, 26 (6): 687-693.
    [25]杨景明,窦富萍,刘舒慧,等.基于遗传算法的冷连轧轧制规程优化设计[J].中国机械工程, 2007, 18 (15): 1868-1871.
    [26]杨景明,韩欣艳,车海军,等.基于改进自适应遗传算法的轧制规程优化设计[J].轧钢,2011, 28 (1): 24-28.
    [27]魏立新,李兴强,李莹,等.基于改进自适应遗传算法的冷连轧轧制规程优化设计[J].机械工程学报, 2010, 46 (16): 136-141.
    [28]于孟生,郑秉霖.基于遗传算法的冷连轧机轧制策略优化.冶金自动化[J]. 2001, 25 (5):12-15.
    [29] Marco D, Eric B, Theraola G. Ant Algorithms and Strategy[C]. Future Generation ComputerSystem , 2000, 16 (8): 851-854.
    [30] Dorigo M, Bocabeau E, Theraola G. Ant Algorithms and Strategy[C]. Future GenerationComputer System , 2000, 16 (5): 851-871.
    [31] Mathur M, Karale S B. Ant Colony Approach to Continuous Function Optimization[J].Industrial and Engineering Chemistry Research , 2000, 39: 3814-3822.
    [32]赵云涛,王京,张勇军,等.多层蚁群算法在中厚板负荷分配中的应用研究[J].武汉科技大学学报, 2009, 32 (4): 355-359.
    [33]杨景明,张青.基于遗传算法的混合蚁群算法的冷连轧轧制规程优化设计[J].钢铁研究学报, 2010, 22 (2): 18-21.
    [34] Cai Jiejin, Ma Xiaoqian, Li Lixiang, eta1. Chaotic particle swarm optimization for economicdispatch considering the generator constraints[J]. Energy Conversion and Management, 2007,48 (2): 645—653.
    [35]陈东宁,姜万录,王益群.基于粒子群算法的冷连轧机轧制负荷分配优化[J].中国机械工程, 2007, 18 (11): 1303-1306.
    [36]车海军,刘畅,孙晓娜,等.基于粒子群算法的冷连轧轧制规程优化设计[J].钢铁研究,2009, 37 (3): 20-23.
    [37]车海军,刘畅,孙晓娜,等.基于遗传粒子群算法的冷连轧轧制规程优化设计[J].轧钢,2009, 26 (1): 22-25.
    [38]闫勇亮.热连轧精轧机组负荷分配设定中的PSO算法应用研究[D].沈阳:东北大学控制理论与控制工程学科硕士学位论文, 2005: 47-53.
    [39]徐庆宁,武仁户.厚度计AGC技术在梅刚的应用[C]. 2008全国第十三届自动化应用技术学术交流会, 2008, S2: 475-477.
    [40]孙杰,张殿华,李旭,等.厚度计AGC应用中存在的问题及对策[J].东北大学学报, 2009,30 (11): 1621-1623.
    [41]孙杰,张殿华,李旭,等.单机架可逆冷轧机AGC系统的研究与应用[J].中国冶金, 2008,18 (4): 43-46.
    [42]王军刚.秒流量控制在双机架可逆冷轧机AGC系统中应用[J].中国科技信息, 2011, 7:142-143.
    [43]张岩,邵富群,王军生,等.冷连轧机厚度自动控制策略应用对比分析[J].控制工程, 2010,17 (3): 265-268.
    [44]董智红,崔嵬,吴嗣亮.全数字式前馈AGC设计与FPGA实现[J].北京理工大学学报,2008, 28 (12): 1093-1095.
    [45]钟云峰,谭树彬,徐心和.热连轧前馈厚度控制系统的研究与应用[J].东北大学学报,2009, 30 (2): 169-171.
    [46]张殿华,李旭,张浩,等.辊缝型监控AGC纯滞后补偿控制器的算法设计及应用[J].钢铁,2008, 43 (6): 52-55.
    [47]黄涛,张晓峰.基于实时负荷再分配热连轧机快速监控AGC技术研究[J].冶金设备, 2009,4: 14-17.
    [48]孙建亮.基于板形板厚控制的轧机系统动态建模及仿真研究[D].秦皇岛:燕山大学机械设计及理论学科工学博士学位论文, 2010: 1-13.
