用户名: 密码: 验证码:
废纸脱墨浆镁基碱源过氧化氢漂白及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国造纸工业原生纤维原料短缺,废纸浆消耗量占造纸原料总消耗量的比例高达64%。废纸浆造纸能够充分利用资源,具有循环经济优势,理应得到充分研究,以便更为有效地利用。针对目前废纸脱墨浆传统的氢氧化钠基碱源过氧化氢漂白存在污染较大、过氧化氢无效分解、漂白浆易返黄、管道设备容易结垢等问题,本论文以废纸脱墨浆镁基碱源过氧化氢漂白技术及其机理为研究课题,对废纸脱墨浆氢氧化镁基过氧化氢漂白的工艺条件进行了优化,对硫酸和EDTA螯合预处理影响废纸脱墨浆氢氧化镁基过氧化氢漂白的效果进行了对比分析。在此基础上,重点探讨了脱墨废纸氢氧化镁基碱源过氧化氢漂白浆的表面性能及其返黄机理和漂白过程中草酸根生成的规律,为进一步降低脱墨废纸过氧化氢漂白浆的返黄值,提升其白度稳定性,有效控制漂白废液中结垢因子草酸根的产生等提供科学的理论指导。
     首先,研究了氢氧化镁逐步替代氢氧化钠作为废纸脱墨浆过氧化氢漂白碱源的纸浆性能和漂白废液性能。研究结果表明,在10%浆浓和3%H2O2用量的条件下,当氢氧化镁替代率为50%时,漂浆白度增值和抗张指数增加最高,分别为约13%ISO和5N·m/g。当氢氧化镁替代率从50%增加到100%时,过氧化氢消耗减少12%-58%。当氢氧化镁的替代率在50%-100%之间时,漂白废液的COD负荷比氢氧化钠基过氧化氢漂白废液降低24%-39%。
     其次,对比了硫酸(A)和EDTA螯合(Q)预处理影响脱墨废纸浆氢氧化镁基碱源过氧化氢漂白(P)的效果。研究结果表明,经过酸或螯合预处理,未漂浆中金属离子含量呈现不同程度的下降;Q处理比A处理除去更多的Mn、Fe、Cu等过渡金属离子,保留更多的Mg离子。在同样氢氧化镁替代率的条件下,QP比AP漂白消耗更少的过氧化氢,产生更少的COD负荷;QP浆比AP浆具有更高的强度,而AP浆比QP浆具有更高的松厚度和较高的白度。ATR-FTIR分析表明,预处理和过氧化氢漂白对木素羰基类发色基团有较好的去除作用,AP浆中木素受到的破坏比QP浆大;碳水化合物在预处理和过氧化氢漂白过程中受到一定的降解,QP浆中碳水化合物受到的降解低于AP浆。
     再次,采用丙酮抽提、酶(漆酶/介体或脂肪酶)处理和XPS、SEM-EDS等表面分析技术相结合的方法,探索脱墨废纸氢氧化镁基碱源过氧化氢漂白浆的表面性能。研究结果表明,脱墨废纸浆样品表面除了主要的元素C和O外,还存在Ca、Si、Al等微量元素;PMg(OH)2漂白浆表面木素和抽出物总覆盖物含量比PNaOH漂白浆少;丙酮抽提有助于提高纸浆的白度和抗张指数,但对纤维表面残余油墨粒子的去除作用不大。酶处理浆表面被生物酶脱除的木素和抽出物等覆盖,这些覆盖物容易在后续过氧化氢漂白过程中去除;酶处理有助于改善漂白浆的白度和抗张指数,并有效地除去纤维表面的残余油墨粒子;脂肪酶处理漂白浆比漆酶/介体处理漂白浆效果更好。
     然后,采用紫外光诱导返黄和ATR-FTIR光谱相结合的方法,综合评价纸张返黄性能,建立废纸脱墨浆光诱导返黄的数学模型,揭示其返黄机理。研究结果表明,白度损失、P.C.值和色差与b*成线性关系;在给定的光诱导条件下,随光辐射时间的增加,纸浆白度损失、P.C.值和色差均不断增加,且是一个先快速后慢速的返黄过程;PMg(OH)2漂白浆比PNaOH漂白浆的白度稳定性高。废纸脱墨浆的白度损失、P.C.值和色差与时间呈分段线性关系,通过回归分析建立了废纸脱墨浆光诱导返黄数学模型。在紫外光辐射360min后,脱墨废纸浆及其漂白浆的ATR-FTIR光谱中1729cm-1特征峰强度明显增加,并产生新的特征谱带1674cm-1,说明对醌的生成是引起纸浆返黄的重要原因;PMg(OH)2漂白浆比PNaOH漂白浆的1674cm-1谱带特征峰强度小,说明前者产生的对醌发色基团少,是PMg(OH)2漂白浆比PNaOH漂白浆白度稳定性高的原因。
     最后,研究了废纸脱墨浆过氧化氢漂白过程中结垢因子草酸根的生成规律和影响因素,并建立了废纸脱墨浆氢氧化镁基过氧化氢漂白草酸根生成量的多元回归方程。研究结果表明,在同样过氧化氢用量的条件下,草酸根的生成随着用碱量的增加而成线性增加,PMg(OH)2漂白产生的草酸根远低于PNaOH漂白,且PMg(OH)2漂白产生草酸根的速率比PNaOH漂白明显较慢。漂至相同的白度值,PMg(OH)2漂白比PNaOH漂白产生更少的草酸根。建立了废纸脱墨浆氢氧化镁基过氧化氢漂白草酸根生成量的多元回归方程:Y=-47.772+10.174X1+4.674X2+0.820X3+13.664X4;氢氧化镁用量(X1)、过氧化氢用量(X2)、温度(X3)和时间的自然对数(X4)与草酸根生成量(Y)均正相关。
Virgin fiber shortage in China's paper industry is obvious, however, the waste paper pulpconsumption proportion remains at64%or even higher, so the waste paper pulp should befully used. At present, conventional NaOH-based hydrogen peroxide bleaching of deinkedpulp has such problems as higher pollution, invalid decomposition of hydrogen peroxide,yellowing reversion, and scaling. Hence, Mg(OH)2-based hydrogen peroxide bleaching andmechanisms of deinked pulp were researched in this paper. The process conditions ofMg(OH)2-based hydrogen peroxide bleaching of deinked pulp were optimized. The effects ofsulfuric acid and EDTA chelating treatments on Mg(OH)2-based hydrogen peroxide bleachingwere discussed. More specifically, the surface properties of Mg(OH)2-based hydrogenperoxide bleached pulp and its yellowing reversion mechanisms as well as the formation ofoxalate during the peroxide bleaching process were investigated.
