用户名: 密码: 验证码:
碱性H_2O_2处理P-RC APMP和CTMP对纤维电荷及木素结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维和细小纤维悬浮于水中时,由于半纤维素、氧化纤维素和氧化木素上某些功能基的离子化,导致纤维带有负电荷。这些功能基包括羧基、磺酸基、酚羟基、醇羟基等。纤维电荷是制浆造纸过程中的一个重要参数。它不仅可以影响各种阳离子助剂如助留助滤剂、施胶剂、增强剂等的留着,而且对于纤维的吸水润胀、柔顺性、纤维间的结合及磨浆性能等至关重要。纤维电荷可来源于制浆造纸所使用的植物纤维原料本身,也可来源于制浆造纸各工段,如氧脱木素、H_2O_2漂白等。
     论文系统研究了碱性H_2O_2处理对杨木P-RC APMP和CTMP纤维电荷特性的影响,对未处理浆及碱性H_2O_2处理浆的纤维表面形态和性能进行了分析,并研究了碱性H_2O_2处理过程中磨木木素的结构变化。
     碱性H_2O_2处理可以明显增加杨木P-RC APMP纤维的羧基和表面电荷含量,且随着NaOH和H_2O_2用量的增加、处理温度的提高以及处理时间的延长,浆料中的羧基含量、表面电荷以及可溶解电荷均呈增加的趋势。纤维电荷的增加有利于纤维吸水润胀能力的提高以及磨浆性能的改善。ESCA分析结果表明,P-RC APMP经碱性H_2O_2处理后,氧碳比提高,表面抽出物含量明显降低,同时表面木素含量也有所降低。
     利用凝胶渗透色谱(GPC)、~(31)P-NMR和二维核磁共振波谱对碱性H_2O_2处理后杨木P-RC APMP的木素结构进行了分析。~(31)P-NMR分析表明,碱性H_2O_2处理后,杨木P-RC APMP残余木素中的脂肪羟基和羧基含量增加,而总酚羟基及各酚羟基含量降低,说明木素受到了一定程度的氧化。GPC结果表明,碱性H_2O_2处理后,浆料残余木素的数均分子量、重均分子量及多分散性均略微增加。残余木素的二维核磁共振波谱分析表明,碱性H_2O_2处理后,木素的愈创木基结构被氧化而紫丁香基结构保持稳定。木素侧链α碳上的羰基和双键发生了氧化,导致α-羧基增加,这可能是木素中羧基含量增加的原因。木素中的β-β和β-5结构保持稳定,而具有Cα-OR和Cα=O的β-O-4结构易被氧化降解。
     杨木CTMP碱性H_2O_2漂白过程中,NaOH用量、H_2O_2用量、漂白温度及漂白时间均对纤维的羧基含量、表面电荷含量及浆中的溶解电荷有较大影响。而H_2O_2用量、处理温度及处理时间对浆料Zeta电位的影响不如NaOH强烈。碱性H_2O_2漂白可以提高成纸的物理强度,降低纸张的光散射系数。与未漂浆相比,碱性H_2O_2漂白浆纤维的长度、宽度变化不明显,而纤维的扭结指数和卷曲指数明显下降,同时纤维的保水值明显增加,说明纤维的吸水润胀能力得到改善。ESCA分析发现,碱性H_2O_2漂白导致杨木CTMP纤维表面抽出物和表面木素含量明显降低。
     ~(31)P-NMR分析表明,碱性H_2O_2漂白过程中,杨木CTMP的木素结构的变化规律与P-RC APMP相似,即木素中的脂肪羟基和羧基含量增加,总酚羟基含量降低。GPC分析结果表明,碱性H_2O_2漂白后杨木CTMP残余木素的数均分子量、重均分子量及多分散性均有所降低,说明木素受到了一定程度的降解。残余木素的二维核磁共振波谱分析表明,碱性H_2O_2处理后杨木CTMP中木素的愈创木基结构被氧化而紫丁香基结构保持稳定;木素侧链α碳上的羰基和双键发生氧化反应,导致α-羧基增加;木素的β-β和β-5结构保持稳定,而具有Cα-OR和Cα=O的β-O-4结构易被氧化降解。
Wood fibres and fines in an aqueous system are negatively charged due to ionization of functional groups associated with hemicellulose, oxidized cellulose and oxidized lignin.These functional groups consist of carboxylic acid groups, sulfonic acid groups, phenolic hydroxyl groups, alcoholic hydroxyl groups and so on. Fibre charge is an important parameter during pulp and papermaking process. It not only determines the consumption of cationic additives used in papermaking, such as retention aids, sizes, wet and dry strength resin etc., but also is very important for the swelling ability of wet fibres, fibre flexibility, fibre-fibre bonding, and refinability. The number of fibre charge depends on the origin of fibre, and on the chemical treatments such as pulping and bleaching applied to the fibres, including oxygen delignification, ozone bleaching, and peroxide bleaching.