    [49] Michel Morel, Marc Bosch and Parc. Shape-roll actuator results of hot and cold millapplications[J]. Iron and Steel Engineer, 1992, (4): 74-77.
    [50] Z.Y. Jiang, A.K. Tieu. Contact mechanics and work roll wear in cold rolling of thin strip[J].Wear, 2007, 263 (7-12): 1447-1453.
    [51]杨跃辉.热连轧轧制过程动态仿真[D].唐山:河北理工大学工学钢铁冶金学科硕士学位论文, 2006: 2-12.
    [52]镰田正城.板带连续轧制[M].李伏桃,陈岿,康永林译.北京:冶金工业出版社, 2002:3-10.
    [53] Sansal K. Yildiz, J. Fraser Forbes , Biao Huang, etal. Dynamic modelling and simulation of ahot strip finishing mill[J]. Applied Mathematical Modelling, 2009, 33(7): 3208-3225.
    [54] Eugenio Brusa, Luca Lemma. Numerical and experimental analysis of the dynamic effects incompact cluster mills for cold rolling[C]. Journal of Materials Processing Technology, 2009,209(5): 2436-2445.
    [55]张进之.连轧张力变形微分方程的分析与讨论[J].钢铁, 1978, 4: 85-92.
    [56]张进之,赵厚信,王喆,等.连轧张力公式的实验验证和分析[J].中国工程科学, 2008, 10(4): 73-77.
    [57]孙一康.带钢冷连轧计算机控制[M].北京:冶金工业出版社, 2002: 10-96.
    [58] He Jianjun, Yu Shouyi, Zhong Jue. Analysis of electromechanical coupling facts of complicatedelectromechanical system[C]. Transactions of Nonferrous Metals Society of China, 2002, 12(2): 301-304.
    [59]铁鸣,柴天佑.冷连轧仿真系统虚拟对象级的设计要点[J].东北大学学报, 2007, 28 (6):761-764.
    [60]王国栋,刘相华,王军生.冷连轧厚度自动控制[J].轧钢, 2003, 20 (3): 38-41.
    [61]王军生,白金兰,刘相华,等.冷连轧动态变规格张力微分方程[J].东北大学学报, 2003,24 (8): 785-787.
    [62]杨景明,宋维公,李鑫滨,等.冷带轧机液压厚控系统动态数学模型分析与测试[J].燕山大学学报, 1998, 22 (1): 82-84.
    [63]张伟,王益群,孙孟辉.板带轧机自动厚度控制模型的研究[J].中国机械工程, 2008, 19(1): 95-98.
    [64]孙孟辉,王益群.冷带轧机液压AGC系统板厚控制策略研究[J].液压与传动, 2010, 10:15-17.
    [65]王益群,陈春明,张伟,等.虚拟轧制技术研究进展的评述[J].机械工程学报, 2010, 46(2): 34-39.
    [66] Sun Dengyue, Du Fengshan, Xu Shimin, etal. Dynamic strip thickness simulation on five-standcold continuous rolling mill[J]. Journal of Iron and Steel Research, Internal, 2006, 13 (2):30-32.
    [67]王益群,方一鸣,孙登月,等. 2030冷连轧机速度控制系统的建模及电动机负载转矩的计算[J].机械工程学报, 2003, 41 (3): 128-134.
    [68]孙静娜.基于板形调控功效的冷连轧机板形在线控制系统研究[D].秦皇岛:燕山大学工学机械设计及理论学科博士学位论文, 2009: 5-9.
    [69]赵志业,王国栋.现代塑性加工力学[M].沈阳:东北工学院出版社, 1986. 51-88.
    [70] Oh, S. L., Kobayashi, S.. An Approximate Method for a Three Dimensional Analysis of Rolling[C]. International Journal of Mechanical Science, 1975, 17 (4): 293-305.
    [71] Lian Jiachuang. Analysis of Profile and Shape Control in Flat Rolling[C]. Proceeding of theFirst International Conference on Steel Rolling, Tokyo, 1980. Japan, The Iron and Steel Instituteof Japan, 1980: 713-724.
