用户名: 密码: 验证码:
高效生物反应器设计及用于高浓废水处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于厌氧生物处理技术具有负荷高、占地面积少、运行成本低、且具有良好的耐冲击负荷能力等诸多优点,受到人们的高度重视。在诸多类型废水处理工程中得到了广泛的应用。资源与环境是当前世界范围内共同关注的两大主题,工业技术正朝资源高效利用,节水降耗和减排的方向发展,由此,工业废水量递减,但是浓度越来越高,废水变得愈来愈难于处理。以高得率纸浆废水为例,节水措施的广泛应用,排放的废水浓度COD已大于10000mg/L,导致传统的厌氧反应器不能够有效地稳定地运行。高效生物反应器的研究与开发已成为热点课题。
     以两相厌氧消化原理为理论基础,剖析了第三代厌氧生物反应器(UBF、EGSB、IC)和分阶段多相厌氧反应器技术(SMPA)的特点,设计出了两类高效生物反应器(I-紧凑折流式高效生物反应器;II-模块组合式高效生物反应器),并对这两种高效生物反应器进行计算和比选,从实验室研究的需要(水样品种差异大、处理流程的多变性和样本量的合理性),并且考虑多功能化、模块化、可调节等要求,确定模块组合式高效生物反应器设计方案,并加工制作。
     I-紧凑折流式高效生物反应器:采用圆筒形设计,从内到外分为三层即三个区——产酸相反应区、折流区和产甲烷相反应区,水力流动分别为溢流、折流和内循环,产酸相反应区容积1.6L,与基体采用螺纹连接,可更换容积与结构样式,折流区容积为4.1L,产甲烷相反应区容积为15L,整个高效生物反应器结构紧凑,强度良好。
     II-模块组合式高效生物反应器:采有组合式设计,以模块化的通用主体搭配进出水装置和不同的内核组成功能组件,根据试验目的的不同连接成不同组合形式,其内径为40mm,高径比可调,沉淀区可调,进水分配方式可调。
     杨木P-RC APMP制浆过程中主要污染特征为:废水发生量为21.758 m3/t pulp(以绝干浆计,下同),综合废水pH值为6.01,COD为4205 mg/L,COD污染负荷为91.49 kg/t pulp ,综合废水BOD为1794 mg/L,BOD污染负荷为39.03 kg/t pulp。
     首次发现化学机械浆漂白废水中残余的过氧化氢分解会使溶解氧升高,干扰BOD测定。选用KI对化学机械浆废水进行预处理,消除了过氧化氢干扰,投加KI与残余过氧化氢质量之比为2:1.1,反应时间为4小时。消除干扰后的化学机械浆废水BOD测定结果良好,相对误差0.40%~6.18%。
     用新设计的模块组合式生物反应器对杨木P-RC APMP制浆废水进行了处理研究,并用UASB反应器在相同条件进行对比实验,高效生物反应器处理效果要优于对照的UASB反应器,经过处理,COD从进水时的4205mg/L经反应器后降到803 mg/L, COD去除率达到80.9%;BOD从进水的1794mg/L经处理后降到262 mg/L, BOD去除率达到85.4%;SS从160mg/L下降到54mg/L,去除率达到66.3%。
     通过调节进水pH值、反应器运行温度和容积负荷探索高效生物反应器的处理性能,结果显示:pH对高效生物反应器处理效果有一定的影响,在pH值6-8范围内影响不是很大,但当pH>8.5或pH<5.5时,COD去除率有下降趋势,适宜的pH值为7左右。UASB反应器相对于高效生物反应器pH值的缓冲能力不强,当进水pH 7左右时,COD的去除效果最好,但当pH>8.5或pH<6时,COD去除率明显下降明显,特别是当pH为8.5,COD去除率低至47.3%;反应器温度对高效生物反应器运行效率和处理结果有很大影响,当反应器温度从38℃到9℃变化时,高效生物反应器和UASB反应器随温度下降,反应器处理的效果均也大幅度下降,在试验的五个温度点上(38、35、30、20、9℃),高效生物反应器的COD去除率均大于UASB反应器的COD去除率;容积负荷对高效生物反应器处理效果的影响很大,当容积负荷大于10 kg COD/(m3·d)时,容积负荷增大,其COD去除率下降,当大于30 kg COD/(m3·d)时,其COD去除率下降趋势加剧。
     依据对杨木P-RC APMP制浆废水的处理情况分析,高效生物反应器结构比较合理,适合高浓度废水的处理和实验室研究探索。
More attention on anaerobic treatment technologies, have been paid by industry for their process effluent treatment, since this technology with many advantages such as high pollution load, less occupied land area, lower operation cost and high stabilities of effluent load strikes as well. These technologies have widely been successfully applied for various types of industrial effluent treatment plants. Resource saving and environment protection have been recognized as the common two major topics worldwide, therefore, the technologies for industrial processing have been forced toward the directions of high-efficiency utilization of resource, water-saving and energy-saving, lowering pollutants and so on. In this case, the quantities of effluent have been decreased significantly, on other hand, the concentration of effluent increased obviously, which leading to difficulties of handling and treatment. For instance, measures of water-saving have been taken for new high-yield pulping process causes the increase of its effluent concentration with COD consistency of higher than 10 thousands mg/L, which brought troubles for stable operation of traditional anaerobic reactor. Development and design of new-type high-efficiency bioreactor for this purpose have been interested by scientist in the field of effluent treatment.
