用户名: 密码: 验证码:
异氰酸酯与纤维素反应产物结构及聚氨酯对木材胶接机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯胶黏剂(PU)是适用于多种基材及不同材质间粘接且性能优异的胶黏剂,用于木制品加工业替代传统的三醛胶具有重要的经济和社会效益。但是PU价格昂贵,目前我国将其用于木材加工业还很有限,研究PU对木材的胶接机理,对于PU的设计开发、降低成本具有重要意义。研究PU对木材胶接机理遇到的主要困难是:木材多孔且组成复杂,PU又有极其活泼的异氰酸酯官能团(-NCO),使各种粘接作用不能分离;没有准确测定胶接强度的测试技术。本文创新性地巧妙地设计制备各种模型物模拟木材和PU以分解胶黏剂对木材的不同胶接作用,创新性地使用反相气相色谱(IGC)技术研究界面吸附作用机理,用扫描电镜(SEM)、X-射线衍射(XRD)、X光电子能谱(XPS)结合胶接强度测试深入研究了胶接的机械互锁机理和界面扩散机理,用交叉极化魔角旋转核磁共振(15N、13C CP/MAS NMR)、红外光谱(FTIR)表征了苯基异氰酸酯与(含水)纤维素反应产物的结构,并研究了胶接的化学键作用机理。
     用木材中的主要组分且化学结构明确的纤维素模拟木材,用不能交联且活性唯一的单官能团的苯基异氰酸酯(PI)模拟PU,研究PU对木材胶接的化学键作用机理。用15N和13C交叉极化魔角旋转核磁共振(15N、13C CP/MAS NMR)和傅里叶变换红外光谱(FTIR)表征了98%15N标记的PI与(含水)微晶纤维素反应产物的结构,并且详细研究了纤维素湿含量、反应温度、反应时间、反应物配比等条件对反应的影响。研究发现PI能与绝干纤维素反应生成(二)脲基甲酸酯和氨基甲酸酯,但是与含水纤维素反应时在低温(<130℃)短时间(<4 h)PI主要与水反应生成脲和二脲为主,而在高温长时间主要得到脲和氨基甲酸酯,证明了PU对木材胶接存在化学键作用。但是,一般木材含水率8%-12%、胶合热压温度120℃、热压时间3 min,则聚氨酯与木材反应形成的化学键很少。
     用IGC技术测定了水曲柳、杨木、桦木、-NCO含量不同的固化PU和固化酚醛胶(PF)的表面色散自由能及表面酸碱性,研究PU对木材粘接的吸附作用机理。结果表明这几种木材属于高表面能且表面酸性占优势的两性材料,而固化的PU和PF都是表面碱性占优势的两性材料,PU的表面色散自由能随-NCO含量增加变化很大。测得水曲柳、杨木和固化PU的表面自由能及其色散分量和酸碱分量,表明色散分量大于酸碱分量,测出水曲柳/PU、杨木/PU界面的粘附功,粘附功的色散分量是酸碱分量的5-6倍。证明了PU对木材粘接存在吸附作用,色散吸附作用远大于酸碱吸附作用。
     应用SEM和XPS技术分别观察了木材胶合板断面的形貌,研究胶接的机械互锁作用机理。选择不与PU发生化学键作用和酸碱作用的聚乙烯(PE)制备表面光滑、表面打磨、内部气室、孔隙连通的各种PE板模拟木材,用PU粘接成PE胶合板,测试其剪切强度。SEM观察到桦木胶合板胶接断面胶黏剂沿木材表面的空隙流经木材导管、导管壁上的纹孔以及梯状穿孔进入木材内部,在胶接断面的胶面看到从木材的梯度穿孔中拔出的胶钉,揭示了在木材胶接面一定厚度形成了胶黏剂在木材中的“半互穿网络”;PE胶合板的剪切强度随PE板粗糙度增加、孔径增大、孔隙率加大而提高。这些实验结果证明了胶黏剂粘接木材的机械互锁作用机理。在不存在化学作用和吸附的酸碱作用,扩散作用加色散作用比机械互锁作用对胶接强度贡献更大。
     用PU/纤维素膜模型物以消除界面机械互锁作用,研究了粘接的界面扩散机理。SEM观察固化的PU/纤维素膜界面形貌,140℃固化的试件界面模糊,100℃固化的试件界面清晰,证明高温固化界面发生了扩散作用。而纤维素膜/PF界面见有裂缝,证明PU比PF对纤维素的扩散作用更强。用SEM的电子能谱分析仪,测出140℃固化纤维素膜/PU试件的PU在纤维素膜中的扩散厚度为300 nm。XRD测试出纤维素膜的结晶度很低表明PU在纤维素膜的无定形区扩散,揭示PU在木材中穿越无定形区扩散。用没有-NCO的PU粘附纤维素膜并固化,然后浸入溶剂中溶解再淋洗掉表面胶层,XPS测得膜表面N含量随着固化温度的升高和时间的延长而增加,甚至高于PU本体的N含量。证明了在固化过程中PU分子链的扩散作用且固化的PU逐渐发生了相分离。通过纤维素膜胶接件的强度测试数据和胶接件断裂模式分析,表明温度提高有利于分子链段扩散,-NCO含量高导致过度交联不利于PU的微观相分离从而使胶接强度下降,固化温度和PU中软硬段的比例是影响扩散的重要因素,扩散作用是影响胶接强度的主要作用。
     本文通过创新地设计制备模型物、创新性地运用先进的测试技术、巧妙地设计实验、深入系统地进行理论研究,得出创新性的研究成果。揭示了聚氨酯胶黏剂粘接木材存在化学键机理、吸附机理、机械互锁机理和扩散机理,各种作用对胶接强度的贡献有如下顺序:扩散作用>吸附作用(色散作用>酸碱作用)>机械互锁作用>化学键作用。