     First, gradual replacement of sodium hydroxide with magnesium hydroxide as the alkalisource during the hydrogen peroxide bleaching process of deinked pulp was studied. Underthe conditions of10%consistency and3%H2O2charge, when50%NaOH was replaced withhigh-purity Mg(OH)2in peroxide bleaching, the bleached deinked pulp was produced with thehighest brightness gain (13%ISO) and tensile index increase (5N·m/g). When Mg(OH)2replacement ratio increased from50%to100%, peroxide consumption decreased12%-58%.When Mg(OH)2replacement ratio was50%-100%, the COD load of bleaching filtratesdecreased24%-39%.
     Second, the effects of sulfuric acid treatment (A) and EDTA chelating treatment (Q) onMg(OH)2-based peroxide bleaching of deinked pulp were compared. The metal contents ofthe unbleached pulp were removed after acid-washing or chelating. The transition metal ions(such as Mn, Fe, and Cu) removal from unbleached pulp was grater in a chelating stage thanin an acid-washing stage, while Mg removal was greater in an acid-washing stage. At thesame Mg(OH)2replacement ratio, more residual peroxide and lower COD were in QP filtratesthan those in AP filtrates. QP pulp had higher strength properties than AP pulp, while AP pulphad higher brightness and bulk. ATR-FTIR analysis showed that the carbonyl groups in ligninwere removed during A or Q treatment and peroxide bleaching. And carbohydrate was alsodegraded to a certain degree.
     Third, acetone extraction, enzyme (laccase/mediator or lipase) treatment and XPS,SEM-EDS surface analysis techniques were combined to explore the surface properties ofMg(OH)2-based peroxide bleaching of deinked pulp. The low-resolution of XPS and SEM-EDS showed that some trace elements such as calcium, silicon, aluminum were presenton the sample surface, in addition to the main elements of carbon and oxygen. PMg(OH)2bleached pulp had less surface lignin and extractives than PNaOHbleached pulp. The extractionimproved pulp brightness and tensile index, but had little effect on residual ink removal.Enzyme-treated pulp surface was covered by the redeposited lignin or extractives. However,when the enzyme-treated pulps were bleached, the redeposited lignin or extractives weresignificantly removed. Lipase-treated bleached pulp had better properties and lower ERICvalues than laccase/mediator-treated bleached pulp, further indicating that lipase can not onlyremove surface lignin and extractives, but also more residual ink contaminants.
     Then, UV light-induced yellowing and ATR-FTIR were combinedly used to acceleratethe yellowing of the paper, evaluate its yellowing properties and reveal its yellowing reversionmechanism. The pulp brightness loss, P.C. number and chromatic aberration had a linearrelationship with b*. During the irradiation of UV light, the pulp brightness loss, P.C. numberand chromatic aberration increased quickly, and then slowed down. The photoyellowingmathematic model of deinked pulp was founded. After UV irradiation for360min, the bandintensity at1729cm-1increased distinctively and a new band at1674cm-1appeared. Thisindicated that p-quinone groups were produced during the irradiation process, thus resultingin paper yellowing. The band intensity at1674cm-1of PMg(OH)2bleached pulp was lower thanthat of PNaOHbleached pulp, which indicated that the brightness stability of PMg(OH)2pulp wasbetter than PNaOHpulp.
     Finally, the formation rules and influencing factors of the fouling factor-oxalate-produced during peroxide bleaching of deinked pulp were explored, and the oxalate formationmultiple regression equation was founded. At the same peroxide dosage, the oxalate formationincreased linearly with alkli charge increasing, PNaOHbleaching produced more oxalate thanPMg(OH)2bleaching, and the formation rate of the former was much faster. As to the samebrightness target, PNaOHbleaching produced more oxalate than PMg(OH)2bleaching. The oxalateformation multiple regression equation was founded: Y=-47.772+10.174X1+4.674X2+0.820X3+13.664X4. Mg(OH)2dosage (X1), peroxide dosage (X2), temperature (X3) and lnt (X4)had positive correlation with oxalate formation (Y).
引文
[1]国家发展和改革委员会.造纸产业发展政策[J].中华纸业,2007,28(11):6-11.
    [2]中国造纸协会.中国造纸工业2012年度报告[J].造纸信息,2013,(6):11-22.
    [3]沈伊濛.阿拉伯联合酋长国年人均纸张消费量175kg[J].造纸信息,2013,(12):44.
    [4]杨懋暹.2020年中国造纸工业发展预测[J].中华纸业,2011,32(3):8-12.
    [5] Suess H U. Pulp bleaching today[M]. Berlin: De Gruyter,2010.
    [6] Holmbom B, Ekman R, Sj holm R, et al. Chemical changes in peroxide bleaching ofmechanical pulps[J]. Das Papier,1991,45(10A): V16-V22.
    [7] Br uer P, Kappel J, Holler M. Anionic trash in mechanical pulping systems[J]. Pulp&Paper Canada,2001,102(4):44-48.
    [8] Thornton J, Eckerman C, Ekman R. Effects of peroxide bleaching of spruce TMP ondissolved and colloidal organic substances[A]. Proceedings of6th ISWPC[C].Melbourne: Appita Inc.,1991,571-577.
    [9] Thornton J, Ekman R, Holmbom B, et al. Release of potential anionic trash in peroxidebleaching of mechanical pulp[J]. Paperi ja Puu,1993,75(6):426-431.
    [10] Kutney G W, Evans T D. Peroxide belaching of mechanical pulps.1. Alkali darkening-the effect of caustic soda[J]. Svensk Papperstidning-Nordisk Cellulosa,1985,88(6):R78-R82.
