用户名: 密码: 验证码:
化学气相沉积法合成锂离子电池硅碳复合负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着锂离子电池的应用范围向动力电池、储能电池领域扩展,对电池的能量密度和循环寿命提出了更高的要求,而电极材料是决定其性能的关键因素,所以开发高性能新型电极材料成为研究热点。目前商品化的锂离子电池负极材料为石墨,但其容量开发接近理论值,已不能适应于目前对大容量、高功率化学电源的广泛需求。所以,寻找更高容量的负极材料是目前锂离子电池负极材料研究的重要方向之.
     迄今为止,硅是理论比容量最大的负极材料,但充放电过程中,体积过度膨胀导致容量衰减加快,极大地限制了其在锂离子电池中的应用。硅材料改性的有效方法之一就是将硅分散在碳的“缓冲基体”中,合成硅碳复合材料,结合两者的性能制备出具有高容量和优良循环性能的负极材料。
     本论文采用二甲基二氯硅烷和甲苯作为硅源和碳源,分别选择石墨球、石墨烯和碳纳米管为碳基体,通过化学气相沉积方法,合成硅碳复合材料。研究了复合材料的结构组成和形成机理,并对其电化学性能进行了表征测试。复合材料中碳基体提高了材料的电导率,而沉积的无定形碳构成的网络结构将硅和碳基体稳固连接,有效地缓解了硅电极在充放电过程中的体积膨胀,保证了电极材料的稳定性
As application of lithium-ion battery expand to power battery and energy storage batteries, high energy density and cycle life of batteries are required. Performance is depended on the electrode materials. Therefore, researches focus on the development of new electrode materials. Graphite, as the commercialization of lithium-ion battery anode material, has limited application because of its limited theoretical capacity. To develop higher capacity anode materials is the most important research for the lithium ion battery.
     So far, Silicon has the largest theoretical specific capacity. However, the volume expansion during the charge and discharge process cause capacity fading, greatly limiting its application in lithium-ion batteries. Many methods have been used to improve silicon anode properties, one of the effective way is to disperse silicon into the carbon matrix. Therefore, preparing silicon/carbon composite materials can effectively improve the capacity and cycle performance.
     We synthesized Si/C composite using dimethyldichlorosilane and toluene as Si and C source on different carbon substrates via the Chemical Vapor Deposition process. The electrical performances of the obtained composites are analyzed. It is concluded that carbon matrix can effectively improve the conductivity. Silicon and carbon matrix were tightly connected by amorphous carbon network so that the volume expansion of silicon during the cycling was effectively released to realize structure stable.
引文
1. 顾登平,童汝亭.高等教育出版社,1993.1-3页
    2. 管从胜.锂离子电池为何存在安全隐患.中国计算机报,2007(06).
    3. 杨遇春.二次锂电池进展.电池,1993(5):230-233.
    4. K.Brandt. Historieal development of secondary lithitnm batteries. Solid State Ionics,1994 (3-4):173-183.
    5. Taraseon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,359-367.
    6. Huggins R A. Lithium alloy negative electrodes. J. Power Sources,1999 13-19.
    7. Abrallam K M. Directions on secondary lithium battery research and development. Elecrochimica Acta,1993 (9):1233-1248.
    8. 陈立泉.混合电动车及其电池.电池,2000(3):98-100.
    9. 刘广林.电动车电池的现状和未来.蓄电池,2000(1):3-4,11.
    10.杨毅夫,从EVS-17看国际电动车及动力电池的发展趋势.电池,2001(4):192-194.
    11.张文保.电动汽车及其充电问题.电池,1997(3):129-131.
    12.毕道治.电动车电池的开发现状及展望.电池工业,2000 (2):56-63.
    13. Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol.,2008 (1):31-5.
    14. Zhang W M.Hu J S, Guo Y G, Zheng S F, Zhong L S, Song W G, Wan L J. Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. Adv. Mater. 2008 (6):1160-1165.
    15. Wang L, Ding C X, Zhang L C, Xu H W, Zhang D W, Cheng T, Chen C H. A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J. Power Sources,2010 (15):5052-5056.
    16.任学佑.锂离子电池及其发展前景.电池,1996 (1):38-40.
    17. NagauraT., K. T, Sol. P B. Cells,1990,209-217.
    18. Scrosati B, Garche J. Lithium batteries:Status, prospects and future. J. Power Sources,2010 (9):2419-2430.
    19.吴宇平,万春荣,姜长印等.锂离子二次电池.化学工业出版社,2002.2-5页.