     Two programmes of high efficiency bioreactor (I-compact baffled high efficiency bioreactor and II-composite module high efficiency bioreactor) were designed with the two-phase anaerobic digestion principle and staged multi-phase anaerobic technology (SMPA) being concerned and study on the third generation of anaerobic bioreactor (UBF, EGSB, IC). Comparing with the two programmes of high efficiency bioreactor, the compact baffled HEB was accepted and produced ultimately as it can meet the laboratory research need ,its more advantage feature, such as the multi-function, modular, can be adjusted, broad adaptability, is also be considered.
     I-compact baffled high efficiency bioreactor: cylinder-shaped, which being divided into three areas - acidogenic phase area, baffled area, and methanogenic phase area. Water flows were overflowing, pack within the flow and internal circulation. Volume of acidogenic phase reactor is 1.6 L, volume can be changed conveniently by replacing acidogenic phase reactor dueing to the thread connection, Volume of baffled area is 4.1 L, Volume of methanogenic phase reactor is 15 L. The high efficiency bioreactor has compact structure and good strength. II-composite module high efficiency bioreactor: designed with modular, it has a universal main body, many functions can be realized with its different combination in accordance with the purpose of testing. Its diameter is 40 mm, the ratio height to diameter is adjustable, the precipitation zone is adjustable and water distribution methods are adjustable.
     Pollution load of effluent of poplar P-RC APMP process were analyzed firstly, the results are: effluent quantities are 21.758 m3 per ton pulp (to dry pulp ), pH value is 6.01, COD is 4205 mg/L, COD load is 91.49 kg / t pulp (to dry pulp), BOD is 1794 mg/L, BOD load is 39.03 kg / t pulp (to dry pulp).
     In order to study the properties of high efficiency bioreactor, effluent of poplar P-RC APMP process was treated with high efficiency bioreactor and UASB, effect of high efficiency bioreactor is better than UASB. After one months continues running, the average COD removal rate reached 80.9% and the average BOD removal rate reached 85.4% when volume load rate was 5 kg COD/(m3 ? d) and reflux ratio was 20:1.
     Some parameters affecting operation of high efficiency bioreactor (pH, temperature and volume load rate) were studied, it shows:①high efficiency bioreactor has a certain buffer to pH than UASB,②COD removal rate decreases with the decrease of temperature from 38℃to 9℃, which of high efficiency bioreactor is greater than UASB.③COD removal rate decreases with the increase of Volume load rate when more than 10 kg COD/(m3·d), COD removal rate downward trend intensified when more than 30 kg COD/(m3·d).