    [11] Abadie-Maumert F A, Soteland N. Bleaching of Mg-bisulphite pulps in one stage usingperoxide and magnesium oxide[A]. Proceedings of1985Internationa1Pulp BleachingConference[C]. Quebec: Tappi Press,1985,99-103.
    [12] Soteland N, Omholt I. Magnesium BCTMP[A]. Proceedings of Tappi PulpingConference[C]. Orlando: Tappi Press,1991.
    [13] Soteland N, Abadie Maumert F A, Arnevik T A. Use of MgO or CaO as the onlyalkaline source in peroxide bleaching of high yield pulps[A]. Proceedings of the1988International Bleaching Conference[C]. Orlando: Tappi Press,1988,231-236.
    [14] Suess H U, Del Grosso M, Schmidt K, et al. Options for bleaching mechanical pulpwith lower COD Load[A]. Proceedings of55th Appita Annual Conference[C]. Hobart:Appita Inc.,2001,419-425.
    [15] Dietz T, Schmidt K, Suss H U. Aspects of optimization of mechanical pulp bleaching-A comparison of alternative alkali sources for hydrogen peroxide bleaching[J]. DasPapier,2008,(12):39-43.
    [16] Dietz T, Hopf B, Schmidt K, et al. Aspects of optimisation of mechanical pulpbleaching with hydrogen peroxide[J]. Appita Journal,2009,62(5):335-338.
    [17] Johnson D A, Park S, Genco J M, et al. Hydrogen peroxide bleaching of TMP pulpsusing Mg(OH)2[A]. Tappi Pulping Conference Proceedings[C]. Atlanta: Tappi Press,2002,483-496.
    [18] Han S, Liu W, Wu S, et al. Investigation on the application of industrial grade MgO inthe alkaline peroxide bleaching of poplar CTMP[J]. Journal of Industrial andEngineering Chemistry,2014: in press.
    [19] Hietanen T M, sterberg M, Backfolk K A. Effects on pulp properties of magnesiumhydroxide in peroxide bleaching[J]. BioResources,2013,8(2):2337-2350.
    [20] Hou Q X, Yuan W, Zhang S Y, et al. Partially substituting MgO for NaOH as the alkalisource in the second-stage impregnation of triploid poplar P-RC APMP[J]. Industrial&Engineering Chemistry Research,2010,49(7):3088-3093.
    [21] Hu H, Zhang H. Substitution of sodium hydroxide with magnesium hydroxide as analkali source in the peroxide bleaching of softwood TMP[J]. Cellulose Chemistry&Technology,2009,43(7):325-330.
    [22] Vincent A, Rizzon E, Zooeff G. Magnesium oxide driven peroxide bleaching, aneconomical and environmentally viable process[A]. Proceedings of51st Appita AnnualGeneral Conference[C]. Melbourne: Appita Inc.,1997,411-418.
    [23] Burnet A, Fabry B, Ayala C, et al. New possibilities in bleaching wood-containing DIP:Alternative to alkaline peroxide bleaching[J]. Progress in Paper Recycling,2010,19(1):18-21.
    [24] Liu W, Hou Q X, Yang B, et al. Effluent characteristics and pulp properties changeswith the partially substituting MgO for NaOH in the high-consistency retention stage oftriploid poplar P-RC APMP[J]. Industrial&Engineering Chemistry Research,2011,50(4):1860-1865.
    [25] Ye L, Hou Q, Liu W, et al. Effect of partially substituting MgO for NaOH on bleachingof pine (Pinus massoniana) thermomechanical pulp[J]. Carbohydrate Polymers,2012,88(4):1435-1439.
    [26] Süss H U, Nimmerfroh N F, Kronis J D, et al. Substitution of caustic soda with soda ashin peroxide brightening of mechanical pulp[A]. Tappi Pulping ConferenceProceedings[C]. Atlanta: Tappi Press,1991,979-986.
    [27] Rudie A W, McDonough T J, Rauh F, et al. An evaluation of sodium carbonate as areplacement for sodium hydroxide in hydrogen peroxide bleaching of CTMP[J]. Journalof Pulp and Paper Science,1993,19(2): J47-J52.
    [28] Hafner V, Hoevels G, Hopf B, et al. Sodium carbonate as alkali source in bleachingmechanical pulp[J].1990,44(10):521-546.
    [29] Suess H U, Janik M. On the decomposition of hydrogen peroxide via theperoxocarbonic acid anion[J]. Technical Association of the Pulp and Paper Industry ofSouthern Africa,2009.
    [30]李海龙.碱法制浆过程中结垢离子的生成规律及数学模型的建立[D].广州:华南理工大学,2009.
    [31] Griffiths P, Abbot J. Magnesium oxide as a base for peroxide bleaching of radiata pineTMP[J]. Appita,1994,47(1):50-54.
    [32] Nustr m M, Pyk l inen J, Lehto J. Peroxide bleaching of mechanical pulp usingdifferent types of alkali[J]. Paperi ja Puu,1993,75(6):419-425.
    [33] He Z, Ni Y, Qian X. The strength properties of the bleached mechanical pulps from theMg(OH)2-based peroxide bleaching process[A]. Annual Meeting of the Pulp and PaperTechnical Association of Canada[C]. Montreal: Tappi Press,2005.
    [34] Savoye L, Petit-Conil M, Meyer V. Mechanisms of TMP peroxide bleaching usingMg-based alkalis[J]. Holzforschung,2011,65(6):797-803.
    [35] Liu Y, Chen K, Luo K, et al. Using Mg(OH)2in peroxide bleaching of wheat strawsoda-AQ pulp[J]. BioResources,2011,6(2):1230-1241.
    [36]迟聪聪,张曾. Mg(OH)2对松木CTMP H2O2漂白的影响[J].中国造纸,2007,26(8):10-12.
    [37] Maughan S, Beddoe E, Cox R E, et al. Use of magnesium oxide as an alkali for refinerbrightening of pinus radiata TMP[A]. Proceedings of the1992Appita Conference[C].Launceston: Appita Inc.,1992,123-129.
    [38] He Z, Wekesa M, Ni Y. Pulp properties and effluent characteristics from theMg(OH)2-based peroxide bleaching process[J]. Tappi Journal,2004,3(12):27-31.