    [72]黄传清.板带轧机辊系轴向力的理论与实验研究[D].秦皇岛:燕山大学工学冶金机械学科博士学位论文, 1994: 25-30.
    [73]王宏旭.板形计算理论和工作辊辊型优化曲线的研究[D].秦皇岛:燕山大学工学冶金机械学科博士学位论文. 1996: 2-23.
    [74] A.Geleji. R umliche Verteilung des Werkstoffflusses und des Walzdruckes im Walzspalt[C].Archiv für das Eisenhüttenwesen, 1967, 38 (2): 99.
    [75] A.Troost. Zur Elementarn Plastizit tsheorie R umlicher Umformvor-g nge[C]. Archiv für dasEisenhüttenwesen, 1964, 35 (9): 847.
    [76]连家创,段振勇,叶星.三维解析法求解辊缝中横向流动问题[J].东北重型机械学院学报,1984, (3): 1-9.
    [77] C. H. Lee, Kobayashi. New Solutions to Rigid-Plastic Deformation Problems Using a MatrixMethod[C]. Transaction of the ASME,Journal of Engineering for Industry, 1973, 95 (3):865-873.
    [78] K.Mori, K.Osakada, T. Oda. Simulation of Plane-Strain Rolling by the Rigid-Plastic FiniteElement Method[J]. Int. J. Mech. Sci, 1982, 24 (9): 519-527.
    [79] Zhengyi Jiang, Shangwu Xiong, Xianghua Liu, et al. 3-D rigid–plastic FEM analysis of therolling of a strip with local residual deformation[J]. Journal of Materials Processing Technology,1998, 79 (1): 109-112.
    [80] Min-ting WANG, Xin-liang ZANG, Xue-tong LI. Finite Element Simulation of Hot StripContinuous Rolling Process Coupling Microstructural Evolution[J]. Journal of Iron and SteelResearch, International, 2007, 14 (3): 30-36.
    [81] Xue-Tong LI, Min-Ting WANG, Feng-Shan DU. Coupling Thermomechanical andMicrostructural FE Analysis in Plate Rolling Process[J]. Journal of Iron and Steel Research,International,2008,15 (4): 42-50.
    [82] Xuetong Li, Minting Wang, Fengshan Du. The coupling thermal–mechanical andmicrostructural model for the FEM simulation of cross wedge rolling[J]. Journal of MaterialsProcessing Technology, 2006, 172 (2): 202-207.
    [83] T. Tamano. Finite Element Analysis of Steady-Flow in Metal Processing[J].板带轧机辊系轴向力的理论与实验研究J. Jap. Soc. Tech. Plas., 1973, 14: 766-769.
    [84] S. W. Key, D. Kring, K. J. Batte. On The Application of Finite Element Method to MetalForming Processes-Part I[J]. Comp. Meth. Appl. Mech. Eng., 1979: 597-608.
    [85] Tomoyuki Hirakawa, Fdumio Fujita.板带轧制过程的有限元分析.世界塑性加工最新技术译文集[M].北京:机械工业出版社, 1987: 889-892.
    [86] C. Liu. Simulation of The Cold Rolling of Strip Using an Elastic-plastic Finite ElementTechnique[J]. Int. J. Mech. Sci., 1985, (27): 829-839.
    [87]杜凤山,刘才,连家创.轧制过程中板形控制的计算机模拟[J].机械工程学报, 1992. 28(6): 9-13.
    [88]杜凤山,刘才,连家创.三维弹塑性有限元法模拟板带轧制过程(I) [J].东北重型机械学院学报, 1989, 13 (2): 47-52.
    [89]杜凤山,刘才,连家创.三维弹塑性有限元法模拟薄带轧制过程(II) [J],东北重型机械学院学报, 1991, 15 (2): 100-105.
    [90]朱光明.板带轧制过程中金属变形机理的非线性有限元法研究[D].秦皇岛:燕山大学机械设计及理论学科工学博士学位论文. 2004: 69-91.
    [91]申光宪,木原淳二.用边界元求解轧辊接触表面位移和表面力的研究[J].东北重型机械学院学报, 1983, (3): 1-8.
    [92]肖宏,申光宪.三维弹塑性边界元法模拟板带轧制过程[J].钢铁, 1993, 24 (3): 39-43.