     In this paper, the effect of alkaline peroxide treatment on the charge characteristics of aspen P-RC APMP and CTMP was firstly discussed. The conductometric and polyelectrolyte titration were used to determine the carboxyl content and surface charge content, dissolved charge of fibres respectively. Secondly, the technology of surface analysis, such as ESCA, was used to study fibre surface properties of treated and control pulps. Finally, the structural changes of residual lignin after alkaline peroxide treatment were analyzed.
     The results indicated that alkaline peroxide treatment could increase carboxyl content and surface charge of aspen P-RC APMP fibres. Moreover, fibre charge was increased with increasing sodium hydroxide, peroxide, elevating the reaction temperature and extending the reaction time. The increased charge groups in the pulp were beneficial to the fibre swelling ability and pulp refinability. ESCA analysis showed that O/C was higher than that of the control pulp, but surface lignin and surface extractive content decreased after alkaline peroxide treatment.
     Milled wood lignin was extracted from control and alkaline treated pulps of aspen P-RC APMP, and the structure of MWL was characterized by GPC, ~(31)P-NMR and 2D-NMR techniques. The functional groups in MWL could be quantitatively analyzed by ~(31)P-NMR technique. After alkaline peroxide treatment, the contents of both aliphatic OH and COOH groups in residual lignin were increased while total phenolic OHs were decreased to very low contents. In addition, Mn , Mw and Mw / Mn of MWL extracted from treated pulp were slightly higher than those of control pulp from the results of GPC. 2D-NMR results showed that guaiacyl unit was easier to be oxidized by peroxide than syringyl unit. Carboxylic acids were formed by oxidative attack of peroxide toward the structures ofα-carbonyl and double bond groups in lignin side chain during alkaline peroxide treatment.β-βandβ-5 type sub-structure in lignin were stable to peroxide treatment, whileβ-O-4 type sub-structure withα-carbonyl andα- ether linkage in side chain were degraded.
     Fibre charge characteristics and paper strength properties of aspen CTMP during alkaline peroxide treatment were also studied in this paper, and the influence of this treatment on the behavior of fibre morphology was further evaluated. The results showed that those parameters, such as sodium hydroxide, peroxide, reaction temperature and time, could affect the carboxyl content, surface charge, and dissolved charge of the pulp. But to the zeta potential, the dosage of sodium hydroxide was more important than the other parameters. The alkaline peroxide treatment improved strength properties but reduced light scattering coefficient of papers. Compared with control pulp, the length and width of treated pulp fibres changed little, but the curl and kink index declined sharply. Furthermore, water retention value was increased, which indicated that the swelling ability of treated fibres was improved. ESCA observation revealed that surface lignin content decreased sharply, while surface extractive content decreased from 7.16% to 5.04% after alkaline peroxide treatment.
     The structural analysis of MWL obtained from both aspen CTMP control pulp and alkaline peroxide treated pulp was also used GPC, ~(31)P-NMR and 2D-NMR techniques. According to the results of ~(31)P-NMR, the disciplinarian of CTMP lignin structural changes during alkaline peroxide treatment was similar to P-RC APMP. GPC analysis showed that Mn , Mw and Mw / Mn of MWL obtained from treated pulp were lower than those of the control pulp, indicating that lignin was partly oxidized and degraded. 2D-NMR results showed that guaiacyl unit was easier to be oxidized by peroxide than syringyl unit. Carboxylic acids were formed by oxidative attack of peroxide toward the structures ofα-carbonyl and double bond groups in lignin side chain during alkaline peroxide treatment.β-βandβ-5 type sub-structure in lignin were stable to peroxide bleaching, whileβ-O-4 type sub-structure withα-carbonyl andα- ether linkage in side chain were degraded.