    [39] Hietanen T, Tamper J, Backfolk K. Environmental benefits of magnesiumhydroxide-based peroxide bleaching of mechanical pulp-mill results[J]. Tappi Journal,2013,12(6):9-15.
    [40]侯庆喜,白亮亮,张红杰,等.镁碱替代钠碱对杨木P-RC APMP制浆废液的影响[J].中国造纸,2009,28(7):17-22.
    [41] Yu L, Rae M, Ni Y. Formation of oxalate from the Mg(OH)2-based peroxide bleachingof mechanical pulps[J]. Journal of Wood Chemistry and Technology,2004,24(4):341-355.
    [42] Yu L, Ni Y H. Decreasing calcium oxalate scaling by partial substitution of Mg(OH)2for NaOH in the peroxide bleaching of mechanical pulps[J]. Tappi Journal,2006,5(2):9-12.
    [43] Yu L, Ni Y. Partition of soluble and precipitated oxalate and its implication ondecreasing oxalate-related scaling during peroxide bleaching of mechanical pulps[J].Pulp&Paper Canada,2007,108(1):39-43.
    [44] Wong D F, Schmidt J A, Heitner C. Magnesium-based alkalis for hydrogen peroxidebleaching of mechanical pulps[J]. Pulp&Paper Canada,2006,107(12):68-73.
    [45] Li Z, Court G, Belliveau R, et al. Using magnesium hydroxide(Mg(OH)2)as the alkalisource in peroxide bleaching at Irving Paper [J]. Pulp&Paper Canada,2005,106(6):125-129.
    [46] He Z, Wekesa M, Ni Y. A comparative study of Mg (OH)2-based and NaOH-basedperoxide bleaching of TMP: Anionic trash formation and its impact on filler retention[J].Pulp&Paper Canada,2006,107(3):29-32.
    [47] Thakore A, Oei J, Ringrose B, et al. The use of magnesium hydroxide as a costeffective cellulose protector in the pressurized alkaline peroxide (Eop) bleachingstage[J]. Pulp&Paper Canada,2005,106(5):46-49.
    [48] Petrie T, Gibson A, Schmidtchen P, et al. Magnesium hydroxide: An alternativechemical for pulp bleaching[A]. Proceedings of Tappi Engineering, Pulping,Environmental Conference[C]. Philadelphia: Tappi Press,2005.
    [49] Zhang J X, Ni Y, Zhou Y, et al. Mg(OH)2-based peroxide process for a CTMPhardwood pulp[A]. Proceedings of Paptac Annual Meeting[C]. Montreal: Tappi Press,2004.
    [50] Yu L, Ni Y H. Oxalate formation during peroxide bleaching of mechanical pulps[J].Appita Journal,2005,58(2):138-142,148.
    [51] Yu L. Oxalate related scaling and its inhibition during peroxide bleaching ofmechanical pulps[D]. New Brunswick: University of New Brunswick,2005.
    [52] He Z, Qian X, Ni Y. The tensile strength of bleached mechanical pulps from theMg(OH)2-based and NaOH-based peroxide bleaching processes[J]. Journal of Pulp andPaper Science,2006,32(1):47-52.
    [53] Zhang J X, Yu L, Ni Y, et al. Calcium oxalate related scaling in a BCTMP line[J]. Pulp&Paper Canada,2006,107(1):52-55.
    [54] Knecht J. Magnesium hydroxide: An alternative alkali source in hydrogen peroxidebleaching of wood pulp[A]. Proceedings of International Mechanical PulpingConference[C]. Minneapolis: Tappi Press,2007.
    [55] He Z, Yang Y, Ni Y. Comparison of oxalate formation in peroxide bleaching ofsoftwood and hardwood mechanical pulps[J]. Journal of Pulp and Paper Science,2008,34(3):153-160.
    [56] He Z, Ni Y. Peroxide bleaching of eucalyptus CTMP using magnesium hydroxide asthe alkali source[J]. Appita Journal,2008,61(6):450-455,460.
    [57] Wang H, He Z, Ni Y. A kinetic model of the magnesium hydroxide-based peroxidebleaching process of a TMP[J]. Journal of Wood Chemistry and Technology,2008,28(1):55-65.
    [58] Kong F, Ni Y, He Z. A partial magnesium hydroxide substitution for sodium hydroxidein peroxide bleaching of an aspen CTMP[J]. Journal of Wood Chemistry andTechnology,2009,29(2):136-149.
    [59] Zeinaly F, Shakles J, Firozabadi M D, et al. Hydrogen peroxide bleaching of CMP pulpusing magnesium hydroxide[J]. BioResources,2009,4(4):1409-1416.
    [60] Ghasemi S, Behrooz R, Fatehi P, et al. Impact of acid washing and chelation onMg(OH)2-based hydrogen peroxide bleaching of mixed hardwoods CMP at a highconsistency[J]. BioResources,2010,5(4):2258-2267.
    [61] Gorski D, Engstrand P, Hill J, et al. Mg(OH)2-based hydrogen peroxide refinerbleaching: influence of extractives content in dilution water on pulp properties andenergy efficiency[J]. Appita Journal,2010,63(3):218-225.
    [62] Leduc C, Martel J, Daneault C. Efficiency and effluent characteristics fromMg(OH)2-based peroxide bleaching of high-yield pulps and deinked pulp[J]. CelluloseChemistry&Technology,2010,44(7-8):271-276.
    [63] He Z, Ni Y, Zhang E. Comparison of oxalate formation from spruce TMP:Conventional peroxide bleaching process versus the PMprocess[J]. Journal of Pulp andPaper Science,2003,29(12):391-394.
    [64] Gibson A, Wajer M. The use of magnesium hydroxide as an alkali and celluloseprotector in chemical pulp bleaching[J]. Pulp&Paper Canada,2003,104(11):28-32.
    [65] Hart P W, Rudie A W. Mineral scale management, Part1. Case studies[J]. TappiJournal,2006,5(6):22-27.
    [66] Ulmgren P, Radestrom R. On the formation of oxalate in bleach plant filtrates on hotstorage[J]. Nordic Pulp&Paper Research Journal,2000,15(2):128-132.
