用户名: 密码: 验证码:
有线遥测地震仪交叉站设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,能源消费需求急剧增加,众多资源勘探项目不断开展,地震勘探作为一种常用的地球物理勘探方法在资源勘探领域得到了广泛应用。目前,国内地震勘探仪器很大程度上依然依赖进口,尤其是大型遥测地震仪系统,基本上完全依靠进口[1],此种情况已经严重制约了我国地质勘探事业的发展。本文在有线二维遥测地震勘探仪器的基础上,研制有线遥测地震仪交叉站,实现三维地震勘探。交叉站作为遥测地震仪核心单元,负责快速转发采集阵列上各个方向地震数据。本设计中交叉站采用PowerPC+Linux架构,使用TCP/IP协议实现地震数据传输的网络化,此外交叉站还兼有数据采集功能和采集触发功能,能够完成采集触发和参考道、辅助道的数据采集。本文以软件硬件平台构建和驱动程序编写为重点,所做的主要工作及结论如下:
     1.研究对比了目前国外先进地震仪交叉站的功能和结构,并结合地震数据传输的特点,把二维地震勘探中接力式以太网拓扑结构拓展到三维勘探,采用UDP广播形式动态分配IP地址,并初步分析了接力式拓扑结构动态IP分配和路由表建立的机制。利用GNS3网络仿真软件,设计了一个具有三条测线的接力式网络拓扑结构,分析其关键线路网络数据传输速度,验证了接力式拓扑结构在三维地震勘探中的可行性。
     2.根据三维勘探对有线遥测地震仪功能的需求,设计具有5个以太网接口的交叉站,可同时与主控机、上下级交叉、同测线采集站连接。主控机通过交叉站控制测线上的采集站,完成地震数据的回收。通过对主流微处理器和操作系统特点对比和分析,确定交叉站采用PowerPC芯片和Linux系统。PowerPC芯片拥有丰富的外围接口资源,使用的QUICC Engine技术能够提供较高的网络数据吞吐量;Linux系统对TCP/IP协议的支持,能够满足网络传输中所需的各项要求。硬件方面,设计了交叉站硬件模块各个部分,包括处理器模块、电源模块、网络模块、FPGA采集模块。系统采用66MHZ的时钟频率,选用PCI agent模式,设置成从本地总线读取复位控制字。系统配置了128M SDRAM、16M FLASH,并采用GPCM模式设计了8位总线接口,用于同FPGA采集模块连接。软件方面,本文结合硬件体系分析了Linux平台构建过程,包括U-BOOT移植、DTS编写、Linux内核的移植和根文件系统的制作,重点阐述了MII接口与GPCM模式总线接口的配置。
     3.本文研究了MPC8360的I/O内存映射和中断处理相关函数的实现,根据FPGA内部逻辑、集模块数据流类型和采集模块工作中的状态(复位、A/D上电、A/D工作、A/D停止等)设计了基于FPGA的采集模块字符设备驱动程序。通过分析字符驱动设备基本框架,完成了框架内各部分驱动程序的编写,包括驱动程序注册和注销、设备打开和释放、设备读写操作、设备控制、设备中断。最终实现对FPGA内部寄存器的读写,完成对FPGA采集模块的控制。
     本文最后对硬件平台和软件平台进行了测试。在ftp测试中,交叉站网络模块转包率可达到6156.267pps(平均包长1079.609bytes);采集模块通过了读写和中断测试,并在正弦波采集和短接采集测试中,获得理想效果。
At present, the energy consumption demands sharp increasing, a number ofresource exploration projects ongoing. Seismic exploration, as a commonly usedgeophysical method has been widely applied in the field of resource exploration.Domestic seismic exploration instrument is largely still dependent on imports,especially large-scale telemetry seismograph system, almost entirely dependent onimports; this situation has seriously hampered the development of domestic geologicalexploration. In this paper, based on wired two-dimensional telemetry seismicexploration instrument, it develops telemetry seismograph cross station to achievethree-dimensional seismic exploration. Cross Station as the telemetry seismographcore unit, responsible for fast-forwarding seismic data acquisition in all directions inthe array. In this design the cross station uses the PowerPC+Linux framework,realizes seismic data transmission network in the TCP/IP protocol, and has the dataacquisition function to collect data of reference channel and secondary channel. Inthis paper start from the system architecture, focus on building software and hardwareplatform and writing driver program, the major work done are as follows:
     The study compared the function and structure of foreign advanced seismographCross station, combined with the characteristics of the seismic data transmission, thetopology of Ethernet-based relay in the two-dimensional seismic exploration isextended to the three-dimensional exploration. Dynamically assigned IP address usingUDP broadcasts in the three-dimensional seismic exploration, and analysis of themechanism established by the assign of dynamic IP and routing table in relaytopology, use GNS3network simulation software, and analyze a relay-style with threemeasured line critical path network data transfer speed of the network topology andverify the feasibility of the Relay topology in three-dimensional seismic exploration.