Polyurethane (PU) is a high-performance adhesive which can be applied to bond a variety of materials and different substrate materials. The application of PU in woodwork industry to replace three traditional aldehyde adhesives archives remarkable economic and social benefits. However, its application to furniture industry is restricted in our country by its high cost. It is considerably valuable for researching the adhesion mechanism of PU for wood and developing advanced and low cost PU. The primary difficulty lying in research of the adhesion mechanism of PU to wood are as the follows:first, none of adhesion reactions can be separated because the woods are porous and complex in component, and PU has the reactive functional group-NCO; second, there are no accurate test technology for adhesion strength. In this paper, a novel method of modeling wood and PU by decomposing and substituting the wood by components which have pre-defined similar characteristics was developed and hence different adhesion reactions were decoupled. Inverse gas chromatography (IGC) was used to research the mechanism of interfacial adsorption in originality and scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), combined with the test of the mechanics performance were applied in the research of the adhesion mechanism of mechanical anchoring and interfacial diffusion in depth, respectively. Products structures of phenly isocyanate reacting with cellulose were also characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), and the mechanism of chemical bonding were investigated.
     The chemical mechanism of PU boning wood was studied by modeling wood by cellulose, which is the main composition in wood and has a thorough defined chemical structure, and by modeling PU using phenyl isocyanate (PI), which is a compound with mono functional group, so that PI cannot cure crosslinking and the -NCO reactivity is unique. The product structures of 98% 15N-labelled PI reacting with microcrystalline cellulose with different moisture contents were characterized by applying 15N and 13C CP/MAS NMR and FTIR. The effects of moisture content of woods, reaction temperature and time etc. on reaction were studied in detail. It was found that PI reacts with anhydrous cellulose and produces (bi)allophanate, and urethane, however, PI reacts with water predominantly as using hydrous cellulose and results in urea and biuret. At lower temperature (<130℃) and short time (<4 h) PI reacts mostly with water, while the urea and urethane are main products at high temperature and long time. The chemical bonding exists between wood and PU, but the chemical bonds is less for the PU bonding wood with the moisture content mostly within 8%-12%.
