用户名: 密码: 验证码:
Cu_2ZnSnS(Se)_4、CdIn_2S_4纳米结构的制备及其光电性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能被认为是取之不尽用之不竭的可再生能源。在太阳能电池的研究中,不断探索寻找具有潜在应用前景的新型光电材料,以及开发高效低成本的制备方法是非常重要的研究方向。目前,研究最多的太阳能电池是薄膜化合物太阳能电池,薄膜太阳能电池具有光吸收系数大、制备方法简单、抗腐蚀性强等优点。在薄膜太阳能电池中CuIn(Ga)Se_2太阳能电池有着优异的表现,其能量转换效率已接近20%。然而材料中的In和Ga是稀有贵金属元素,限制了CuIn(Ga)Se_2太阳能电池的大面积生产。
     近年来, Cu_2ZnSnS(Se)_4由于具有与CuIn(Ga)Se_2材料相似的结构和光学性质并且材料中不包含贵金属元素而受到越来越多的重视。Cu_2ZnSnS(Se)_4材料是直接带隙半导体,禁带宽度在1.3-1.6eV之间,光吸收系数大于104cm-1,被认为是理想的薄膜太阳能电池吸收层材料。但是,目前制备Cu_2ZnSnS(Se)_4的方法主要局限在热蒸发技术、磁控溅射、激光脉冲沉积、原子束溅射等。这些方法都有着各自的缺点如反应物昂贵、设备复杂、制备中产生有毒物质等。溶剂热法是一种制备半导体材料常用的化学方法,具有设备简单、易于操作等特点。但是目前关于溶剂热法制备Cu_2ZnSnS(Se)_4的报道依然很少。针对这种情况,我们在本文中研究了利用简单方便的溶剂热方法制备不同形貌结构的纳米结构和薄膜,并首次制备了Cu_2ZnSnSe_4的纳米管阵列,讨论了纳米管阵列的生长机制。此外,我们研究发现具有片状结构的CdIn_2S_4薄膜同样可以通过水热法制备,并且展现出良好的光电性质。
     (1)利用溶剂热技术,以二甲基甲酰胺为溶剂,制备了具有空心球状的Cu_2ZnSnS_4纳米结构。实验表明,溶剂中的PEG对空心球状Cu_2ZnSnS_4的形成起关键作用。
     (2)根据不同反应条件的对比试验结果详细地讨论了空心球状的Cu_2ZnSnS_4的生长机制。空心球状Cu_2ZnSnS_4的生长可以分为三个过程,首先是溶液中的金属离子与PEG分子作用,吸附在PEG分子表面。之后是在反应温度下溶液中产生S~(2-),金属离子与S~(2-)反应生成球状的Cu_2ZnSnS_4结构。最后经过Ostwaldripening过程形成空心球状的Cu_2ZnSnS_4纳米结构。
     (3)利用乙二胺为反应溶剂,成功制备了具有花状结构的Cu_2ZnSnSe_4。对样品测试分析的结果表明得到的Cu_2ZnSnSe_4具有黝锡矿结构和理想的化学成分比例,并讨论了花状Cu_2ZnSnSe_4颗粒的形成过程。
     (4)采用溶剂热法在FTO导电基片上直接生长了均匀的Cu_2ZnSnS_4薄膜样品。详细研究了不同退火温度(250-550℃)对样品结构、形貌和成分的影响。当退火温度为550℃时,薄膜样品具有锌黄锡矿结构并且展现出良好的光响应特性。为制备其他硫化物薄膜提供了一种方便低耗的制备方法。
     (5)首次在FTO基片上制备出均匀一致的纳米管阵列。Cu_2ZnSnSe_4纳米管阵列是以ZnO纳米棒阵列作为模板,结合了离子交换反应与溶解热技术制备得到的。首先在FTO基片上制备了均匀的ZnO纳米棒阵列。之后,利用材料容积度常数的不同(ZnO>ZnSe>CuSe),通过离子交换反应制备了ZnO/CuSe的电缆结构阵列。最后在溶剂热反应过程中外层的CuSe与Zn~(2+)和Sn~(4+)反应生成Cu_2ZnSnSe_4,同时内部的ZnO与反应中生成的H~+反应而溶解,最终形成了Cu_2ZnSnSe_4的纳米管阵列。
     (6)通过改变ZnO纳米棒阵列长度和直径制备了具有不同长度和直径的Cu_2ZnSnSe_4纳米管阵列,并研究了不同长度纳米管阵列的光电化学性质,讨论了光电流的变化规律。结果表明,长度为2μm的Cu_2ZnSnSe_4纳米管阵列的光电化学性质最好。
     (7)采用水热法以半胱氨酸为硫源在FTO基片上直接生长了具有片状结构的CdIn_2S_4薄膜。讨论了片状CdIn_2S_4薄膜的生长机制,其生长主要经历三个过程:1)利用H_2SO_4和H_2O_2溶液处理FTO基片;2)CdIn_2S_4在FTO基片表面的异质成核过程;3)CdIn_2S_4在基片成核处的晶体生长过程。
     (8)对片状CdIn_2S_4薄膜样品的光电化学性质进行了研究,结果表明,CdIn_2S_4具有良好的光电性质,退火处理后转换效率可以达到0.162%明显好于类似的半导体薄膜材料如In_2S_3,CdS等。
Solar energy is considered to be the most economic and effective among allavailable renewable energy resources. In the solar energy research field, synthesis ofnovel PV materials with simple method is an important research direction. Recently,chalcopyrite-type semiconductors like Cu(In,Ga)Se2or Cu(In,Ga)S2have verybeneficial properties for photo-voltaic applications. Obtained efficiencies areremarkably high, up to nearly20%; however, gallium and indium used for thepreparation of the active layer are very rare and expensive elements. This could leadto a shortage in the supply of these elements and would inhibit a cost-effectivelarge-scaleproduction.