引文
[1] Pu Q., Sarkanen K.. Donnan Equilibria in Wood-Alkali Interactions. Part I. Quantitative Determination of Carboxyl, Carboxyl Ester, and Phenolic Hydroxyl Groups[J]. Wood Chem. Technol., 1989, 9(3): 293-312
    [2] Barzyk D., Page D. H., Ragauskas A.. Acidic Group Topochemistry and Fiber-to-Fiber Specific Bond Strength[J]. J. Pulp Pap. Sci., 1997, 23(2): 56-61
    [3] Barzyk, D., Page D. H., Ragauskas A.. Carboxylic Acid Groups and Fiber Bonding[C]. 11th Fundamentals of Papermaking Materials, Transactions of the Fundamental Research Symposium, 1997, 2: 893-907
    [4] Gellerstedt F., Gatenholm P.. Surface Properties of Lignocellulosic Fibers Bearing Carboxylic Groups[J]. Cellulose, 1999, 6(2): 103-121
    [5] Laine J., Lindstr?m T., Nordmark G. G., et al. Studies on Topochemical Modification of Cellulosic Fibers. Part 1. Chemical Conditions for the Attachment of Carboxymethyl Cellulose onto Fibers[J]. Nord. Pulp Pap. Res. J., 2001, 15(5): 520-526
    [6] Laine J., Lindstr?m T., Nordmark, G. G., et al. Studies on Topochemical Modification of Cellulosic Fibers. Part 3. The Effect of Carboxymethyl Cellulose Attachment on Wet-strength Development by Alkaline-curing Polyamide-Amine Epichlorohydrin Resins[J]. Nord. Pulp Pap. Res. J., 2002(a), 17(1): 57-60
    [7] Sanders N. D., Schaefer J. H.. Comparing Papermaking Wet-End Charge Measuring Techniques in Kraft and Ground Wood Systems[J]. Tappi J., 1995, 78(11): 142-150
    [8] Isogai A., Kitaoka C., Onabe F.. Effects of Carboxyl Groups in Pulp on Retention of Alkylketene Dimer[J]. J. Pulp Pap. Sci., 1997, 23(5): 215-219
    [9] Lloyd J. A., Horne C. W.. The Determination of Fibre Charge and Acidic Groups of Radiate Pine Pulps[J]. Nordic Pulp Pap. Res. J., 1993, 8(1): 48-52
    [10] W?gberg L., Bj?rklund M.. On the Mechanism behind Wet Strength Development in Papers Containing Wet Strength Resins[J]. Nordic Pulp Pap. Res. J., 1993, 8(1): 53-58
    [11] Scallan A. M., Grignon J.. The Effect of Cations on Pulp and Paper Properties[J]. Svensk Papperstidn., 1979, 82(2): 40-47
    [12] Lindstr?m T., Carlsson G.. The Effect of Carboxyl Groups and Their Ionic Form during Drying on the Hornification of Cellulose Fibers[J]. Svensk Papperstidn.,1982, 85(3): 146-151
    [13] Katz S., Scallan A. M.. Ozone and Caustic Soda Treatments of Mechanical Pulp[J]. Tappi J., 1983, 66(1): 85-87
    [14] Laine J., Stenius P.. Effect of Charge on the Fiber and Paper Properties of Bleached Industrial Kraft Pulps[J]. Paperi ja Puu, 1997, 79(4): 257-266
    [15] Ojala T.. Charge Measurements of Different Furnishes Using Polyelectrolyte Titration with a Streaming Current Detector[C]. In TAPPI Papermaker Conference, Atlanta (Georgia), United States: Tappi Press, 1993: 613-623
    [16] Sj?strom E.. The Origin of Charge on Cellulosic Fibers[J]. Nordic Pulp Pap. Res. J., 1989, 4(2): 90-93
    [17] Laine J., Buchert J., Viikari L., et al. Characterization of Unbleached Kraft Pulps by Enzymatic Treatment, Potentiometric Titration and Polyelectrolyte Adsorption[J]. Holzforschung, 1996, 50(3): 208–214