     The adsorption mechanism of PU bonding woods was studied by means of IGC in order to determine the surface dispersive free energy, surface acidity and basicity of the fraxinus manshurica, birch, poplar and cured phenol formaldehyde adhesives (PF) and cured PU at various-NCO content. The results indicate that these three kinds of woods have high surface energy and are acidity dominant amphiprotic materials, whereas cured PU and PF were basicity dominant amphiprotic materials, and the surface dispersive free energy of PU varied largely due to a increasing content of -NCO. The surface free energy of the fraxinus manshurica, poplar and cured PU was determined, and it was found that the dispersive component was larger than the acidic-basic components. Test of the interface adhesive works of fraxinus manshurica/PU and poplar/PU revealed the dispersive component of their adhesive works was 5-6 times larger than the acidic-basic components. The results demonstrated the existence of adsorptive interactions of PU boning wood and dispersive reactions of adsorptive were far more than acidic-basic interactions.
     The mechanical anchoring mechanism of adhesion were studied by observing the cross section morphology of plywood using SEM, and by combing with the test of adhesion strength of PU bonding PE boards made by polyethene (PE) boards, which were prepared to surface glazed, surface rough, inner air chamber or porosity connected. PE was selected to simulate wood due to its not any chemical reactions and acidic-basic interactions with PU. The adhesive in wood vessels, pits and scalariform perforations at the bonding cross section of birch plyboard, and the bonding nails at adhesive side was observed by SEM, which reveals the forming of semi-interpenetrating polymer networks of adhesive in wood within a definite thickness from the wood bonding side. The shear strength of plywood increases with the increasing of the surface roughness, the aperture and the porosity. The result demonstrates the mechanical anchoring mechanism of adhesion existing in bonding of adhesives to wood. The summation of dispersive and diffusion interactions contribute to bonding strength more than the mechanical anchoring reactions in existing not any the chemical interactions and the acidic-basic interactions.
     The diffusion mechanism of PU bonding wood was investigated in detail using the model of PU/cellulose film, which eliminates the interface mechanical anchoring reactions. The interface morphology of cured PU/cellulose film was observed by SEM. A blurring interface of the test piece cured at 140℃and a clear-cut interface of it cured at 100℃were observed. Whereas an interfacial crack of a PF/cellulose film was found, suggest the PU possessing a grater diffusion interactions to cellulose film than that of PF. A diffusion thickness of 300 nm of PU in PU/cellulose film cured at 140℃was determined by an electron spectrometer with SEM. The crystallinity index of cellulose film was very low caculated by XRD testing, that shows the PU diffusion by amorphous fraction of wood. It was tested by XPS that the surface N content of cellulose film cured conglutinating PU without-NCO, and then immerged solvent and then eluviated the surface adhesive layer, which revealed an increase with the increasing of cured temperature and time even exceed the N content of the PU bulk. All of these proved the diffusion of PU molecule chain segments and phases separation accrued gradually with curing of PU/cellulose film. The analysis of the data of strength test and the breach mode of cellulose film bonding test specimen showed that elevation of the cured temperature was propitious to the diffusion of molecule segments, and high-NCO content lead to an excessive crosslinking against the phases separation of PU, thus reduced the bonding strength. The curing temperature and the ratio of polyethylene glycol in PU are important factors for diffusion. The results show that the interface diffusion is the main interactions effecting adhesion strength.
     These researches, in a detailed and systematical way, shows that the chemical bonding, adsorption, mechanical anchoring and diffusion mechanism exist in the adhesion of PU to wood; and the contribution of these various interactions to adhesion are ranked as following: diffusion interactions> adsorption (dispersion> acidic-basic) interactions> mechanical anchoring interactions> chemical bonding interactions.