     A quaternary semiconductor of Cu_2ZnSnS(Se)_4, which is a direct band gapsemiconductor having a high absorption coefficient of the order of104cm-1, has beenregarded as one of most promising materials for light-absorbing materials in solarcells because of its content of only low-toxicity elements that are abundant in theearth crust. Recently, Cu2ZnSn(Se)S4thin films can be prepared using variousmethods, such as atom beam sputtering, RF magnetron sputtering, thermalevaporation, pulsed laser deposition, etc. However, these methods have somedrawbacks such as expensive precursors, complicated apparatus and even some toxicbyproducts evolved during their synthesis. In this thesis, we synthesizedCu2ZnSn(Se)S4and CdIn_2S_4nanostructures via a simple solvothermal route and investigated their photoelectric properties. The main content and innovation of thisthesis are listed as following:
     (1) Pure Cu_2ZnSnS_4in a hollow sphere morphology has been successfullysynthesized in a PEG-assisted solvothermal reaction with N, N-dimethylformamide asthe solvent. The extensive investigations demonstrated that the PEG plays animportant role in the formation of the hollow spheres.
     (2) The growth mechanism for the hollow sphere-like particles has beendiscussed.
     (3)Cu_2ZnSnSe_4particles with flowerlike morphology have been successfullysynthesized in a solvothermal reaction with ethylenediamine as the reaction solvent.Stannite Cu_2ZnSnSe_4with a near stoichiometry composition synthesized bysolvothermal process. A possible growth process of the films was also proposed.
     (4) The Cu_2ZnSnS_4thin films have been deposited onto FTO glass substrate by asolvothermal method for the first time. These as-deposited films were annealed atdifferent temperatures from250°C to550°C. The influence of the annealingtemperature on the structure, morphology, and composition of the films has beenstudied. The photelectrochemical measurement with CZTS thin films shows that filmsare photoactive which proves itself to be a promising candidate for cost-effective,high efficiency solar cells in future.
     (5) For the first time, arrays of Cu_2ZnSnSe_4nanotubes were directly grown onfluorine-doped tin oxide glass substrate by using ZnO nanorods as sacrificialtemplates. The solubility product constant (Ksp) of ZnO is larger than those of ZnSeand CuSe. This implies that the arrays of ZnO nanorods can be used as sacrificialtemplates to synthesize more stable ZnSe by anion exchange and further convert intoCuSe by cation exchange to obtain ZnO/CuSe nanocables. Arrays of CZTSe naotubescan be prepared by using the ZnO/CuSe nanocables as self-sacrificial templates toreact with Zn~(2+)and Sn2+via a polyol reduction process. The ZnO cores are slowlydissolved by the H~+ions produced in the reaction.
     (6) The length and diameter of the CZTSe nanotubes can be adjusted by turningthe length of the ZnO nanorods. The effect of the length on the performance of the photoelectrochemical cells was also investigated. We found the CZTSe nanotubeswith the length of2μm showed the best performance of photoelectrochemical cells.
     (7) CdIn_2S_4films composed of nanosheets have been directly deposited onfluorine-doped tin oxide substrates using a simple hydrothermal method. TheL-cysteine acting as sulfur source was found to play an important role in theformation of the final films. A possible growth mechanism for the formation CdIn_2S_4films on FTO substrates has been proposed. It was found that the formation ofuniform CdIn_2S_4films attached the FTO substrates underwent the following steps:1)piranha treatment of FTO substrate;2) formation of hetero-nucleation sites on thesubstrate surface;3) growth of CdIn_2S_4film from the nucleation sites.
     (8) From the results of the photoelectronchemical properties studies, thephotoelectric conversion efficiency of0.162%was obtained under100mW cm-2illumination.
引文
[1] European commissions. http://ec.europa.eu/dgs/jrc/index.cfm.
    [2] Zhao J. Recent advances of high-efficiency single crystalline silicon solar cells inprocessing technologies and substrate materials [J], Solar energy materials&solarcells,2004,82,53–64.
    [3] Oregan B, M Gratzel. A low-cost high-efficiency solar cell based ondye-sensitized colloidal TiO2films [J]. Nature,1991,53(6364),737–747.
    [4] Solarbuzz. http://www.solarbuzz.com/news/NewsNACO1205.htm.
    [5] Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, CraigL. Perkins, Bobby To, Rommel Noufi.19.9%-efficient ZnO/CdS/CuInGaSe2solar cellwith81.2%fill factor [J], Progress in photovoltaics: research and applications,2008,16,235–239.