    [67] Elsander A, Ek M, G G. Oxalic acid formation during ECF and TCF bleaching of kraftpulp[J]. Tappi Journal,2000,83(2):73-77.
    [68] H r M, Sundberg A, Willf r S. Calcium oxalate-a source of "hickey" problems-Aliterature review on oxalate formation, analysis and scale control[J]. Nordic Pulp&Paper Research Journal,2011,26(3):263-282.
    [69] Süss H U, Nimmerfroh N, Hopf B. Bleaching of wastepaper pulp-chances andlimitations[A].4th Pira International Wastepaper Conference[C]. London: PiraInternational,1995.
    [70] Vincent A, Khong C, Rizzon E. FAS (thiourea dioxide) bleaching of recycled pulp[J].Appita Journal,1997,50(5):393-399.
    [71] Dorris G, Ben Y, Richard M. Overview of flotation deinking[J]. Progress in PaperRecycling,2011,20(1):3-42.
    [72]王秀英.废纸回收利用技术的现状与未来发展方向探讨[J].林业科技情报,2006,(3):110-111.
    [73] Misman M, Alwi S R, Manan Z A. State-of-the-art for paper recycling[A]. InternationalConference on Science and Technology [C]. Pulau Pinang: Universiti Teknologi Mara,2008.
    [74]国家发展改革委,工业和信息化部,国家林业局.造纸工业发展“十二五”规划[J].中华纸业,2012,33(1):8-20,5.
    [75]何北海.造纸原理与工程[M].第三版,北京:中国轻工业出版社,2011.
    [76]张凤山.废纸再生新闻纸生产过程中胶黏物的表征和控制[D].南京:南京林业大学,2010.
    [77]中国造纸协会.中国造纸工业2011年度报告[J].中华纸业,2012,33(11):12-22.
    [78]曹振雷.中国造纸年鉴2012[M].北京:中国造纸年鉴社,2012.
    [79]环境保护部.造纸行业废纸制浆及造纸工艺污染防治可行技术指南(试行)[R].2013.
    [80]陈嘉翔.油墨粒子的不可逆再沉积对再生浆白度的影响[J].中国造纸,2000,19(5):54-60.
    [81] Hsieh J S, Agrawal C, Maurer R W, et al. The effectiveness of TAED on the peroxidebleaching of mechanical, chemical, and recycled pulp[J]. Tappi Journal,2006,5(9):27-32.
    [82] Dence C W, Reeve W D. Pulp bleaching principles and practice[M]. Atlanta: TappiPress,1996.
    [83] Gierer J. Basic principles of bleaching[J]. Holzforschung,1990,44(6):395-400.
    [84] Hanchett G D. Bleaching and color stripping of recycled fibers: An overview[J].Progress in Paper Recycling,1994,3(2):24-31.
    [85] Behrooz R, Ghasemi S, Atoii G A, et al. Mg(OH)2-based hydrogen peroxide bleachingof CMP pulps at high consistency[J]. BioResources,2012,7(1):161-172.
    [86] Takagi J, Ishigure K. Thermal decomposition of hydrogen peroxide and its effect onreactor water monitoring of boiling water reactors[J]. Nuclear Science and Engineering,1985,89(2):177-186.
    [87] Mathur I, Dawe R. Using on-site-produced alkaline peroxide for pulp bleaching[J].Tappi Journal,1999,82(3):157-164.
    [88]李金宝,张美云,修慧娟.过氧化氢漂白中金属离子的影响及控制[J].西南造纸,2004,33(3):41-43.
    [89] Lapierre L, Bouchard J, Berry R M, et al. Chelation prior to hydrogen peroxidebleaching of kraft pulps: an overview[J]. Journal of Pulp and Paper Science,1995,21(8):J268-J273.
    [90] Fairbank M G, Colodette J L, Ali T, et al. The role of silicate in peroxide brightening ofmechanical pulp. IV: The role of silicate as a buffer during peroxide brightening[J].Journal of Pulp and Paper Science,1989,15(4): J132-J135.
    [91] Palenik J. Susceptibility of deinked waste paper mass to peroxide bleaching[J]. Fibres&Textiles in Eastern Europe,2008,16(4):112-116.
    [92] Granfeldt T, Grunstr m P, Lary E. High brightness bleaching of mixed office waste[J].Pulp&Paper Canada,1997,98(1):62-67.
    [93] Sundberg K E, Holmbom B R, Pranovich A V. Chemical changes in thermomechanicalpulp at alkaline conditions[J]. Journal of Wood Chemistry and Technology,2003,23(1):89-112.
    [94] He Z, Ni Y, Zhang E. Further understanding on the cationic demand of dissolvedsubstances during peroxide bleaching of a spruce TMP[J]. Journal of Wood Chemistryand Technology,2005,24(2):153-168.
    [95] He Z, Ni Y, Zhang E. Alkaline darkening and its relationship to peroxide bleaching ofmechanical pulp[J]. Journal of Wood Chemistry and Technology,2005,24(1):1-12.
    [96]卢雪梅,任秋婷,高培基.关于返黄和返黄抑制效果评价方法的讨论[J].中国造纸学报,2005,13(B12):83-86.
    [97] Leary G J. The yellowing of wood by light: Part II[J]. Tappi,1968,51(6):257-260.
    [98] Pan X, Ragauskas A J. Brightness reversion of mechanical pulps. IV: A study on theaction of thiols and disulphides on hardwood BCTMP[J]. Journal of Pulp and PaperScience,1995,21(1): J25-J29.
    [99] Rollinson S M. An investigation of accelerated brightness reversion of bleached slashpine kraft pulp [D]. Wisconsin: Lawrence College,1954.
    [100] Houdlette G R. Controlling inorganic scale deposits increases bleach plantproductivity[J]. Pulp and Paper,1985,59(6):154-157.
    [101] Ester D R. Reduction of bleach plant deposits yields better pulp, less downtime[J]. Pulpand Paper,1994,68(9):135-137.
    [102] Krasowski J A, Marton J. The formation of oxalic acid during bleaching of kraft pulp[J].Journal of Wood Chemistry and Technology,1983,3(4):445-458.