引文
[1]中国聚合物网.保温材料市场需求上升持稳推动MDI需求增长[OL],[2007-10-22].http://www.polymer.cn/Html/IndustryNews/2007-10/22/_20071022153105979.htm
    [2]阿方萨斯V波丘斯.粘接与胶黏剂技术导论[M].原著第二版.潘顺龙,赵飞,许关利译.北京:化学工业出版社,2005:187-188.
    [3]顾继友.胶黏剂与涂料[M].北京:中国林业出版社,1999:192-193.
    [4]翁汉元.聚氨酯胶黏剂概况和“十一五”发展规划建议[J].化学推进剂与高分子材料.2006,4(1):1-5.
    [5]顾继友.我国木材工业用胶黏剂与胶接技术现状和展望[J].木材工业,2006,20(2):66-68.
    [6]Allen K W. Aspects of Adhesion[M].1st ed. D J Alner University of London Press, 1965.
    [7]潘慧铭,黄素娟.表面、界面的作用与粘接机理(一)[J].粘接,2003,24(2):40-45.
    [8]潘慧铭,黄素娟.表面、界面的作用与粘接机理(二)[J].粘接,2003,24(3):31-46.
    [9]潘慧铭,黄素娟.表面、界面的作用与粘接机理(三)[J].粘接,2003,24(4):37-42.
    [10]BIKERMAN J J, MARSHALL D D W. Adhesiveness of Polyethylene Mixtures[J].J Applied Polymer Science.1963,7:1031-1040.
    [11]BREWIS D M, BRIGGS D. Adhesion to polyethylene and polypropylene[J]. Polymer.1981,22(1),7-16.
    [12]Allen K W.21世纪粘接理论的发展方向[J].粘接,2005,26(3):41-42.
    [13]余云照.粘接技术的回顾与展望[J].粘接.增刊,1999:1-4.
    [14]Fowkes F M. Organic Coatings and Platics Chemistry[J]. J Am Chem Soc,1979, 40:13-18.
    [15]Oss C J. BioInterface Perspective Development and applications of the interfacial tension between water and organic or biological surfaces[J]. Colloids and Surfaces B: Biointerfaces,2007,54:2-9.
    [16]MUKHOPADHYAY P, SCHREIBER H P. Aspects of acid-base interactions and use of inverse gas chromatography[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects.1995,100:47-71.
    [17]SUN C H, J. C. BERG. A review of the different techniques for solid surface acid-base characterization [J]. Adv Colloid Interface,2003,105(1-3):151-175.
    [18]丁晓峰,管蓉,陈沛智.接触角测量技术的最新进展[J].理化检验-物理分册,2008,44(2):84-89.
    [19]FOWKES F M, MCCARTHY D C, MOSTAFA M A. Contact angles and the equilibrium spreading pressures of liquids on hydrophobic solids[J]. J Colloid and Interface Science,1980,78(1):200-206.
    [20]罗晓斌,朱定一,石丽敏.基于接触角计算固体表面张力的研究进展[J].科学技术与工程.2007,7(19):4997-5004.
    [21]程帅,董云开,张向军.规则粗糙固体表面液体浸润性对表观接触角影响的研究[J].机械科学与技术,2007,26(7):822-827.
    [22]HORN R G, SMITH D T, GRABBE A. Contact electrification induced by monolayer modification of a surface and relation to acidbase interactions[J]. Nature,1993,366: 442-443.
    [23]Voelkel A, Fall J.Application of inverse gas chromatography to the examination of annealing processes of semi-synthetic base oils [J]. J Chromatogr A,2002,982 (2): 245-254
    [24]WILLIAM T Y, TZE DOUGLAS J, GARDNER, et al. Cellulose fiber/polymer adhesion:effects of fiber/matrix interfacial chemistry on the micromechanics of the interphase [J]. J Adhesion Sci Technol,2006,20(15):1649-1668.
    [25]HU X S, JIAO X S, NARAYANAN S, et al. Resonantly enhanced off-specular X-ray scattering from.polymer/polymer interfaces [J]. The European Physical J E Eur Phys J E,2005,17:353-359.