     Experiments verify that the design of new high efficiency bioreactor on the poplar P-RC APMP effluent has a good effect.
引文
[1]陈威,朱雷,梁华杰.废水厌氧生物处理的研究与进展.国外建材科技,2006,27(1):51-53.
    [2]赵立军,滕登用,栗毅.废水厌氧生物处理技术综述与研究进展.环境污染治理技术与设备2001,2(5):58-66.
    [3]何连生,朱迎波,席北斗,等.高效厌氧生物反应器研究动态及趋势.环境工程,2004,22(1):7-11.
    [4]孙剑辉,倪利晓.新型高效厌氧反应器UBF的研究进展.环境污染治理技术与设备.2000,1(6):20-24.
    [5]Sehmidt Jens E.,et al.Granular Sludge Formation in upflow Anaerobic Sludge Blanket (UASB) Reactors.Biotechno1.Bioeng.1996.49:229-246.
    [6]Ren Hongqiang, Chen Jian, et a1.Study On the characteristics of granular sludge bed in Expended Granular Sludge Blanket (EGSB) reactor.The First China/Japan Chemical Engineering Conference. 2000.64-67.
    [7]Lettinga G., et al.Anaerobic waste water treatment as an appropriate technology for developing countries.Trib.Cebedeau,1997, 40(19):21-32.
    [8]丁来保.竹材CTMP制浆高浓废水生化组合处理技术研究.中国林业科学研究院硕士论文,2006,7.
    [9]Lettinga G, Field J, Van J. Advanced anaerobic wastewater treatment in the near future. Water Science Technology,1997,35(10):5-12.
    [10]Vander Last A R M., Lettinga G. Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial level cities.Wat.Sci.Tech,1992.25(7):167-178.
    [11]Auster-mann Haun U, et al.Full scale experiences with anaerobic treatment plants in the food and beverage industry. Wat.Sci.tech,1999.40(1):305-312.
    [12]Zoutberg G R, et al.Anaerobic treatment of potato processing wastewater. Wat.Sci.Techh.1999.40(1):297-304.
    [13]Dries J,et al.High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor. Biodegradation, 1998,9:103-111.
    [14]De Smul, et al.High rates of microbial sulphate reduction in mesophilic ethanol-fed expanded granular sludge blanket reactor. Microbial Biotechnol,1997,48:297-303.
    [16]Hwu C S,et al.Physical chemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids. Process Biochemistry,1998,33(1):75-81.
    [16]Rillzema A.Anaerobic digestion of Long-chain fatty acids in UASB and Expanded Granular Sludge Bed Reactors. Process Biochemistry,1993,28:527-537.
    [17]Zoutberg G R,Franking R.Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor:the Biobed or EGSB reactor.Wat.Sci.Tech,1996,34(5-6):375-381.
    [18]左剑恶等.EGSB反应器的启动运行研究.给水排水,2001.27(3):25-31.
    [19]任洪强,陈坚等.EGSB反应器中颗粒污泥床工作状况及污泥性质研究.环境科学研究,2001,14(3):33-38.
    [20]王凯军,胡超,林秀军.新型高效生物反应器类型及应用.环境污染治理技术与设备, 2006,7(3):120-123.
    [21]李建平,左剑恶.沼气循环厌氧颗粒污泥床反应器的运行特性.中国沼气.2006,24(3):6-10.
    [22]何建普,黄明.厌氧序批式反应器(ASBR)工艺研究进展.企业技术开发,2007,26(5):35-37.
    [23]Dague R, Habben C E, Pidaparli S R. Initial studies on the anaerobic sequencing batch reactor.Water Science Technology, 1992, 26(9/10/11):2429-2432.
    [24]Singh P, Sanghi R, Pandey A, et al. Decolorization and partial degradation of monoazo dyes in sequential fixed-film anaerobic batch reactor. Bioresource Technology, 2007,98(10):2053–2056.
    [25]沈耀良,王宝贞.废水厌氧生物处理新技术理论与应用北京:中国环境科学出版社,1999.