    [18] Fors C.. The Effect of Fiber Charge on Web Consolidation in Papermaking in Pulp and Paper Chemistry and Technology[J]. Royal Institute of Technology Department of Pulp and Papermaking, 2000: 78
    [19] Croon I., Enstrom B. F.. The 4-O-methyl-D-glucuronic Acid Groups of Birch Xylan during Sulfate Pulping[J]. Tappi J., 1961, 44(12): 870-874
    [20] Axelsson S., Croon I., Enstrom B.. Dissolution of Hemicelluloses during Sulfate Pulping. Part 1. Isolation of Hemicelluloses from the Cooking Liquor at Different Stages of a Birch Soda Cooking[J]. Svensk Papperstidn., 1962, 65(18): 693-697
    [21] Hamilton J. K., Buchert J., Teleman A., et al. The Behavior of Hemicelluloses during Pulping. 1. Examination of the Xylose-Containing Hemicelluloses Associated with Hardwood and Softwood[J]. Tappi J., 1958, 41(12): 803-811
    [22] Bhardwaj N. K., Duong T. D., Hoang V., et al. Determination of Fiber Charge Components of Lo-Solids Unbleached Kraft Pulps[J]. Colloid Interface Sci., 2004, 274 (2): 543-549
    [23]刘秋娟,卢西恩,露西亚,等.制浆工艺对高得率KP浆羧基含量的影响[J].中国造纸,2004,23(8):1-5
    [24] Buchert J., Tenkanen M., Tamminen T.. Characterization of Carboxylic Acids during Kraft and Super Batch Pulping[J]. Tappi J., 2001, 84(4): 70
    [25] Dang Z., Thomas E., Arthur J., et al. Influence of Kraft Pulping on Carboxylate Content of Softwood Kraft Pulps[J]. Ind. Eng. Chem. Res., 2006, 45(13): 4509-4516
    [26] Lindstr?m T.. Chemical Factors Affecting the Behaviour of Fibres during Papermaking[J]. Nordic Pulp Pap. Res. J., 1992, 7(4): 181–192
    [27] Gellerstedt G., Lindfors E. L.. Hydrophilic Groups in Lignin after Oxygen Bleaching[J]. Tappi J., 1987, 70(6): 119-122
    [28] Laine J.. Effect of ECF and TCF Bleaching on the Charge Properties of Kraft Pulp[J]. Paperi ja Puu, 1997a, 79(8): 551-559
    [29] Toven K.. Swelling and Physical Properties of ECF/TCF Light Bleached Softwood Kraft Pulps[C]. 2002 International Pulping Bleaching Conference, 2002: 189-192
    [30] Zhang D., Chai X. S., Pu Y., et al. Lignocellulosic Fiber Charge Enhancement by Catalytic Oxidation during Oxygen Delignification[J]. Colloid Interface Sci., 2007, 306(2): 248-254
    [31] He Z., Qian X., Ni Y.. The Tensile Strength of Bleached Mechanical Pulps from the Mg(OH)2-based and NaOH-based Peroxide Bleaching Processes[J]. J. Pulp Pap. Sci., 2006, 32(1): 47
    [32] Dang Z., Elder T., Ragauskas A. J.. Alkaline Peroxide Treatment of ECF Bleached Softwood Kraft Pulps. Part 1. Characterizing the Effect of Alkaline Peroxide Treatment on Carboxyl Groups of Fibers[J]. Holzforschung, 2007, 61(4): 445-450
    [33]王海毅,龙柱,谢来苏.不同纸浆羧基含量的测定[J].中国造纸,2001,20(5):26-28
    [34] Bhardwaj N. K., Duong T. D., Nguyen K. L.. Pulp Charge Determination by Different Methods: Effect of Beating/Refining[J]. Colloids Surf. A, 2004, 236(1-3): 39-44
    [35] Chandra R. P., Ragauskas A. J.. Evaluating Laccase-Facilitated Coupling of Phenolic Acids to High-Yield Kraft Pulps[J]. Enzyme Microb. Technol., 2002, 30(7): 855-861