    [6] T. K. Todorov, K. B. Reuter, D. B. Mitzi, High-Efficiency Solar Cell withEarth-Abundant Liquid-Processed Absorber [J]. Adv. Mater.2010,22, E156–159.
    [7] Nische R., Sargent D. F., Crystal growth of quaternary122464chalcogenides byiodine vapor transport. P.[J] J. Cryst. Growth1967,1,52–53.
    [8] Sch fer W., Nitsche R. Tetrahedral quaternary chalcogenides of the type Cu2II IVS4(Se4)[J]. Mat. Res. Bull.,1974,9,645–654.
    [9] Lu X., Zhuang Z., Peng Q., Li Y. Wurtzite Cu2ZnSnS4nanocrystals: a novelquaternary semiconductor [J]. Chem. Comm.,2011,47,3141–3143.
    [10]Chen S., Gong X. G., Walsh A., Wei S. Crystal and electronic band structure ofCu2ZnSnX4(X=S and Se) photovoltaic absorbers: First-principles insights [J]. Appl.Phys. Lett.,2009,94,41903–41905.
    [11] Wangperawong A., King J. S., Herron S. M., Tran B. P., Pangan-Okimoto K.,Bent S. F. Aqueous bath process for deposition of Cu2ZnSnS4photovoltaic absorbers[J]. Thin Solid Films,2011,519,2488–2492.
    [12] Zhou, Y., Zhou, W., Du, Y., Li, M., Wu, S., Sphere-like kesterite Cu2ZnSnS4nanoparticles synthesized by a facile solvothermal method [J]. Mater, Lett.,2011,65,1535–1537.
    [13]Araki H., Kubo Y., Jimbo K., Maw W. S., Katagiri H., Yamazaki M., Oishi K.,Takeuchi A. Preparation of Cu2ZnSnS4thin films by sulfurizing electroplatedprecursors [J]. Solar Energy Materials and Solar Cells,2009,93(6–7),996–999.
    [14] Katagiri H., Saitoh K., Washio T., Shinohara H., Kurumadani T., Miyajima S.Development of thin film solar cell based on Cu2ZnSnS4thin films [J]. Sol. Energy.Mater Sol. Cells,2001,65,141–148.
    [15] Jiang M., Dhakal R., Li Y., Thapaliya P., Yan X. Proceedings37th IEEE PVSC2011(Seattle, USA).
    [16] Wang X., Sun Z., Shao C., Boye D. M., A facile and general approach topolynary semiconductor nanocrystals via a modified two-phase method [J].Nanotechnology,2011,22,245605.
    [17] Fontané X., Calvo-Barrio L., Izquierdo-Roca V., Saucedo E., Pérez-Rodriguez,A., Morante J. R., Berg D. M., Dale P. J., Siebentritt S. In-depth resolved Ramanscattering analysis for the identification of secondary phases: Characterization ofCu2ZnSnS4layers for solar cell applications [J]. Appl. Phys. Lett.,2011,98,181905.
    [18] Yoo H., Kim J. Growth of Cu2ZnSnS4thin films using sulfurization of stackedmetallic films [J]. Thin Solid Films,2010,518,6567–6572.
    [19] Wang K., Shin B., Reuter K. B., Todorov T., Mitzi D. B. Structural and elementalcharacterization of high efficiency Cu2ZnSnS4solar cells [J]. Appl. Phys. Lett.2011,98,051912–051914.
    [20] Chalapathy R. B., Lee C., Ahn B. T. Proceedings37th IEEE PVSC2011(Seattle,USA).
    [21] Chen S., Yang J., Gong X., Walsh A., Wei S. Intrinsic point defects andcomplexes in the quaternary kesterite semiconductor Cu2ZnSnS4[J]. Phys. Rev. B.2010,245204.
    [22] Moriya K., Tanaka K., Uchiki H. Surface morphology improvement ofthree-dimensional solar cell with Cu2ZnSnS4absorber [J]. Journal of alloys andcompounds,2013,15,98–102.
    [23] Jun Z., Xi S. Cu2ZnSnS4thin films prepared by sulfurizing different multilayermaetal precursors [J]. Sci. China. Ser-TechE. Sci.2009,52,269–272.
    [24] Ito K., Nakazawa T. Electrical and optical properties of stannite-type quaternarysemiconductor thin film [J]. Jpn. J. Appl. Phys.1988,27,2094–2097.
    [25] Scragg J. J., Dale P. J., Peter L. M., Zoppi G., Forbes I. New routes to sustainablephotovoltaics: evaluation of Cu2ZnSnS4as an alternative absorber material [J]. Phys.Stat. Sol. B.,2008,245,1772–1778.
    [26] Fernandes P. A., Salomé P. M. P., Cunha A. F., Schubert B. Cu2ZnSnS4solar cellsprepared with sulphurized dc-sputtered stacked metallic precursors [J]. Thin SolidFilms,2011,519,7382–7385.
    [27] Liu F., Zhang K., Lai Y., Li J., Zhang Z., Liu Y. Growth and Characterization ofCu2ZnSnS4Thin films by DC reactive magnetron sputtering for photovoltaicapplications [J]. Electrochem-State Solid.Lett.2011, H379–381.