    [26]叶向东,区军.高效厌氧反应器处理生物制药废水的试验研究.中山大学学报:自然科学版,2005,44(4):70-74
    [27]徐春艳,韩洪军,计冰,等.外循环厌氧反应器处理啤酒废水的试验研究.哈尔滨商业大学学报:自然科学版,2006,22(5):28-31
    [28]N.Q. Ren et al. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresource Technology,2007,(98):1774–1780.
    [29]E.Gracia—Calvo, et al.A fluid dynamic model for three-phase airlift reactors. Chemical Engineering Science,1999.54(17):2359-2350.
    [30]J . H . F . Pereboom . Methanogenic granular development in full scale internal circulation reactors.Wat.Sci.Tech, 1994,30(8):9-21.
    [31]邓良伟.IC工艺处理猪场废水试验研究,中国沼气,2001,19(2):12-l6.
    [32]党朝华,张四维. IC反应器处理APMP制浆高浓废水的设计与运行.中国造纸.2004,24(10):35-38.
    [33]周磊,陈朱蕾,廖波.厌氧折流板反应器性能研究进展.工业水处理, 2005,25(6): 1-5.
    [34]William P Barber,David C Stuckey. Startup strategies for anaerobic baffled reactors treating a synthetic sucrose feed [C]. Proc 8th International Conf on Anaerobic Digestion, 1997.
    [35]王淑莹,王晓莲,李探微.新型高效厌氧反应器的研究与开发.北京工业大学学报, 2005,31(6):608-612.
    [36]ANGENENT L T,SOLOMON A,SUNG S.Effect of an organic shock load on the stability of AMBR[J]. Journal of Environmental Engineering, 2002, 128(12):1109-1120.
    [37]ANGENENT L T,SUNG S,RASKIN L.Formation of granules and Methanosaeta fibers in an anaerobic migrating blanket reactor(AMBR)[J]. Environmental Microbiology, 2004, 6(4):315-322.
    [38]林长青.多相内循环厌氧反应器,中国:20061000917, [P]2006-7-19.
    [39]Kai-jun WANG, Lettinga G. Study on treatment of sewage by process of hydrolysis followed by granular sludge expanded bed technology.China Water and Wastewater,1999,15(8):19-23.
    [40]Rebac S,van Lier J, Lens P. et al. Psychrophilic anaerobic treatment of low strength wastewaters. Water Science and Technology, 1999, 39(5):203-209.
    [41]杨健,居志华,吴敏.复合式厌氧反应器预处理低温城市合流制污水中试.中国给水排水,2007,23(5): 58-61.
    [42]薛嘉,黄均,李毅军.高负荷厌氧/好氧一体化生物反应器的运行特性.中国给水排水,2006,22(13):30-33.
    [43]姚行平,李聪.复合式厌氧反应器处理含硫酸盐有机废水的研究.城市公用事业,2006,20(6):20-23.
    [44]郭书海,李旭东,邹轶,一种水处理生物反应器,中国:CN03133500 [P]. 2005-01-19.
    [45]凡广生,李多松.两相厌氧消化工艺的研究进展及其应用.能源环境保护,2006,20(1):10-13.
    [46]Jurgen OLES,Norbert DICHIL, HansHermann NIEHOFF.Full Sale Experience of Two Stage Themophilie / Mesophilic Sludge Digestion[A]. Proc. 8th international Conf . on anaerobic Digestion.1997.(2):224-231.
    [47]Jules B,van Lier,et al.Anaerobic Treatment of Partly Acidified Water in TW-stage Expanded Granular Sludge Bed(EGSB) System at 8℃[A].Proc. 8th international Conf.on anaerobic Digestion. 1997.(2):86-90.
    [48]严月根,等.啤酒废水常温一相两相厌氧颗粒污泥床处理的对照研究.中国环境科学,1990,(8):304-308.
    [49]王子波,杨玉杰.两相厌氧工艺处理草浆黑液甲烷动力学模型.环境科学研究,1999,12(4):27-29.