    [103]张曾.硅酸钠与过氧化氢漂白的结垢[J].纸和造纸,1998,(1):12-13.
    [104] Keitaanniemi O, Virkola N E. Amounts and behaviour of certain chemical elements inkraft pulp manufacture: Results of a mill scale study[J]. Paperi ja Puu,1978,60(9):507-522.
    [105] Magnusson H, Mork K, Warnqvist B. Non-process chemical elements in the kraftrecovery system[A]. Proceedings of the1979Tappi Pulping Conference[C]. Atlanta:Tappi Press,1979,77-82.
    [106] Paulonis M A, Krishnagopalan G A. Kraft white and green liquor composition analysis.I: Discrete sample analyzer[J]. Journal of Pulp and Paper Science,1994,20(9):J254-J258.
    [107] Elsander A, Ek M, Gellerstedt G. Oxalic acid formation during ECF and RCF bleachingof kraft pulp[J]. Tappi Journal,2000,83(2):56,58,61,63,73-77.
    [108] Terelius H, Nilsson M, Blomberg T. Calcium oxalate in mechanical pulp[A].Proceedings of International Mechanical Pulping Conference[C]. Helsinki: Finish PulpPaper Res Inst Oy Keskuslaboratorio Centrallaespoo,2001,125-132.
    [109] Filipe D S, Nils-Olov N, Anders R. Method for lowering the level of oxalic acid[P].1998年2月26日.
    [110] Bailey C W, Dence C W. Reactions of alkaline hydrogen peroxide with softwood ligninmodel compounds, spruce milled-groundwood lignin, and spruce groundwood[J]. TappiJournal,1969,52(3):491-500.
    [111]王竹清.废纸使用过程中我们要重视的几个问题[J].上海造纸,2005,35(3):14-15.
    [112] Leduc C, Lanteigne-Roch L, Daneault C. Use of enzymes in deinked pulp bleaching[J].Cellulose Chemistry and Technology,2011,45(9):657-663.
    [113]云娜,陈思杰,钟愉曾,等.废纸脱墨浆FAS漂白及TAED活化H2O2两段漂白的实验研究[J].造纸科学与技术,2010,29(6):29-32.
    [114]云娜,黎炜华,王聪超,等. TAED活化过氧化氢漂白废纸浆的研究[J].华东纸业,2010,41(6):54-56.
    [115]覃程荣,杨丽,李春燕,等.过渡金属离子对废纸浆H2O2漂白的影响[J].广西大学学报(自然科学版),2008,33(2):156-158.
    [116]周辉,刘忠,马滢,等.氢氧化镁及其在造纸工业中的应用[J].黑龙江造纸,2009,36(4):31-34.
    [117]徐宝强.阻燃级超微氢氧化镁的制备研究[D].昆明:昆明理工大学,2005.
    [118]金永成,向兰.硫氢化物-水热法制备氢氧化镁的过程研究[J].海湖盐与化工,2003,32(2):1-3.
    [119]陈为健,刘小婧,程贤甦.酶解木质素/氢氧化镁复合材料的制备及阻燃性能研究[J].橡胶科技,2014,12(1):21-25.
    [120]马颖颖,衣守志.氢氧化镁在水处理中应用研究新进展[J].盐业与化工,2007,36(2):39-42.
    [121]黄六莲,余水洪. FAS漂白效能的影响因素[J].福建林学院学报,2006,26(2):140-143.
    [122]武兵. CIELAB均匀色空间在印刷中的应用[J].印刷质量与标准化,2003,(5):14-17.
    [123]高扬,陈嘉翔.甘蔗渣SCMP的过氧化氢漂白与颜色[J].中国造纸,1994,13(3):63-64.
    [124] Fahrenfort J. Attenuated total reflection: A new principle for the production of usefulinfra-red reflection spectra of organic compounds[J]. Spectrochimica Acta,1961,17(7):698-709.
    [125]黄红英,尹齐和.傅里叶变换衰减全反射红外光谱法(ATR-FTIR)的原理与应用进展[J].中山大学研究生学刊(自然科学、医学版),2011,32(1):20-31.
    [126]张勇,曹春昱,冯文英,等. ATR-FTIR分析技术在制浆造纸工业中的研究与应用[J].光谱学与光谱分析,2011,31(3):652-655.
    [127] Tshabalala M A, Jakes J, VanLandingham M R, et al. Handbook of wood chemistry andwood composites.8Surface Characterization[M]. Florida: CRC Press LLC,2005.
    [128] Rauvanto I. The effect of oxygen delignification on fiber properties in kraft pulpproduction-A review[R]. Lappenranta: Lappeenranta University of Technology,2003.
    [129] Yun N. Research on the distribution of mineral elements in wheat straw[A].Proceedings of16th ISWFPC[C]. Tianjin: China Light Industry Press,2011.
    [130]杜官本.表面光电子能谱(XPS)及其在木材科学与技术领域的应用[J].木材工业,1999,13(3):17-20.
    [131] Dorris G M, Gray D G. Surface analysis of paper and wood fibres by ESCA (electronspectroscopy for chemical analysis). I. Application to cellulose and lignin[J]. CelluloseChemistry and Technology,1978,12(1):9-23.
    [132] Dorris G M, Gray D G. Surface analysis of paper and wood fibres by ESCA. II. Surfacecomposition of mechanical pulps[J]. Cellulose Chemistry and Technology,1978,12(6):721-734.
    [133] Gray D G. Surface analysis of paper and wood fibres by ESCA. III. Interpretation ofcarbon (1s) peak shape[J]. Cellulose Chemistry and Technology,1978,12(6):735-743.
    [134] Laine J, Stenius P, Carlsson G, et al. Surface characterization of unbleached kraft pulpsby means of ESCA[J]. Cellulose,1994,1(2):145-160.
    [135] Orblin E, Fardim P. Surface chemistry of deinked pulps as analysed by XPS andToF-SIMS[J]. Surface and Interface Analysis,2010,42(12-13):1712-1722.
    [136]王进,陈克复,杨仁党,等.扫描电镜和X射线能谱应用于涂布纸涂层的分析[J].造纸科学与技术,2005,24(2):9-12.