    [36] Gellerstedt F., W?gberg L., Gatenholm P.. Swelling Behaviour of Succinylated Fibers[J]. Cellulose, 2000, 7(1): 67-86
    [37]刘刚,韩卿,夏安军. TEMPO选择性催化氧化对纸浆成纸性能的影响[J].中华纸业,2008,(7):50-53
    [38]毛连山,马朴,刘桂南.机械浆长纤维的TEMPO选择性催化氧化[J].中国造纸,2009,28(7):7-11
    [39]石淑兰,何福望.制浆造纸分析与检测[M].中国轻工业出版社,2006:89
    [40] Koljonen K., Mustaranta A., Stenius P.. Surface Characterization of MechanicalPulps by Polyelectrolyte Adsorption[J]. Nordic Pulp Pap. Res. J., 2004, 19(4): 495-505
    [41] W?gberg L., Odberg L., Glad-Nordmark G.. Charge Determination of Porous Substrates by Polyelectrolyte Adsorption Part 1. Carboxymethylated Bleached Cellulosic Fibers[J]. Nordic Pulp Pap. Res. J., 1989, 2: 71-76
    [42] Zhang D. C.. Characterization and Enhancement of Carboxyl Groups in Softwood Kraft Pulps during Oxygen Delignification[D]. Georgia: Georgia Institute of Technology, 2006
    [43] Chai X. S., Luo Q., Zhu J. Y.. Analysis of Nonvolatile Species in Complex Matrices by Headspace Gas Chromatography[J]. Chromatography A, 2001, 909(2): 249-257
    [44]侯庆喜,柴新生,朱俊勇.应用顶空气相色谱法测定纸浆纤维的羧基含量[J].中国造纸,2005,24(9):5-9
    [45]顾春菊,马敬红,李兰.傅里叶变换红外光谱法定量分析氧化纤维素中的羧基含量[J].分析仪器,2005,(3):39-41
    [46] Bhardwaj N. K., Dang V. Q., Nguyen K. L.. Determination of Carboxyl Content in High-Yield Kraft Pulps Using Photoacoustic Rapid-Scan Fourier Transform Infrared Spectroscopy[J]. Anal. Chem., 2006, 78(19): 6818-6825
    [47] Barzyk D.. Topochemical and Performance Aspects of Fiber Oxidation[D]. Atlanda(Georgia): Institute of Paper Science and Technology, 1996
    [48]李贤慧,钱学仁.纸浆中的羧基及其对造纸过程和纸张性能的影响[J].中国造纸,2008,27(7):54-57
    [49] Saito T., Isogai A.. Wet Strength Improvement of TEMPO-Oxidized Cellulose Sheets Prepared with Cationic Polymers[J]. Ind. Eng. Chem. Res., 2007, 46(3): 773-780
    [50] Kitaoka T., Isogai A., Onabe F.. Rosin Sizing of Pulps Modified by TEMPO-Mediated Oxidation[J]. Nordic Pulp Pap. Res. J., 2000, 15(3): 177
    [51] Scallan A. M.. The Effect of Acidic Groups on the Swelling of Pulps: a Review[J]. Tappi J., 1983, 66(11): 73-75
    [52] Korpela A.. Improving the Strength of PGW Pine Pulp by Alkaline Peroxide Treatment[J]. Nordic Pulp Pap. Res. J., 2002, 17(2): 183
    [53] Engstrand P., Sj?gren B., ?lander K., et al. The Significance of Carboxylic Groups for the Physical Properties of Mechanical Pulp Fiber[C]. 6th International Symposium Wood Pulping Chemistry, 1991: 75-79
    [54]白春礼.纳米科技及其发展前景[C].中国国际纳米技术与应用国际会议报告,2001
    [55]石岩,温汭.育果套袋纸光老化性能的研究[J].纸和造纸,2005,(1):47-49
    [56]李建文,邱化玉,詹怀宇.阳离子聚丙烯酰胺乳液对木浆增强作用的研究[J].林产化学与工业,2006,26(1):79-82
    [57] Koljonen K., Osterberg M., Johansson L. S., et al. Surface Chemistry and Morphology of Different Mechanical Pulps Determined ESCA and AFM[J]. Colloids Surf. A, Physicochemical and Engineering, 2003, 228(1-3): 143-158
    [58] Gustafsson J., Ciovica L., Peltonen J.. The Ultrastructure of Spruce Kraft Pulps Studies by Atomic Force Microscopy (AFM) and X-Ray Photoelectron Spectroscopy (XPS)[J]. Polymer, 2003, 44 (3): 661-670