    [50]贺延龄编著.废水厌氧生物处理.北京:中国轻工业出版社,1998,186-187
    [51]Sayed, S.K.I. Anaerobic Treatment of Slauterhouse Wastewater using the UASB-process, Ph.d.Thesis. The Netherlands: WAU,1987
    [52]Mu J . Study on the PSB method for sulfate-containing high strength organic wastewater treatment.Shanghai:Tongji University,2001:20-39(in Chinese)
    [53]O Ince.Performance of a two-phase anaerobic digestion system when treating dairy wastewater.Water research,1998,32(9):2207-2713
    [54]Gulum Yilmazer,Orhan Yenigun.Two-phase anaerobic treatment of cheese whey.Water Science and Technology,1999,40(1):289-295
    [55]Han Q,Herbert H P F.Acidogensis of gelatin-rich wastewater in an upflow anaerobic reactor:influence of pH and temperature.Water research. 2003.37(1):55-66
    [56]MU Jun,ZHANG Feijuan,HUANG Xiangfeng,et al.The research on the acidibility and acidifying degree as the indicatrix of high strength organic wastewater acidification . Acta Scientiae Circumstantiae,2005,25(5):650-654.
    [57]吴静.复合内循环厌氧反应器,中国:200610112763.0[P]. 2007-02-21.
    [58]孙德智,陈胜,郑钟植.一种用于处理高浓度有机废水的高效复合式厌氧反应器,中国:200610150904.8[P]. 2006-10-16.
    [59]陈振民,谢薇.一种柱式厌氧反应器,中国:CN200610118705.9[P]. 2006-11-23.
    [60]罗固源,吉芳英,豆俊峰等.污水处理上升螺旋流生物反应器及所组成的处理系统,中国:03117335.7[P]. 2003-11-12.
    [61]黄钧,罗明,李毅军.一种处理废水的生物反应器,中国:200310111155.4[P]. 2005-06-15.
    [62]刘俊新,谢珊,李琳.处理高浓度难降解废水的复合生物反应器,中国:200510126231.8[P]. 2007-06-13.
    [63]郑平,唐崇俭,陈建伟等.一种高效厌氧生物反应器,中国:200710066691.5[P]. 2007-08-01.
    [64]郑平,陈建伟,唐崇俭等.螺旋式自循环厌氧生物反应器,中国:200710067151.9[P]. 2007-02-02.
    [65]郑正,杨世关,李继红等.一种处理木质素纤维原料的厌氧反应器,中国:200710019846.X[P]. 2007-08-08.
    [66]阮文权.废水生物处理工程设计实例详解.北京:化学工业出版社,2006.
    [67]赵汝溥,管国锋编.化工原理.北京:化学工业出版社,1999
    [69]方婷,李沪萍,罗康等.声化学技术处理有机废水的研究进展.化工科技,2006,14(5):40-45.
    [70]朱洪涛.超声波技术在废水处理中的应用.工业安全与环保,2007,33(l2):13-15
    [71]曹世晖,戴友芝.超声波技术降解水中氯代有机物的研究进展, 2006,26(6):475-479.
    [72]周烈,刘绍刚,周泽广.超声波降解染料废水的实验研究.广西民族大学学报(自然科学版),2006,12(4):96-99,121.
    [73]McCarty P L ,Anaerobic Digestion ( 1981 ) , Elsevier Biomedical Press , B.V., 1982:3-22.
    [74]Zeiku G,Anaerobic Digestion , Applied Scicnce Publisher Ud.1980:61-87.
    [75]李云平,辛凌云,李森兰.KI催化H2O2分解的速度常数、活化能测定研究.洛阳师范学院学报,2006,28(5):79-81.
    [76]武书彬编著.造纸工业水污染控制与治理技术.北京:化学工业出版社,2001,391-394.
    [77]韩润平,王志武,吴新平,等.滴定法测定污水中的碳酸氢根和挥发性脂肪酸.河南科学,2003,21(3):278-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700