    [137] Koljonen K, Osterberg M, Johansson L S, et al. Surface chemistry and morphology ofdifferent mechanical pulps determined by ESCA and AFM[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,228(1-3):143-158.
    [138] Fardim P, Gustafsson J, von Schoultz S, et al. Extractives on fiber surfaces investigatedby XPS, ToF-SIMS and AFM[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2005,255(1):91-103.
    [139] McGarry P, Heitner C, Schmidt J, et al. A dramatic solvent effect on high-yield pulpyellowing inhibition for a benzophenone-based ultraviolet absorber[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2002,151(1):145-155.
    [140] Fang G, Castellan A, Shen Z. Brightness stabilizing effect of UV-absorbers and radicaltrapper on poplar APMP pulps[J]. Chemistry and Industry of Forest Products,2000,20(1):33-40.
    [141]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2006.
    [142] Lapierre L, Berry R, Bouchard J. The effect of magnesium ions and chelants onperoxide bleaching[J]. Holzforschung,2003,57(6):627-633.
    [143] Tamper J. Water circulations for effective bleaching of high-brightness mechanicalpulps[M]. Lappeenranta: Lappeenranta University of Technology,2009.
    [144] Colodette J L, Rothenberg S, Dence C W. Factors affecting hydrogen peroxide stabilityin the brightening of mechanical and chemimechanical pulps. III: Hydrogen peroxidestability in the presence of magnesium and combinations of stabilizers[J]. Journal ofPulp and Paper Science,1989,15(2): J45-J51.
    [145] Prasakis J, Sain M, Daneault C. Metal management improves peroxide bleaching ofTMP[J]. Tappi Journal,1996,79(10):161-166.
    [146] Lapierre L, Paleologou M, Berry R M, et al. The limits of metal removal from kraftpulp by acid treatment[J]. Journal of Pulp and Paper Science,1997,23(11): J539-J542.
    [147] Ni Y, Li Z, Jiang Q, et al. Improved transition metal removal in a reducingagent-assisted chelation stage: a laboratory study[J]. Pulp&Paper Canada,1998,99(8):77-80.
    [148] Wekesa M, Ni Y. Further understanding of the chemistry of manganese‐inducedperoxide decomposition[J]. The Canadian Journal of Chemical Engineering,2003,81(5):968-972.
    [149] Ni Y, Ju Y, Ohi H. Further understanding of the manganese-induced decomposition ofhydrogen peroxide[J]. Journal of Pulp and Paper Science,2000,26(3):90-94.
    [150] Kangas H, Robertsen L, Vuorinen T. The effect of transition metal ions on the kraftpulping process[J]. Paperi ja Puu,2002,84(7):473-477.
    [151] Babineau K, Ni Y, Sain M M. Effect of acid treatment on removal of anionic trashesfrom bleached mechanical pulps and the characteristics[J]. Pulp&Paper Canada,2003,104(7):31-33.
    [152] Bouchard J, Nugent H M, Berry R M. A comparison between acid treatment andchelation prior to hydrogen peroxide bleaching of kraft pulps[J]. Journal of Pulp andPaper Science,1995,21(6): J203-J208.
    [153] Ringbom A. Complexation in analytical chemistry[M]. New York: Wiley,1963.
    [154] Granholm K, Harju L, Ivaska A. Desorption of metal ions from kraft pulps. Part1.Chelation of hardwood and softwood kraft pulp with EDTA[J]. BioResources,2010,5(1):206-226.
    [155] Abbot J, Hobbs G C. The influence of metal ions on two-stage peroxide bleaching ofradiata pine TMP[J]. Journal of Pulp and Paper Science,1992,18(2): J67-J70.
    [156] Abbot J. Catalytic decomposition of alkaline hydrogen peroxide in the presence ofmetal ions: binuclear complex formation[J]. Journal of Pulp and Paper Science,1991,17(1): J10-J17.
    [157]张曾,张厚民, Jameel H.压力高温H2O2漂白中金属离子的影响[J].中国造纸,1998,17(4):14-17.
    [158]余家鸾.造纸纤维原料及纸浆中的木素-碳水化合物复合体[J].广东造纸,1998,(4):4-8.
    [159] Kimura F, Kimura T, Gray D G. FT-IR study of the effect of irradiation wavelength onthe colour reversion of thermomechanical pulps[J]. Holzforschung,1994,48(4):343-348.
    [160] Pandey K K. A study of chemical structure of soft and hardwood and wood polymersby FTIR spectroscopy[J]. Journal of Applied Polymer Science,1999,71(12):1969-1975.
    [161]杨崎峰,詹怀宇,王双飞,等.纤维的表面性能及表面分析技术[J].中国造纸学报,2006,20(2):189-193.
    [162]宋先亮,殷宁.回用纤维表面的物理和化学变化[J].中国造纸学报,2007,22(1):12-15.
    [163] Brinen J S. The observation and distribution of organic additives on paper surfacesusing surface spectroscopic techniques[J]. Nordic Pulp&Paper Research Journal,1993,8(1):123-129.
    [164] Orblin E, Eta V, Fardim P. Surface chemistry of vessel elements by FE-SEM, μ-XPSand ToF-SIMS[J]. Holzforschung,2011,65(5):681-688.
    [165] Johansson L, Campbell J M, Koljonen K, et al. Evaluation of surface lignin on cellulosefibers with XPS[J]. Applied Surface Science,1999,144-145(2):92-95.
    [166] Fardim P, Hulten A H, Boisvert J, et al. Critical comparison of methods for surfacecoverage by extractives and lignin in pulps by X-ray photoelectron spectroscopy(XPS)[J]. Holzforschung,2006,60(2):149-155.
    [167] Gustafsson J, Ciovica L, Peltonen J. The ultrastructure of spruce kraft pulps studied byatomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS)[J].Polymer,2003,44(3):661-670.
    [168] Duchesne L, Daniel G, Van Leerdam G C, et al. Surface chemical composition andmorphology of ITC kraft fibres as determined by XPS and FE-SEM[J]. Journal of Pulpand Paper Science,2003,29(3):71-76.