    [28] Tanaka T., Nagatomo T., Kawasaki D., Nishio M., Guo Q., Wakahara A., YoshidaA., Ogawa H. Preparation of Cu2ZnSnS4thin films by hybrid sputtering [J]. J. Phys.Chem. Solids,2005,66,1978–1981.
    [29] Rajeshmon V. G., Kartha C. S., Vijayakumar K. P., Sanjeeviraja C., Abe T.,Kashiwaba Y. Role of precursor solution in controlling the opto-electronic propertiesof spray pyrolysed Cu2ZnSnS4thin films [J]. Sol. Energy.2011,85,249–255.
    [30] Liu F., Li Y., Zhang K., Wang Yan, C. Lai, Y. Zhang, Z. Li, Liu Y. In situ growthof Cu2ZnSnS4thin films by reactive magnetron co-sputtering [J]. Sol Energy MaterSol. Cells,2010,94,2431–2434.
    [31] Chan C. P., Lam H., Surya C. Preparation of Cu2ZnSnS4films byelectrodeposition using ionic liquids [J]. Sol. Energy. Mater Sol. Cells,2010,94,207–211.
    [32] Wagner S., Bridenbaugh P. M. Multicomponent tetrahedral compounds for solarcells [J]. J. Cryst. Growth,1977,39,151–159.
    [33]Katagiri H., Sasaguchi N., Hando S., Hoshino S., Ohashi J., Yokota T. Preparationand evaluation of Cu2ZnSnS4thin films by sulfurization of E-B evaporated precursors[J]. Sol. Energy. Mater. Sol. Cells,1997,49,407–414.
    [34] Hiroi H., Sakai N., Sugimoto H. Proceedings37th IEEE PVSC2011(Seattle,USA).
    [35] Kobayashi T., Jimbo K., Tsuchida K., Shinoda S., Oyanagi T., Katagiri H.Investigation of Cu2ZnSnS4-Based Thin Film Solar Cells Using Abundant Materials[J]. Jpn. J. Appl. Phys.,2005,44,783–787.
    [36] Shin B., Gunawan O., Zhu Y., Bojarczuk N. A., Chey S. J., Guha S., Thin filmsolar cell with8.4%power conversion efficiency using an earth-abundant Cu2ZnSnS4absorber [J]. Prog, Photovolt. Res.Appl.,2013,21,72–76.
    [37] Katagiri H., Jimbo K., Yamada S., Kamimura T., Maw W. S., Fukano T., Ito T.,Motohiro T. Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin film solarcells by using preferential etching technique [J]. Appl. Phys. Express,2008,1,041201–041202.
    [38] Ahmed S., Reuter K. B., Gunawan O., Guo L., Romankiw L. T., Deligianni H. AHigh Efficiency Electrodeposited Cu2ZnSnS4Solar Cell [J]. Adv. Energy. Mater,2012,2,253–259.
    [39] Maeda K., Tanaka K., Fukui Y., Uchiki H. Influence of H2S concentration on theproperties of Cu2ZnSnS4thin films and solar cells prepared by sol–gel sulfurization[J]. Sol. Energy. Mater Sol. Cells,2011,95,2855–2860.
    [40] Moholkar A. V., Shinde S. S., Babar A. R., Sim K., Lee H., Rajpure K. Y., Patil P.S., Bhosale C. H., Kim J. H. Synthesis and characterization of Cu2ZnSnS4thin filmsgrown by PLD: Solar cells [J]. J. Alloys Compd.,2011,509,7439–7446.
    [41] Prabhakar T., Nagaraju J. Proceedings37th IEEE PVSC2011(Seattle, USA).
    [42] Steinhagen C., Panthani M. G., Akhavan V., Goodfellow B., Koo B., Korgel B. A.Synthesis of Cu2ZnSnS4nanocrystals for use in low-cost photovoltaics [J]. J. Am.Chem.,2009,12554–12555.
    [43] Zhou Z., Wang Y., Xu D., Zhang Y. Fabrication of Cu2ZnSnS4screen printedlayers for solar cells Sol [J]. Energy. Mater Sol. Cells,2010,94:2042–2045.
    [44] Rachmat Adhi Wibowo, Woo Seok Kim, Eun Soo Lee, Badrul Munir, Kyoo HoKim. Single step preparation of quaternary Cu2ZnSnSe4thin films by RF magnetronsputtering from binary chalcogenide targets [J]. J. Phys. Chem. Solids,2007,68,1908–1913.
    [45] H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W. S. Maw, H. Katagiri, M.Yamazaki, K. Oishi, A. Takeuch. Preparation of Cu2ZnSnS4thin films bysulfurization of stacked metallic layers [J]. Thin Solid Films,2008,517,1457–1460.
    [46] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima.Development of thin film solar cell based on Cu2ZnSnS4thin films [J]. Sol. EnergyMater. Sol. Cells,2001,65,141–148.
    [47] T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi and H. Katagiri.Investigation of Cu2ZnSnS4-based thin film solar cells using abundant materials [J].Jpn. J. Appl. Phys.,2005,44,783–787.