    [93]刘宏民,连家创,段振勇.模拟带材轧制过程的条元法[J].机械工程学报, 1993, 29 (4):36-42.
    [94]刘玉礼,连家创,段振勇. DC轧机板厚板形控制特性的研究[J].机械工程学报, 1994, 30(增刊): 33-39.
    [95]彭艳.基于条元法的HC冷轧机板形预设定控制理论研究及工业应用[D].秦皇岛:燕山大学机械设计及理论学科博士学位论文. 2000: 13-38.
    [96] M.D. Stone, R. Gray. Theory and Practical Aspects in Crown Control[J]. AISE YearlyProceedings. 1965: 657-667.
    [97] Shohet K. N., Townsend N. A.. Roll Bending Methods of Crown Control in Four-high PlateMills[C]. Journal of the Iron and Steel Institute, 1968, 206 (11): 1088-1098.
    [98] Y. Tozawa. Study on Stress Distribution in Strip Rolling. Memoirs of the Faculty of Engineering[J]. Nagoya University, 1984, (2): 81-91.
    [99]王国栋,张树堂.四辊轧机轧辊弹性变形的矩阵算法[J].重型机械, 1982, (8): 9-18.
    [100] Ningtao Zhao, Jianguo Cao, Jie Zhang, etal. Work roll thermal contour prediction model ofnonoriented electrical steel sheets in hot strip mills[C]. Journal of University of Science andTechnology Beijing, 2008, 15 (3): 352-356.
    [101]李兴东,孙大乐,杨利坡,等.面向辊形磨削的热带钢连轧机工作辊热变形研究[J].钢铁,2007, 42 (4): 38-41.
    [102] W. E. Davies, et al. Prediction and Control of Strip Flatness in Cold Rolling[J]. MetalsTechnology, 1975, (10): 494-501.
    [103] Postlethwaite, P. A. Atack, I. S. Robinson. The improved control for an aluminum hot reversingmill using the combination of adaptive process model and an expert system[J]. Journal ofMaterials Processing Technology, 1996, (60): 393-398.
    [104]连家创.板形控制的理论基础[J].冶金设备杂志年会论文集, 1980: 34-38.
    [105]王国栋.板形控制和板形理论[M].北京:冶金工业出版社,1986: 200-478.
    [106]臧瀛芝,宋维公,潘大生.板形自动控制系统设计[J].燕山大学学报, 1986, (02): 78~82.
    [107]宋维公,孙跃红.相关分析预报在板形控制中的应用[J].燕山大学学报, 1987, (01): 49~55.
    [108]连家创,王益群,段振勇,等.板厚板形综合调节新途径的研究[J].燕山大学学报, 1988,( 03):55-58.
    [109]张清东,陈先霖,徐金梧,等.板形模式识别的模糊分类方法[J].北京科技大学学报, 1995,(1): 33-36.
    [110]李元,刘文仲,孙一康.神经元网络在热连轧精轧机组轧制力预报的应用[J].钢铁, 1996,(01): 54-57.
    [111]夏长亮,杨晓军,史婷娜,等.基于鲁棒调节器的无刷直流电机速度控制研究[J].电工电能新技术, 2002, 21 (3): 5-8.
    [112]吴步宁.直流电机转速鲁棒控制器研究[J].电气传动自动化, 2001, 23 (5): 30-32.
    [113] T. G. Park, K. S. Lee. SMC-based Adaptive Input-output Linearizing Control of InductionMotor[C]. IEE. Proc. Control Theory Appl., 1998,145 (1): 55-62.
    [114] M. D. Minkova, D. Minkov, J. L. Rodgerson. Adaptive Neural Speed Controller of a DCMotor[J]. Electric Power Systems Research, 1998, 47 (2): 123-132.
    [115] A. Rubaai, R. Kotaru. Online Identification and Control of a DC Motor Using LearningAdaptation of Neural Networks[C]. IEEE Transactions on Industry Applications, 2000, 36 (3):935-942.
    [116] J. H. Horng. Neural Adaptive Tracking Control of a DC Motor[J]. Information Science, 1999,118 (14):1-13.