    [169] Kleen M, Sjoberg J, Dahlman O, et al. The effect of ECF and TCF bleaching on thechemical composition of soda-anthraquinone and kraft pulp surfaces[J]. Nordic Pulp&Paper Research Journal,2002,17(3):357-363.
    [170] Freudenberg K, Neish A C. Constitution and biosynthesis of lignin in molecular biology,biochemistry and biophysics, vol.2[M]. New York: Springer-Verlag,1969.
    [171] Johansson L. Monitoring fibre surfaces with XPS in papermaking processes[J].Microchimica Acta,2002,138(3-4):217-223.
    [172] Kallavus U, Gravitis J. A comparative investigation of the ultrastructure of steamexploded wood with light, scanning and transmission electron microscopy[J].Holzforschung,1995,49(2):182-188.
    [173] Perkins M C, Roberts C J, Briggs D, et al. Surface morphology and chemistry of Prunuslaurocerasus L. leaves: a study using X-ray photoelectron spectroscopy, time-of-flightsecondary-ion mass spectrometry, atomic-force microscopy and scanning-electronmicroscopy[J]. Planta,2005,221(1):123-134.
    [174] Buchanan J G, Washburn O V. The surface and tensile fractures of chemical fiberhandsheets as observed with the scanning electron microscope[J]. Pulp&PaperMagazine of Canada,1962,63(10): T485-T493.
    [175] Touzinsky G F, Baker F L, Cunningham R L, et al. Scanning electron microscopy ofkenaf paper structures[J]. Journal of Agricultural and Food Chemistry,1977,25(4):734-738.
    [176] Enomae T, Lepoutre P. Observation of the swelling behavior of kraft fibres and sheetsin the environmental scanning electron microscope[J]. Nordic Pulp&Paper ResearchJournal,1998,13(4):280-284.
    [177] Leary G J. Recent progress in understanding and inhibiting the light-induced yellowingof mechanical pulps[J]. Journal of Pulp and Paper Science,1994,20(6): J154-J160.
    [178] Rosu D, Teaca C, Bodirlau R, et al. FTIR and color change of the modified wood as aresult of artificial light irradiation[J]. Journal of Photochemistry and Photobiology B:Biology,2010,99(3):144-149.
    [179] Pandey K K. Study of the effect of photo-irradiation on the surface chemistry ofwood[J]. Polymer Degradation and Stability,2005,90(1):9-20.
    [180] Müller U, R tzsch M, Schwanninger M, et al. Yellowing and IR-changes of sprucewood as result of UV-irradiation[J]. Journal of Photochemistry and Photobiology B:Biology,2003,69(2):97-105.
    [181] Zou X. During storage and shipping, nitrogen oxides can cause rapid yellowing anddegradation of pulp and paper products[J]. Pulp&Paper Canada,2004,105(3):51-54.
    [182]谭本祝,江燕斌.混合办公废纸脱墨漂白浆的返黄研究[J].造纸科学与技术,2002,21(3):14-15.
    [183] Kimura F, Kimura T, Gray D G. A kinetic analysis of the changes in infra-red spectra ofmechanical pulps during irradiation[J]. Holzforschung,1995,49(2):173-178.
    [184] Gellerstedt G, Zhang L. Formation and reactions of leucochromophoric structures inhigh yield pulping[J]. Journal of Wood Chemistry and Technology,1992,12(4):387-412.
    [185] Agarwal U P. Assignment of the photoyellowing-related1675cm-1Raman/IR band top-quinones and its implications to the mechanism of color reversion in mechanicalpulps[J]. Journal of Wood Chemistry and Technology,1998,18(4):381-402.
    [186] Leary G J. Quinone methides and the structure of lignin[J]. Wood Science andTechnology,1980,14(1):21-34.
    [187] Lebo S E, Lonsky W F, McDonough T J, et al. The occurrence and light-inducedformation of ortho-quinonoid lignin sttructures in white spruce refiner mechanicalpulp[J]. Journal of Pulp and Paper Science,1990,16(5): J139-J143.
    [188] Argyropoulos D S, Heitner C, Schmidt J A. Observation of quinonoid groups during thelight-induced yellowing of softwood mechanical pulp[J]. Research on ChemicalIntermediates,1995,21(3-5):263-274.
    [189] Agarwal U P, McSweeny J D. Photoyellowing of thermomechanical pulps: Lookingbeyond α-carbonyl and ethylenic groups as the initiating structures[J]. Journal of WoodChemistry and Technology,1997,17(1-2):1-26.
    [190] Owen N L, Thomas D W. Infrared studies of infrared studies of "hard" and "soft"woods[J]. Applied spectroscopy,1989,43(3):451-455.
    [191] Hergert H L. Infrared spectra[M]. New York: Wiley,1971.
    [192] Marton J, Sparks H E. Determination of lignin in pulp and paper by infrared multipleinternal reflectance[J]. Tappi,1967,50(7):363-367.
    [193] Kimura F, Kimura T, Gray D G. FT-IR study of UV-irradiated stoneground woodpulp[J]. Holzforschung,1992,46(6):529-532.
    [194] Naruta Y, Maruyama K, Patai S, et al. The Chemistry of the Quinonoid Compounds,Vol.2[M]. London: John Wiley&Sons Ltd.,1988.
    [195] Gierer J, Yang E, Reitberger T. On the significance of the superoxide radical (O2./HO2.) in oxidative delignification, studied with4-t-butylsyringol and4-t-butylguaiacol.Part I. The mechanism of aromatic ring opening[J]. Holzforschung,1994,48(5):405-414.
    [196] Agnemo R, Gellerstedt G. The reactions of lignin with alkaline hydrogen peroxide. PartII. Factors influencing the decomposition of phenolic structures[J]. Acta ChemicaScandinavica. Series B: Organic Chemistry&Biochemisry,1979,33:337-342.
    [197] Rudie A W, Hart P W. Mineral scale management Part II. Fundamental chemistry[J].Tappi Journal,2006,5(7):17-23.
    [198] Rudie A W, Hart P W. Mineral scale management Part III. Nonprocess elements in thepaper industry[J]. Tappi Journal,2006,5(8):3-9.
    [199]胡会超.静态顶空分析的新理论、新技术及其在制浆造纸中的应用[D].广州:华南理工大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700