    [26]HE J M, HUANG Y D, LIU L, et al. Controlled interface between carbon fiber and epoxyby molecular self-assembly method [J]. Materials Chemistry and Physics,2006, 99:388-393.
    [27]BOYARCHUK Y M, RAPPOPORT L Y. A study of hydrogen bonding in urethane elastomers by infrared spectroscopy [J]. Polymer Science U S S R,1965,7(5):859-867.
    [28]WIECHMANN R. Experiences with peel strength [J]. Circuit World,2006,32(3):30-39.
    [29]WEAVER F W, OWEN N L. Isocyanate-wood adhesive bond [J]. Applied Spectroscopy,1995,49(2):171-176.
    [30]DUFF D W, MACIEL G E.13C and 15N CP/MAS NMR Characterization of MDI-Polyisocyaurate Resin Systems [J]. Macromolecules,1990,23:3069-3079.
    [31]DUFF D W, MACIEL G E. Monitoring posture reaction chemistry of residual isocyanate in 4,4'-Methylenebis(phenyl isocyanate) Based Isocyanate Resin by 15N and 13C CP/MAS NMR [J]. Macromolecules,1991,24:387-397.
    [32]DUFF D W, MACIEL G E. Monitoring the thermal degradation of an Isocyanate-Rich MDI-Based Resin by 15N and 13C CP/MAS NMR [J]. Macromolecules.1991,24: 651-658.
    [33]WENDLIER S L, FRAZILER C E. Effects of moisture contenter on the isocyanate/wood adhesive bondline by 15N CP/MAS NMR [J]. J Applied Polymer Science.1996,61(5):775-782.
    [34]WENDLIER S L, FRAZILER C E. The effects of cure temperature and time on the isocyanate-wood adhesive bondline by 15N CP/MAS NMR [J]. Int J Adhension and Adhesives,1996,16(3):179-186.
    [35]武利民,李丹,油波,等.聚氨酯脲的表面组成与结构[J].高分子材料科学与工程,2000,16(2):118-120.
    [36]顾继友,高振华,李志国,等.利用FTIR对苯基异氰酸酯与不同含水率纤维素反应的研究[J].林业科学,2004,40(2):142-147.
    [37]高振华,顾继友,李志国,等.利用ESCA对苯基异氰酸酯与不同含水率纤维素反应的研究[J].林业科学,2004,40(3):134-139.
    [38]高振华,顾继友,李志国.利用DSC研究异氰酸酯与纤维素的反应机理[J].林业科学,2005,41(3):115-120.
    [39]高振华,顾继友,耿志忠.苯基异氰酸酯与木粉反应产物的定量分析[J].高分子材料科学与工程,2008,24(11):130-133.
    [40]耿志忠,顾继友,高振华,等.木材用聚氨酯胶黏剂的研究进展[J].化学与粘合,2007,29(2):113-116.
    [41]高振华.异氰酸酯室温下与醇水反应及较高温度下与纤维素反应的研究[D].哈尔滨:东北林业大学,2003:35-55.
    [42]顾继友,程瑞香.采用DSC和FTIR对木材和API胶黏剂间反应的研究[J].中国胶黏剂,2005,14(4):142-147.
    [43]王庚超,马敏生,张志平.聚醚型聚氨酯的氢键、微相分离及性能[J].合成橡胶工业,1991,4(6):409-412.
    [44]SEYMOUR R W, ESTES G M, COOPER S L, et al. Infrared studies of segmented polyurethane elastomers:I. Hydrogen Bonding[J]. Macromolecules,1970,3(5):571-579.
    [45]王文军,岳彩艳,李红旭,等.水性聚氨酯胶黏剂的研制[J].中国胶粘剂,2005,14(5):10-13.
    [46]VENABLES J D. Adhesion 7. ed ALLEN K W. London:Applied Science Publishers, 1983,87.