    [48] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D.Mitzi, S. Guha. Thermally evaporated Cu2ZnSnS4solar cells [J]. Appl. Phys. Lett.,2010,97,143508–143509.
    [49] B. Shin, O. Gunawan, Y. Z. Nestor, A. Bojarczuk, S. Jay Chey, S. Guha. Thinfilm solar cell with8.4%power conversion efficiency using an earth-abundantCu2ZnSnS4absorber [J]. Prog. Photovolt. Res. Appl.,2011,1174.
    [50] J. Zhang, L. X. Shao, Y. J. Fu, E. Q. Xie. Cu2ZnSnS4thin films prepared bysulfurization of ion beam sputtered precursor and their electrical and opticalproperties [J]. Rare Met.,2006,25,315–319.
    [51] J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, K. H. Kim. Electrical and opticalproperties of Cu2ZnSnS4thin films prepared by RF magnetron sputtering process [J].Sol. Energy Mater. Sol. Cells,2003,75,155–162.
    [52] Jimbo K., Kimura R., Kamimura T., Yamada S., Maw W. S., Araki H., Oishi K.,Katagiri H. Cu2ZnSnS4-type thin film solar cells using abundant materials [J]. ThinSolid Films,2007,515,5997–5999.
    [53] Katagiri H., Jimbo K., Yamada S., Kamimura T., Maw W. S., Fukano T., Ito T.,Motohiro T. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solarcells by using preferential etching technique [J]. Appl. Phys. Express,2008,041201.
    [54] Katagiri H., Jimbo K. Proceedings37th IEEE PVSC2011(Seattle, USA).
    [55] D. B. Chrisey, G. K. Hubler, Pulsed laser deposition of thin films [J].1994,14,613.
    [56]唐亚陆,杜泽民,脉冲激光沉积原理及其应用,Journal of Guilin University ofElectronic Technology,2006,26,24–27.
    [57]Moriya K., Tanaka K., Uchiki H. Fabrication of Cu2ZnSnS4thin-film solar cellprepared by pulsed laser deposition [J]. Jpn. J. Appl. Phys.,2007,46,5780–5781.
    [58] Pawar S. M., Moholkar A. V., Kim I. K., Shin S. W., Moon J. H., Rhee J. I., KimJ. H. Effect of laser incident energy on the structural, morphological and opticalproperties of Cu2ZnSnS4(CZTS) thin films [J]. Curr. Appl. Phys.2010,10,565–569.
    [59] Schurr R., H lzing A., Jost S., Hock R., Vo T., Schulze J., Kirbs A., Ennaoui A.,LuxSteiner M., Weber A., K tschau I., Schock H.W. The crystallisation of Cu2ZnSnS4thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors [J]. ThinSolid Films2009,517,2465–2468.
    [60] Ennaoui A., Lux-Steiner M., Weber A., Abou-Ras D., K tschau I., Schock H., W.Schurr, R. H lzing, A. Jost, S. Hock, R. Vo T., Schulze J., Kirbs A. Cu2ZnSnS4thinfilm solar cells from electroplated precursors: Novel low-cost perspective [J]. ThinSolid Films,2009,517,2511–2514.
    [61] T. Todorov, D. B. Mitzi. Direct liquid coating of chalcopyrite light-absorbinglayers for photovoltaic devices [J]. Eur. J. Inorg. Chem.,2010,2010,17–28.
    [62] Maeda K., Tanaka K., Fukui Y., Uchiki H. Influence of H2S concentration on theproperties of Cu2ZnSnS4thin films and solar cells prepared by sol–gel sulfurization[J]. Sol. Energy. Mater Sol. Cells,2011,95,2855–2860.
    [63] M. Y. Yeh, C. C. Lee, D. S. Wuu. Influences of synthesizing temperatures on theproperties of Cu2ZnSnS4prepared by sol–gel spin-coated deposition [J]. Sol-GelTechnol.,2009,52,65–68.
    [64] Perednis D., Wihlelm O., Pratsinis S.E., Gauckler L.J. Morphology anddeposition of thin yttria-stabilized zirconia films using spray pysolysis [J]. Thin SolidFilms,2005,474,84–95.
    [65] Perednis D., Gauckler L.J. Thin film deposition using spray pyrolysis [J]. Journalof Electroceramics,2005,14,103–111.
    [66] N. Nakayama, K. Ito. Sprayed films of stannite Cu2ZnSnS4[J]. Appl. Surf. Sci.,1996,92,171–175.
    [67] N. Kamoun, H. Bouzouitaand, B. Rezig. Fabrication and characterization ofCu2ZnSnS4thin films deposited by spray pyrolysis technique [J]. Thin Solid Films,2007,515,5949–5952.
    [68] Y. B. Kishor Kumar, G. Suresh Babu, P. UdayBhaskar, V. Sundara Raja.Preparation and characterization of spray-deposited Cu2ZnSnS4thin films [J]. Sol.Energy Mater. Sol. Cells,2009,93,1230–1237.