     Design of cable telemetry seismograph cross station with five Ethernet interfaces,which can connect with the host computer, upper and lower levels cross, gatheringstation with the same survey line. The host computer via a crossover station to controlthe acquisition of the measured line station to complete the recovery of the seismicdata. By analyzing the mainstream microprocessor and operating system features, thisdesign uses a PowerPC chip and Linux systems to design cross station. The PowerPC chip has a rich peripheral interfaces, its QUICC Engine technology to provide highernetwork data throughput; Linux support for TCP/IP protocol, able to meet therequirements in the network transmission. Hardware side, this paper designed variousparts of the cross-station hardware module, including the processor module, powermodule, network module, data acquisition module, The system uses a66MHZ clockfrequency, the selection of the PCI agent mode, set the reset control word from thelocalbus. The system is configured with128M SDRAM,16M FLASH, and GPCMmode designed for8bit interface for connection and data acquisition board. Thesoftware side, combination of hardware system it analyzes Linux platform buildingprocess, including the U-BOOT transplantation, DTS to write, the Linux kerneltransplantation and the production of the root file system. The focus on design MIIinterface with the GPCM mode bus interface configuration.
     In this paper, we have studied the MPC8360's I/O memory mapping and interruptprocessing of the correlation function, according to the state of the internal FPGAlogic, the type of data stream of the assembly module and the acquisition module'sworking status, including the reset, the A/D power, the work of the A/D, the A/D stop,and so on, design of FPGA-based acquisition module character device driver.completed the preparation of the various parts of the driver within the framework byanalyzing the basic framework of the character-driven equipment, including theregistration and cancellation of the driver, the device to open and release,the deviceread and write operations, device control, device interrupt. The ultimate realization ofthe internal registers in the FPGA to read and write, and complete control of dataacquisition module.
     Finally, we tested the hardware platform and software platform, they can workproperly. Network interface test results meet the design requirements; acquisitionmodule through read, write and interrupt tests, and we got the desired effect in thesine wave and short acquisition tests.
引文
[1]张林行.基于接力式以太网的可控震源地震勘探数据传输技术研究[D].长春:吉林大学仪器科学与电器工程学院,2007.
    [2][美]R.E.谢里夫,[加]L.P.吉尔达特编,初英等译,勘探地震学[G]//石油工业出版社,1999(2).
    [3]韩晓泉等.地震勘探仪器的现状及发展趋势[J].物探装备.2008(01)
    [4]漆昭铃.基于PowerPC的嵌入式Linux[M]北京:北京航空航天大学出版社,2003.
    [5] MPC8360E PowerQUICC II Pro Integrated Communications Processor FamilyReference Manual. MPC8360ERM Rev.3,05/2010.
    [6] MPC8360E/MPC8358E PowerQUICC Design Checklist. Rev.1,07/2007.
    [7] MPC8360E/MPC8358E PowerQUICC II Pro Processor Revision2.x TBGASilicon Hardware Specifications. Rev.1,2/2007.
    [8]DP83848I PHYTER-Industrial Temperature Single Port10/100Mb/sEthernet Physical Layer Transceiver,06/2008.
    [9]清华远见嵌入式培训中心.嵌入Linux系统开发标准教程(第二版)[M].人民邮电出版社,2009.
    [10]宋国军,张侃谕,林学龙.嵌入式系统中U-Boot基本特点及其移植方法[J].2004.10:78-81
    [11]邱文华,邱珍珍.基于扁平设备树的Linux内核启动方式[J].现代计算机(专业版).2009(03)
    [12] Sailor_forever.全面解析PowerPC架构下的扁平设备树FDT、设备树节点DTB[M/OL].[2009-12-26].http://blog.csdn.net/sailor_8318/archive/2009/12/26/5078959.aspx
    [13] Benjamin Herrenschmidt,Becky Bruce, et al.Booting the Linux/ppckernel without Open Firmware [Z].2006
    [14] David Gibson,Benjamin Herrenschmidt. Device trees everywhere[EB/OL].
    [2008-1-9].
    [15](美)科波特LINUX设备驱动程序[M].中国电力出版社,2006.[16]
    [16]刘淼.嵌入式系统接口设计与Linux驱动程序开发[M].北京航空航天大学出版社.2006.
    [17]杨泓渊复杂山地自定位无缆地震仪的研究与实现[D].长春:吉林大学仪器科学与电器工程学院,2009.
    [18]宋宝华. Linux设备驱动开发详解[M].北京:人民邮电出版社,2008.
    [19]李俊.嵌入式Linux设备驱动开发详解[M].北京:人民邮电出版社,2003.
    [20][韩]俞永昌. Linux设备驱动开发技术及应用[M].李红姬,译.北京:人民邮电出版社,2008.
    [21]刘淼.嵌入式系统接口设计与Linux驱动程序开发[M].北京航空航天大学出版社.2006.
    [22]孙天泽,袁文菊,张海峰.嵌入式设计及Linux驱动开发指南—基于ARM9处理器[M].北京:电子工业出版社,2007.
    [23]李世勇,肖竟华.基于Linux驱动程序的编写技术[J].电脑与信息技术.2006(03).
    [24]王粉花.基于Linux字符设备驱动程序的设计与实现[J].计算机工程.2006(23).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700