    [47]宋常春.热塑性聚氨酯弹性体的微相分离[J].合肥工业大学学报,2001,24(2):234-239.
    [48]崔燕军,洪玲,王新灵,等.结晶对异氰酸酯反应型热熔胶固化的控制作用[J].上海交通大学学报,2002,36(5):706-710.
    [49]程瑞香,顾继友,崔永志.API胶粘剂在落叶松、白桦和柞木木材弦径面渗透的显微研究[J].林业科学,2004,40(6):144-146.
    [50]鲍甫成,王正,郭文静.杨木和杉木木材表面性质的研究[J].林业科学,2004,40(1):131-136.
    [51]PLUEDDEMANN E P. Silane coupling agents[M]. New York:Plenum Press,1982.
    [52]GINDL W, SCHOBERL T, JERONIMIDIS G. The interphase in phenol-formaldehyde and polymeric methylene-diphenyl-di-isocyanate glue lines in wood[J]. International J Adhesion & Adhesives,2004,24:279-286.
    [53]宋诗(?),刘美荣.聚氨酯粘合剂的粘接强度与红外光谱分析[J].天津轻工业学院学报,2002,(2):18-21.
    [54]TOFFEY A, GLASSER W G. Cure characterization of polyurethanes with lignin and cellulose derivatives [J]. Holzforschung,1997,51(1):71-78.
    [55]ROSTHAUSER J W, HAIDER K W, HUNT R N. Chemistry of PMDI wood binders: Model studies:31st Int Particleboard/Composite Materials Symposium Proceedings, Pullman, Washington, USA, april,1997[C]. Washington:[出版者不详],1997,161-175.
    [56]UMEMURA K, TAKAHASHI A, KAWAI S. Durability of isocyanate resin adhensive for wood I:Thermal properties of isocyanate resin cured with water[J]. J Wood Science,1998,44 (3):204-210.
    [57]方桂珍,李坚,崔永志.固体核磁CP/MAS 13C NMR在木材科学中的应用(综述)[J].四川农业大学学报,木材研究专辑,1998,16(1):170-175.
    [58]李坚.木材波谱学[M].北京:科学出版社,2002,153-157.
    [59]常建华,董绮功.波谱原理及解析[M].第二版.北京:科学出版社,2005,61-66.
    [60]马礼敦.高等结构分析[M].上海:复旦大学出版社,2002,146-152.
    [61]王乃兴.核磁共振谱学在有机化学中的应用[M].北京:化学工业出版社,2006,1-39.
    [62]ASS B A P, BELGACEM M N, FROLLINI E. Mercerized linters cellulose: characterization and acetylation in N,N-dimethylacetamide/lithium chloride[J]. Carbohydrate Polymers,2006,63(1):19-29
    [63]CHANG H T, CHANG S T. Modification of wood with isopropyl glycidyl ether and its effects on decay resistance and light stability[J]. Bioresource Technology,2007,97: 1265-1271.
    [64]PRAKASH G K, MAHADEVAN K M. Enhancing the properties of wood through chemical modification with palmitoyl chloride[J]. Applied Surface Science,2008, 254(6):1751-1756.
    [65]CETINA N S, OZMENA N, TINGAUT P, et al. New transesterificaion reaction between acetylated wood and tetramethoxysilane:A feasibility study[J]. European Polymer J,2005,41(11):2704-2710.
    [66]宋春梅,薛海丽,庄晓璐,等.佛尔酮二异氰酸酯自聚产物的13C-NMR研究[J]. 高分子学报,2006,(5):660-665.
    [67]HARPER D P.The evaluation of 4,4'-diphenylmethane diisocyanate cure in a saturated steam environment[D]. Washington state university.1998:24-25.
    [68]PRINCI E, VICINI S, PROIETTI N, et al. Grafting polymerization on cellulose based textiles:A 13C solid state NMR characterization[J]. European Polymer J,2005,41: 1196-1203.