    [69] V. G. Rajeshmon, C. Sudha, K. Artha, K. P. Vijayakuma, C. Sanjeeviraja, T. Abe,Y. Kashiwaba. Role of precursor solution in controlling the opto-electronic propertiesof spray pyrolysed Cu2ZnSnS4thin films [J]. Sol. Energy Mater. Sol. Cells,2011,85,249–255.
    [70] Riha S. C., Parkinson B. A., Prieto A. L. Solution-based synthesis andcharacterization of Cu2ZnSnS4nanocrystals [J]. J. Am. Chem. Soc.,2009,12054–12055.
    [71] Guo, Q., Hillhouse, H. W., Agrawal R. Synthesis of Cu2ZnSnS4nanocrystal inkand its use for solar cells [J]. J. Am. Chem. Soc.,2009,131,11672–11673.
    [72]Q. Guo, G.M. Ford, W.C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, R.Agrawal, Fabrication of7.2%Efficient CZTSSe Solar Cells Using CZTSNanocrystals [J]. J. Am. Chem. Soc.2010,132,17384-17386.
    [73] Kameyama T., Osaki K. T., Okazaki Shibayama T., Kudo A., Kuwabatade S.,Torimoto T. Preparation and photoelectrochemical properties of densely immobilizedCu2ZnSnS4nanoparticle films [J]. J. Mater Chem.,2010,20,5319–5324.
    [74] Zhou Y., Zhou W., Li M., Du Y., Wu S. Hierarchical Cu2ZnSnS4particles for lowcost solar cell: morphology control and growth mechanism [J]. J. Phys. Chem. C.,2011,115,19632–19639.
    [75] Ching J. Y., Gillorin A., Zaberca O., Balocchi A., Marie X. Highly-crystallizedquaternary chalcopyrite nanocrystals via a high-temperature dissolution–reprecipitation route [J]. Chem. Commun.,2011,47,5229–5231.
    [76] Shi L., Pei, C., Xu, Y., Li Q. Template-directed synthesis of orderedsingle-crystalline nanowires arrays of Cu2ZnSnS4and Cu2ZnSnSe4[J]. J. Am. Chem.Soc.,2011,133,10328–10331.
    [77] R.R. Sawant, S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Influence of substrates onphotoelectrochemical performance of sprayed n-CdIn2S4electrodes [J]. Solar Energy,2010,84,1208–1215.
    [78] A.V. Kokate, M.R. Asabe, S.D. Delekar, L.V. Gavali, I.S. Mulla, P.P. Hankare,B.K. Chougule, Photoelectrochemical properties of electrochemically depositedCdIn2S4thin films [J]. Journal of Physics and Chemistry of Solids,2006,67,2331–2336.
    [79] H. Nakanish, Fundamental Absorption Edge in CdIn2S4[J]. Japanese Journal ofApplied Physics1980,19,103–108.
    [80] S.I. Radautsan, V.F. Ihitar, M.I. Shmiglyuk, Semiconducting compounds with thegeneral formula ABX2[J]. Soviet Physics Soviet Physics Semiconductors,1972,5,1959–1964.
    [81] E. Grilli, M. Guzzi, A.V. Moskalonov, Journal of Physical Chemistry [J].1978,11,236–240.
    [82] J. Mu, Q.L. Wei, P.P. Yao, X.L. Zhao, S.Z. Kang, X.Q. Li, Facile preparation andvisible light photocatalytic activity of CdIn2S4monodispersed spherical particles [J].Journal of Alloys and Compounds,2010,513,506–509.
    [83] B.B. Kale, J. Baeg, S.M. Lee, H. Chang, S. Moon, C.W. Lee, CdIn2S4nanotubesand “Marigold” nanostructures: a visible-light photocatalyst advanced functionalmaterials [J]. Advanced Functional Materials,2006,16,1349–1354.
    [84] S.N. Baek, T.S. Jeong, C.J. Youn, K.J. Hong, J.S. Park, D.C. Shin, Y.T. Yoo,Growth and characterization of the CdIn2S4/GaAs epilayers by hot wall epitaxymethod [J]. Journal of Crystal Growth,2004,262,259–264.
    [85] S. Fafard, E. Fotin, Electroluminescence in CdIn2S4thin films [J]. Thin SolidFilms,1990,187,245–251.
    [86] L. Fan, R. Guo, Fabrication of novel CdIn2S4hollow spheres via a facilehydrothermal process [J]. J. Phys. Chem. C,2008,112,10700–10706.
    [87] S.D. Naik, S.W. Gosavi, J.O. Baeg, B.B. Kale, Hierarchical nanostructures ofCdIn2S4via hydrothermal and microwave methods: efficient solar-light-drivenphotocatalysts [J]. J. Mater. Chem.,2010,20,6095–2102.
    [88] Hui Chen, Wuyou Fu, Haibin Yang, Peng Sun, Yanyan Zhang, LianruWang,Wenyan Zhao, Xiaoming Zhou, Hui Zhao, Qiang Jing, Xuefeng Qi, Yixing Li.Photosensitization of TiO2nanorods with CdS quantum dots for photovoltaic devices[J]. Electrochimica acta,2010,56,919–924.