    [59]李辉,付时雨,刘浩,詹怀宇.非木材化学浆表面超微结构的AFM观察[J].中国造纸学报,2009,24(3):19-23
    [60]徐永建,张美云,李可成.碱抽提乙醇麦草浆纤维表面性质的AFM和XPS研究[J].中国造纸学报,2009,24(3):15-18
    [61]徐清华,秦梦华,石淑兰.表面分析技术在制浆造纸研究中的应用[J].中国造纸学报,2004,1:215-219
    [62] Dorris G. M., Gray D. G.. The Surface Analysis of Paper and Wood Fibers by ESCA. I. Application to Cellulose and Lignin[J]. Cellul. Chem. Technol., 1978, 12(1): 9-23
    [63] Pere J., Lappalainen A., Kilijonen K., et al. Combination of Chemical and Immuno-Microscopical Methods for Surface Characterization of Mechanical Pulp Fibers[C]. Eleventh International Symposium on Wood and Pulping Chemistry, 2001, 1(9): 259-262
    [64] Kleen M., R?s?nen H., Ohra-aho T., et al. Surface Chemistry of TMP Fibers and Fines[C]. Eleventh International Symposium on Wood and Pulping Chemistry, 2001, 1(9): 255-258
    [65] Laine J., Stenius P., Buchert J.. Spectroscopic and Poteniometric Studies of Kraft Pulp Fibers[J]. Appita J., 1994: 109-114
    [66] Laine J., Stenius P., Carlsson G., et al. Surface Characterization of Unbleached Kraft Pulps by Means of ESCA[J]. Cellulose, 1994, 1(2): 145-160
    [67]陈嘉川,谢益民,李彦春,等.天然高分子科学[M].北京:科学出版社,2007
    [68]蒋挺大.木质素[M].北京:化学工业出版社,2001
    [69]杨淑慧.植物纤维化学[M].北京:中国轻工业出版社,2005
    [70]陈嘉翔,余家鵉.植物纤维化学结构的研究方法[M].广州:华南理工大学出版社,1989
    [71]金小娟,蒲俊文,陈元春,等.过氧化氢对三倍体毛白杨木素的影响[J].木材加工机械,2006,4:24-27
    [72]陈方,肖习蓉,陈嘉翔.桉木机械浆制浆过程中木素结构的变化[J].纤维素科学与技术,1996,4(3):30-35
    [73]刘玉,詹怀宇,陈嘉川.三倍体毛白杨KP和EMCC蒸煮及TCF漂白过程中木素分子质量的变化[J].中国造纸学报,2005,20(2):43-47
    [74]李静,陈昌华.凝胶渗透色谱法对桉木过氧化氢化学法机械浆制浆过程木素分子量变化的机理研究[J].分析化学研究简报,1999,27(1):51-54
    [75] Lundquist K.. NMR studies of Lignins. 4. Investigation of Spruce Lignin by 1H-NMR Spectroscopy[J]. Acta Chem. Scand. B, 1980, l: 21-26
    [76] Kringstad K. P., M?rck R.. 13C-NMR Spectra of Kraft Lignin[J]. Holzforschung, 1983, 37(5): 237-244
    [77]刘玉.三倍体毛白杨EMCC蒸煮和TCF漂白及其木素结构变化的研究[D].广州:华南理工大学,2005
    [78]覃程荣,詹怀宇,王双飞,等.硫酸盐竹浆ECF和TCF漂白过程中木素结构的变化[J].中国造纸学报,2008,23(4):19-25
    [79] Sun Y. J., Argyropoulos D. S.. A Comparison of the Reactivity and Efficiency of Ozone, Chlorine Dioxide, Dimethyldioxirane and Hydrogen Peroxide with Residual Kraft Lignin[J]. Holzforschung, 1996, 50(2): 175-182
    [80]袁成强,刘玉,陈嘉川,等.麦草碱木素结构特性的研究[J].造纸科学与技术,2008,27(2):20-27
    [81]袁成强,刘玉,陈嘉川,等.麦草浆氧脱木素中木素结构的变化[J].中国造纸学报,2009,24(1):56-59
    [82]刘玉,詹怀宇,陈嘉川.三倍体毛白杨原料木素结构分析[J].中华纸业,2006,27(11):88-91
    [83]刘玉,詹怀宇,陈嘉川.三倍体毛白杨EMCC蒸煮中木素结构变化[J].中国造纸学报,2008,23(2):1-5
    [84]刘玉,詹怀宇,陈嘉川.三倍体毛白杨KP法蒸煮中木素结构变化[J].中国造纸学报,2006,24(21):14-18
    [85] Xu Q. H., Qin M. H., Shi S. L., et al. Structural Changes in Lignin During the Deinking of Old Newsprint with Laccase-Violuric Acid System[J]. Enzyme Microb. Technol., 2006, 39(5): 969-975
    [86]葛培锦,赵建,陈嘉川.木聚糖酶预处理对麦草木素结构特征的影响[J].黑龙江造纸,2007,4:1-4
    [87] Zhang Y., Sj?gren B., Engstrand P., et al. Determination of Charged Groups in Mechanical Pulp Fibers and Their Influence on Pulp Properties[J]. Wood Chem. Technol., 1994, 14(1): 83-102