    [69]HSU, P H, HATCHER, P G Covalent coupling of peptides to humic acids:Structural effects investigated using 2D NMR spectroscopy[J]. Organic Geochem,2006,37 (12): 1694-1704.
    [70]HORII F, KAJI H, ISHIDA H, et al. Solid-state NMR analyses of the structure and dynamics of polymers in the different states[J]. J Molecular Structure,1998,441(2-3): 303-311.
    [71]KUMAR R N, PO P L, ROZMAN H D. Studies on the synthesis of acrylamidomethyl cellulose ester and its application in UV curable surface coatings induced by free radical photoinitiator. Part 1:Acrylamidomethyl cellulose acetate[J]. Carbohydrate Polymers,2006,64:112-126.
    [72]INFANTE-CASTILLOA R, HERNANDEZ-RIVERA S P. On the choice of optimal protocol for calculation of 13C and 15N NMR isotropic chemical shifts in nitramine systems[J]. J Molecular Structure:THEOCHEM,2010,940(1-3):124-128.
    [73]SHEN Q, ZHONG L. Lignin-based carbon films and controllable pore size and properties[J]. Materials Science and Engineering A,2007,445-446:731-735.
    [74]PANKRATOV V A, LAKTIONOV V M, AKHMEDOV A I, et al. Thermal transformations of compounds modelling major fragments of network polymers, Based on oligo and Polycarboddiimides[J]. Polymer Science U S S R,1984,26(1): 87-95.
    [75]张庆华,刘龙孝,陈丰秋.采用XPS与接触角法研究氟聚合物表面结构与性能[J].高等学校化学学报,2006,27(4):790-792.
    [76]MATSUSHITA Y, WADA S, FUKUSHIMA K, et al. Surface characteristics of phenol-formaldehyde-lignin resin determined by contact angle measurement and inverse gas chromatography[J]. Industrial Crops and Products,2006,23(2):115-121.
    [77]宋华杰,董海山,郝宝.计算固体表面能的Young-Good-Girifalco-Fowkes方程的理论基础[J].粘接,2000,21(5):1-5.
    [78]SANTOS J, GUTHRIE J T. Study of a core-shell type impact modifier by inverse gas chromatography[J]. J Chromatography A,2005,1070(1-2):147-154.
    [79]KOZLOWSKA M K, DOMANSKA U, LEMPERT M, et al. Determination of thermodynamic properties of isotactic poly(1-butene) at infinite dilution using density and inverse gas chromatography[J]. J Chromatogr A,2005,1068(2):297-305.
    [80]GOSS K U. Considerations about the Adsorption of Organic Molecules from the Gas Phase to Surfaces:Implications for Inverse Gas Chromatography and the Prediction of Adsorption Coefficients[J]. J Colloid and Interface Science,1997,190(1):241-249.
    [81]SANTOS J M R C A, GUTHRIE J T. Study of a core-shell type impact modifier by inverse gas chromatography [J]. J Chromatogr A,2005,1070(1-2):147-154.
    [82]MUKHOPADHYAY P, SCHREIBER H P. Aspects of acid-base interactions and use of inverse gas chromatography[J]. Colloid Surface A,1995,100(1-3):47-71.
    [83]JANDURA P, RIEDL B, KOKTA B V. Inverse Gas Chromatography Study on Partially Eified Paper Fiber[J]. J Chromatogr A,2002,969(1-2):301-311.
    [84]HAMIEH T, FADLALLAHA M B, SCHULTZ J. New approach to characterize physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution III. Determination of the acid-base properties of some solid substrates(polymers, oxides and carbon fibres):a new model[J]. J Chromatogr A, 2002,969(1-2):37-47.
    [85]UHLMANN P, SCHNEIDER S. Acid-base and surface energy characterization of grafted polyethylene using inverse gas chromatography[J]. J Chromatogr A,2002, 969(1-2):73-80.