    [89] Ye Sun, D. Jason Riley, Michael N. R. Ashfold,Mechanism of ZnO nanotubegrowth by hydrothermal methods on ZnO film-coated Si substrates [J]. J. Phys. Chem.B,2006,110,15186–15192.
    [90] H.Z. Zhang, X.C. Sun, R.M. Wang, D.P. Yu. Growth and formation mechanismof c-oriented ZnO nanorod arrays deposited on glass [J]. Journal of Crystal Growth,2004,269,464–471.
    [91] Zhifeng Liu, Lei E, Jing Ya, Ying Xin Growth of ZnO nanorods by aqueoussolution method with electrodeposited ZnO seed layers [J]. Applied Surface Science,2009,255,6415–6420.
    [92] S. Rengaraj, S. Venkataraj, S. H. Jee, Y. Kim, C. Tai, E. Repo, A. Koistinen, A.Ferancova, M. Sillanp. Cauliflower-like CdS microspheres composed ofnanocrystals and their physicochemical properties [J]. Langmuir,2011,27,352–358.
    [93] X.F. Song, L. Gao, Facile Synthesis and Hierarchical Assembly of Hollow NickelOxide Architectures Bearing Enhanced Photocatalytic Properties [J]. J. Phys. Chem. C,2008,112,15299–15305.
    [94] X.F. Yang, J.X. Fu, C.J. Jin, J. Chen, C.L. Liang, M.M. Wu, W.Z. Zhou.Formation mechanism of CaTiO3hollow crystals with different microstructures [J]. J.Am. Chem. Soc.,2010,132,14279–14287.
    [95] S.M. Pawar, B.S. Pawar, A.V. Moholkar, D.S. Choi, J.H. Yun, J.H. Moon, S.S.Kolekar, J.H. Kim. Single step electrosynthesis of Cu2ZnSnS4(CZTS) thin films forsolar cell application [J]. Electrochim. Acta,2010,55,4057–4061.
    [96] T. Todorov, M. Kita, J. Carda, P. Escribano, Cu2ZnSnS4films deposited by asoft-chemistry method [J].Thin Solid Films,2009,517,2541–2544.
    [97] G.H. Yue, X. Wang, L.S. Wang, W. Wang, D.L. Peng, Synthesis of single crystalCuAlS2nanowires via a low temperature direct polyol route [J]. Phys. Lett. A,2008,372,5995–5998.
    [98] G. Z. Shen, D. Chen, K. B. Tang, Z. Fang, J. Sheng, Y. T. Qian, Polyol-mediatedsynthesis of porous nanocrystalline CuInS2foam [J]. J. Cryst. Growth.,2003,254,75–79.
    [99] J.Q. Hu, B. Deng, W.X. Zhang, K.B. Tang, Y.T. Qian, A convenienthydrothermal route to mineral Ag3CuS2nanorods [J]. Int. J. Inorg. Mater.,2001,3,639–642.
    [100] M. Afzaal, P.O. Brien, Recent developments in II–VI and III–VIsemiconductors and their applications in solar cells [J]. J. Mater. Chem.,2006,16,1597–1602.
    [101] A. Bhirud, N. Chaudhari, L. Nikam, R. Sonawane, K. Patil, J.O. Baeg, B. Kale,Surfactant tunable hierarchical nanostructures of CdIn2S4and their photohydrogenproduction under solar light [J]. Int. J. Hydrogen Energy,2011,36,11628–11639.
    [102] V.-M. Guérin, J. Rathousky, Th. Pauporté. Electrochemical design of ZnOhierarchical structures for dye-sensitized solar cells [J]. Solar Energy Materials andSolar Cells,2012,102,8–14.
    [103] Seong-Ho Baek, Seong-Been Kim, Jang-Kyoo Shin, Jae Hyun Kim. Preparationof hybrid silicon wire and planar solar cells having ZnO antireflection coating byall-solution processes [J]. Solar Energy Materials and Solar Cells,2012,96,251-256.
    [104] Hun Park, Woong-Rae Kim, Hyo-Tae Jeong, Jae-Joon Lee, Ho-Gi Kim,Won-Youl Choi. Fabrication of dye-sensitized solar cells by transplanting highlyordered TiO2nanotube arrays [J]. Solar Energy Materials and Solar Cells,2011,95,184–189.
    [105] Jiwon Lee, Jae Young Jho. Fabrication of highly ordered and vertically orientedTiO2nanotube arrays for ordered heterojunction polymer/inorganic hybrid solar cell[J]. Solar Energy Materials and Solar Cells,2011,95,3152–3156.
    [106] Z.Q. Li, J.H. Shi, Q.Q. Liu, Y.W. Chen, Z. Sun, Z. Yang, S.M. Huang.Large-scale growth of Cu2ZnSnSe4and Cu2ZnSnSe4/Cu2ZnSnS4core/shell nanowires[J]. Nanotechnology,2011,22,265615–265623.
    [107] Min Gu, ChuanYu Yang, Mei Zhang, YanJun Zhang, Teng Ma, XiDongWang. Effects of preparing conditions on the electrodeposition of well-aligned ZnOnanorod arrays [J]. Electrochimica Acta,2008,53,4633–4641.