    [88] Barzyk D.. The Impact of Acidic Group Content and Location on the Beating Bonding Characteristics of Holocellulose Softwood Pulp [D]. Atlanta: Institute of Paper Science and Technology, 1997
    [89]李建,王高升,陈夫山.高电荷密度聚胺的吸附特性及对纸浆性能的影响[J].中国造纸,2006,25(10):4-7
    [90] Li K., Reeve D. W.. The Origins of Kraft Pulp Fiber Surface Lignin[J]. J. Pulp Pap. Sci., 2002, 28(11): 369-373
    [91] B?r?s L., Gatenholm P.. Surface Composition and Morphology of CTMP Fibers[J]. Holzforschung, 1999, 53(2): 188-194
    [92] B?r?s L., Gatenholm P.. Surface Properties of Mechanical Pulps Prepared under Various Sulfonation Conditions and Preheating Time[J]. Holzforschung, 1999, 53(4): 429-434
    [93] Fardim P., Durán N.. Surface Chemistry of Eucalyptus Wood Pulp Fibers: Effects of Chemical Pulping[J]. Holzforschung, 2002, 56(6): 615-622
    [94] Laine J., Lindstr?m T., Glad-Nordmark G., et al. Studies on Topochemical Modification of Cellulosic Fibres Part 2. The Effect of Carboxymethyl Cellulose Attachment on Fiber Swelling and Paper Strength[J]. Nordic Pulp Pap. Res. J., 2002(b), 17(1): 50-56
    [95] Page D. H., Seth R. S., Jordan B. D., et al. Curl, Crimps, Kinks and Microcompressions in Pulp Fibers-Their Origin, Measurement and Significance[C]. Proceedings of the Eighth Fundamental Research Symposium, London: Mechanical Engineering Publications Limited, 1985: 183-227
    [96] Hultén A. H., Basta J., Larsson P., et al. Comparison of Different XPS Methods for Fiber Surface Analysis[J]. Holzforschung, 2006, 60(1): 14-19
    [97] Fardim P., Hultén A. H., Boisvert J-P., et al. Critical Comparison of Methods for Surface Coverage by Extractives and Lignin in Pulps by X-ray Photoelectron Spectroscopy(XPS)[J]. Holzforschung, 2006, 60(2): 149-155
    [98]王凤君,苏润州.应用ESCA分析桦木硫酸盐浆氧漂期间表面性质的变化[J].中国造纸,1993,8(4):58
    [99]刘长恩,蒲云桥,苏润州,等.稀土助漂时硫酸盐木浆表面相特征的研究[J].稀土,1998,19(1):61-64
    [100] Dorris G. M., Gary D. G.. The Surface Analysis of Paper and Wood Fibers by ESCA II: Surface Composition of Mechanical Pulps[J]. Cellulose Chem. Technol., 1978(a), 12: 721-734
    [101]吕建明,张菊先.杨木CTMP过氧化氢漂白特性的研究[J].国际造纸,2002,21(4):20-23
    [102] Safy Ei-Din N. M.. The Water Retention Values of Never-Dried Alkali-Treated Celluloses[J]. Polymer International, 2007, 32(1): 13-17
    [103] Ludwig C., Nist B., Mccarthy J. L.. The High Resolution Nuclear Magnetic Resonance Spectroscopy of Protons in Acetylated Lignins[J]. Journal of the American Society, 1964, 86: 1196-1102
    [104] Argyropoulos D S., Bolker H I., Heitner C., et al. 31P-NMR Spectroscopy in Wood Chemistry, Part V. Qualitative Analysis of Lignin Functional Groups[J]. J. Wood Chem. Technol., 1993, 13(2): 187-212
    [105] Argyropoulos D S.. 31P-NMR Spectroscopy in Wood Chemistry, a Review of Recent Progress[J]. Research on Chemical Intermediates, 1995, 21(3-5): 373-395
    [106] Fukagawa N., Meshitsuka G.., Ishizy A.. A Two-Dimensional NMR Study of Birch Milled Wood Lignin[J]. J. Wood Chem. Technol., 1991, 11(3): 373
    [107]詹怀宇编.纤维化学与物理[M].北京:科学出版社,2005:226-316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700