    [86]SANTOS J M R C A, GUTHRIE J T. Analysis of interactions in multi-component polymeric systems:The key-role of inverse gas chromatography [J]. Mat Sci Eng, 2005,50(3):79-107.
    [87]ZHAO SHU, LIN XU, SONG JINGWEI,et al. Surface characterization of ashtree wood meal by inverse gas chromatography[J]. Chinese Sci Bull,2007,52(9):1178-1181.
    [88]SANTOS J, FAGELMAN K, GUTHRIE J T. Characterisation of the surface Lewis acid-base properties of poly(butylenes terephthalate) by inverse gas chromatography [J]. J Chromatography A,2002,969(1-2):111-118.
    [89]SANTOS J, FAGELMAN K, GUTHRIE J T. Characterisation of the surface Lewis acid-base properties of the components of pigmented, impact modified, bisphenol A polycarbonate poly(butylene terephthalate) blends by inverse gas chromatography phase separation and phase preferences[J]. J Chromatography A,2002,969 (1-2): 119-132.
    [90]LIANG H, XU R J, FA VIS B D, et al. Surface modification strategies for multicomponent polymer systems, Ⅵ:acid-base interactions as a strategy for interfacial modification in immiscible polymer blends [J]. Polymer,1999,40 (15): 4419-4423.
    [91]PLANINSEK O, TROJAK AA, SRCIC S. The dispersive component of the surface free energy of powders assessed using inverse gas chromatography and contact angle measurements[J]. International J Pharmaceutics,2001,221(1-2):211-217.
    [92]HUANG J C. Anomalous solubility parameter and probe dependency of polymer-polymer interaction parameter in inverse gas chromatography [J]. Eur Polym J,2006, 42(5):1000-1007.
    [93]KAYA I, OZDEMIR E. Thermodynamic interactions and characterisation of poly(isobornylmethacrylate) by inverse gas chromatography at various temperatures[J]. Polymer,1999,40(9):2405-2410.
    [94]ZHAO C W, LI J D, JIANG Z, et al. Measurement of the infinite dilution diffusion coefficients of small molecule solvents in silicone rubber by inverse gas chromatography [J]. European Polymer Journal,2006,42(3):615-624.
    [95]KAMDEM D P, BOSE S K,et al. Inverse gas chromatography characterization of birch wood meal[J]. Langmuir,1993,9(11):3039-3044.
    [96]赵殊,宋经纬,林旭.反相气相色谱法表征PU和PF树脂的表面性质[J].高分子材料科学与工程,2009,25(2):123-126.
    [97]赵殊,宋经纬,王胜龙,等.聚氨酯胶粘剂对木材胶接机理研究Ⅰ,机械互锁作用对粘接强度的影响[J].粘接,2008,4:32-34.
    [98]周山金,姜笑梅.中国裸子植物材的林材解剖学及超微构造[M].北京:中国林业出版社,1994:158
    [99]国家质量技术监督局.GB/T 17657-1999,人造板及饰面人造板理化性能试验方法[S].北京:中国标准出版社,1999.
    [100]FRAZIER C E, NI J W. On the occurrence of network interpenetration in the wood isocyanate adhesive interphase[J]. International J Adhesion and Adhesives,1998, 18(2):81-87.
    [101]KUO Y N, HONG J. A new method for cellulose membrane fabrication and the determination of its characteristics [J]. J Colloid and Interface Science,2005,285: 232-238.
    [102]IYENGAR Y, ERICKSON D E. Role of adhesive substrate compatibility in adhesion[J]. J Appl Polymer Sci,1967,11(11):2311-2324.
    [103]HUANG R Y M, SHAO P, NAWAWI G, et al. Measurements of partition, diffusion coefficients of solvents in polymer membranes using rectangular thin-channel column inverse gas chromatography(RTCCIGC)[J]. J Membrane Science,2001,188(2):205-218.
    [104]James E. Mark.Polymer Data Handbook[M]. Oxford:Oxford University Press.1999, 40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700