    [108] Heqing Yang, Yuzhe Song, Li Li, Junhu Ma, Dichun Chen, Shuling Mai, andHan Zhao. Large-Scale Growth of Highly Oriented ZnO Nanorod Arrays in theZn-NH3·H2O Hydrothermal System [J]. Cryst. Growth Des.,2008,8,1039–1043.
    [109] J. Xu, X. Yang, H.K. Wang, X. Chen, C.Y. Luan, Z.X. Xu, Z.Z. Lu, V.A. L.Roy, W.J. Zhang, C.S. Lee. Arrays of ZnO/ZnxCd1–xSe Nanocables: Band GapEngineering and Photovoltaic Applications [J]. Nano Lett.,2011,11,4138–4143.
    [110] J. Xu, C.Y. Luan, Y.B. Tang, X. Chen, J.A. Zapien, W.J. Zhang, H.L. Kwong,X.M. Meng, S.T. Lee, C.S. Lee. Low-Temperature Synthesis of CuInSe2NanotubeArray on Conducting Glass Substrates for Solar Cell Application [J]. ACS Nano2010,4,6064–6070.
    [111] H.Y. Chen, S.M. Yu, D.W. Shin, J.B. Yoo. Solvothermal Synthesis andCharacterization of Chalcopyrite CuInSe2Nanoparticles [J]. Nanoscale Res. Lett.2010,5,217–223.
    [112] C. Zou, L.J. Zhang, D.S. Lin, Y. Yang, Q. Li, X.J. Xu, X.A. Chen, S.M. Huang.Facile synthesis of Cu2ZnSnS4nanocrystals [J]. CrystEngComn.,2011,13,3310–3313.
    [113] Y. Min, G. D. Moon, J. Park, M. Park, U. Jeong. Surfactant-free CuInSe2nanocrystals transformed from In2Se3nanoparticles and their application for a flexibleUV photodetector.[J]. Nanotechnology,2011,22,465604–465613.
    [114] V.B. Patil, G.S. Shahane, L.P. Deshmukh, Studies on photoelectrochemical(PEC) cells: A correlation between electrochemical and material properties [J]. Mater.Chem. Phys.,2003,80,625–631.
    [115] C.H. Wanga, K.W., C.J. Tseng. Photoelectrochemical properties of AgInS2thinfilms prepared using electrodeposition [J]. Sol. Energy Mater. Sol. Cells,2011,95,453–461.
    [116] S. K. Srivastava, M. Pramanik, and D. Palit Electrical. Optical, and ScanningTunneling Microscopic Studies on Layer Type CdIn2S4-xSex[J]. Chem. Mater.,2001,13,4342–4347.
    [117] Kong-Wei Cheng, Chia-JuiLiang. Preparation of Zn–In–S film electrodes usingchemical bath deposition for photoelectrochemical applications.[J]. Solar EnergyMaterials&Solar Cells,2010,94,1137–1145.
    [118] Zhixin Chen, DanzhenLi, Guangcan Xiao, Yunhui He, Yi-Jun Xu.Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4microspheresand their visible light photocatalytic activity [J]. Journal of Solid State Chemistry,2012,186,247–254.
    [119] Q.W. Chen, Y.T. Qian, Z.Y. Chen, L. Shi, X.G. Li, G.E. Zhou, Y.H. Zhang.Preparation of zinc sulfide thin films by the hydrothermal method [J]. Thin SolidFilms,1996,272,1–3.
    [120] B. Liu, E.S. Aydil. Growth of oriented single-crystalline rutile TiO2nanorods ontransparent conducting substrates for dye-sensitized solar cells.[J]. J. Am. Chem. Soc.,2009,131,3985-3990.
    [121] Zhao P T, Huang K X. Preparation and characteriza-tion of netted sphere-likeCdS nanostructures [J]. Cryst. Growth. Des.,2008,8,717–722.
    [122] P. Liu, Q.S. Wang, X. Li, J. Studies on CdSe/l-cysteine quantum dotssynthesized in aqueous solution for biological labeling [J]. Phys. Chem. C2009,113,7670–7676.
    [123] L.Y. Chen, Z.D. Zhang, W.Z. Wang Self-Assembled Porous3D Flowerlikeβ-In2S3Structures: Synthesis, Characterization and Optical Properties [J]. J. Phys.Chem. C,2008,112,4117–4123.
    [124] Shengjie Peng, Peining Zhu, Velmurugan Thavasi, Subodh G. Mhaisalkar,Seeram Ramakrishna Facile solution deposition of ZnIn2S4nanosheet films on FTOsubstrates for photoelectric application [J]. Nanoscale,2011,3,2602-2608.
    [125] J. K. Dongre, M. Ramrakhiani, Synthesis of flower-like CdS nanostructuredfilms and their application in photoelectrochemical solar cells [J]. J. Alloys Compd.,2009,487,653-658.
    [126] Lina Zhang, Wei Zhang, Haibin Yang, Wuyou Fu, Wenyan Zhao, Hui Zhao,
    Jinwen Ma Growth studies and characterization of In2S3films prepared by
    hydrothermal method and their conversion to In2O3films [J]. J. Alloys Compd.,2009,
    487,653-658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700