    [117]胡汉金,王志良,刘明.智能控制在电机调速系统中的应用[J].电气自动化, 1996, (1):60-62.
    [118]唐谋凤.现代带钢冷连轧机的自动化[M].北京:冶金工业出版社, 1995, 263-285.
    [119]张进之,张小平.连轧张力公式[J].南方金属, 2007, (154): 4-10.
    [120]童朝南,孙一康,徐光,等.自适应控制在冷连轧张力厚控系统中的应用[J].北京科技大学学报, l989, 11 (1): 20-23.
    [121] Y. Jingming, C. Haijun, X. Yajie, et al. Application of Adaptable Neural Networks for RollingForce Set-up in Optimization of Rolling Schedules[C]. Proceeding of the 3rdInternationalSymposium on Neural Networks, 2006: 864-869.
    [122]刘礼新,方一鸣,李建雄,等.可逆冷带轧机速度张力系统的分散重叠控制[J].控制理论与应用, 2011, 28 (5): 675-680.
    [123]镰田正诚.板带连续轧制[M].北京:冶金工业出版社, 2002: 100-158.
    [124]张伟,王益群.基于冷连轧过程动态特性的仿真研究[J].机床与液压, 2004, 28 (10):1381-1384.
    [125]马家鹏,张玉红.冷轧薄板生产中开卷卷曲张力的控制研究及应用[J].科技与企业, 2010,5: 87-89.
    [126]王洪斌,刘今禹,陈雷云,等.高速冷轧机开卷机恒张力控制系统[J].自动化仪表, 2008,29 (5): 47-50.
    [127]安连祥,刘永刚,崔丽敬,等.基于牛顿差值的开卷机转矩控制新方法[J].电气传动, 2010,40 (3): 66-68.
    [128]董国龙,赵波.单机架可逆冷轧机直接张力控制与间接张力控制的比较[J].硅谷, 2011, 12:126-127.
    [129]李鹏翔.变频调速系统在张力控制中的应用[J].中国高新技术企业, 2008. 12: 83-84.
    [130]姜余发,刘陆平,邹贵平. FUZZY+DTC在张力控制中的应用实践[J].电气传动, 2009, 39(8): 44-47.
    [131]王锐,刘惠康,李佳.基于单纯形法的卷取张力模糊控制系统的设计[J].电气传动, 2009,39 (11): 45-47.
    [132]张晓峰,张清东,黄佩杰,等.冷连轧机厚带头启动轧制张力控制模型改进研究[J].钢铁,2008, 43 (11): 69-73.
    [133]李国友.冷连轧机张力控制系统鲁棒控制器设计[J].重型机械, 2004, 3: 11-14.
    [134]唐慕华,张清东,王文广. 1420冷连轧机穿带启动轧制工艺及过程仿真[J].冶金设备,2007, 1: 57-60.
    [135]徐光. 350mm三机架冷连轧机穿带建张过程分析[J].钢铁研究, 1999, 2: 39-42.
    [136]杨景明,陈雷云,车海军. 1450mm冷连轧机活套张力控制系统[J].电气传动, 2008, 38(12): 58-62.
    [137]杨景明,盛建春,车海军,等.冷轧机机架间张力预测函数控制器的设计[J].冶金设备,2009, 3: 1-5.
    [138]王立艳,张莉.一种冷轧卷取机动态张力的变参数控制方法[J].西南民族大学学报, 2009,35 (6): 1271-1274.
    [139]张岩,邵富群,王军生.灰色预测模型在冷轧动态张力控制中的应用[J].东北大学学报,2011, 32 (5): 614-617.
    [140]张伟,王益群,孙梦辉.板带轧机自动厚度控制模型的研究[J].中国机械工程, 2008, 19(1): 95-98.
    [141]杨利坡,周涛,彭艳,等. HC可逆冷轧机轧辊失效改进措施的试验研究[J].钢铁, 2006, 41(5): 57-60.
    [142]宋百玲.柴油机控制系统半物理仿真技术研究[D].哈尔滨:哈尔滨工程大学轮机工程学科博士学位论文, 2009: 3-5.
    [143]王凌伟.基于虚拟机间接仿真的计算机运行环境重视[D].北京:北京理工大学控制理论学科硕士学位论文, 2008: 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700