    20.陈德钧.电池的近期发展与锂离子电池.电池,1996 (3):139-143.
    21.董桑林,刘人敏.锂离子电池碳阳极材料的研究进展.电源技术,1996 (2):84-86.
    22. Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0    23. Belov D, Yang M-H. Failure mechanism of Li-ion battery at overcharge conditions. J. Solid State Electrochem.,2008 (7-8):885-894.
    24. Dahn J R, Sacken U v, M. W.Juzkow, H.AI-Janaby. Reehargeable LiNi02/Carbon Cells. J. Electrochem. Soc.,1991 (8):2207-2012.
    25. Koksbang R, Barker J, Shi H, Saidi M Y. Cathode materials for lithium rocking chair batteries. Solid State Ionics,1996 (1-2):1-21.
    26. Yu A, Subba Rao G V, Chowdari B V R. Synthesis and properties of LiGaxMgyNi1-x-yO2 as cathode material for lithium ion batteries. Solid State Ionics,2000 (1-4):131-135.
    27. Belharouak I, Tsukamoto H, Amine K. LiNio.5Co0.5O2 as a long-lived positive active material for lithium-ion batteries. J. Power Sources,2003 (0): 175-177.
    28. Thongtem T, Thongtem S. Characterization of Li1-x Ni1+xO2 prepared using succinic acid as a complexing agent. Inorg. Mater.,2006 (2):202-209.
    29. Julien C, Haro-Poniatowski E, Camacho-Lopez M A, Escobar-Alarcon L Jimenez-Jarquin J. Growth of LiMn2O4 thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries. Mater. Sci. Eng., B 2000 (1):36-46.
    30.吴晓梅,杨清河,金忠郜.锂离子电池阴极材料尖晶石结构的研究.电化学,1998(3):365-371.
    31.徐仲榆,苏玉长,王要武.锂锰氧材料在充放电过程中的结构变化.电化学,2000(3):101-104.
    32.http://panasonic.co.jp/corp/news/official.data/data.dir/en091225-3/en091225-3.htm.
    33. Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn J R. Synthesis and Electrochemistry of LiNixMn2-xO4. J. Electrochem. Soc.,1997 (1):205-214.
    34. Amatucci G G, N.Pereira, Zheng T, Tarascon J-M. Failure Mechanism and Improvement of the Elevated Temperature Cycling of Li2MnO4 Compounds Through the Use of the LiAlzMn2-xO4-zFz Solid Solution. J. Electrochem.Soc. 2001 (1):A171-A182.
    35. Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc.,1997 (4):1188-1194.
    36. Whittingham M S. Lithium batteries and cathode materials. Chem. Rev.,2004, 4271-4301.
    37. Sauvage F, Baudrin E, Morcrette M, Tarascon J M. Pulsed laser deposition and eleetrochemical properties of LiFePO4 thin film. Electrochem. Solid-State Lett.,2004 (1):A15-A18.
    38. Wang X J, Yu X Q, Li H, Yang X Q, McBreen J, Huang X J. Li-storage in LiFe1/4Mn1/4Co1/4Ni1/4PO4 solid solution. Electrochem. Commun.,2008 (9): 1347-1350.
    39.郭炳坤,徐徽,王先友等.锂离子电池.第一版.湖南:中南大学出版社,2002.147页.
    40. Scrosati B. Lithium rocking chair batteries:an old concept. J. Electrochem. Soc.,1992 (10):2776-2781.
    41. Shi H, Barkeer J, Saidi M Y, Kosbang R. Structure and lithium intercalation properties of synthetic and natural graphite. J. Electrochem. Soc.,1996 (11): 3466-3472.
    42. Ohzuku T, Ueda A. Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ionics,1994 (3-4):201-211.
    43. Read J, Foster D, Wolfenstine J, Behl W. SnO2-carbon composites for lithium-ion battery anodes. J. Power Sources,2001 (2):277-281.
    44. Roberts G A, Cairns E J, Reimer J A. Magnesium silicide as a negative electrode material for lithium-ion batteries. J. Power Sources,2002 (2): 424-429.
    45.黄学杰,李泓,王庆等.纳米储锂材料和锂离子电池.物理,2002 (7):444-449.
    46.王涛.胶态锂离子电池及其材料的研究,[学位论文]北京:复旦大学,2003.
    47. Lee K L, Jung J Y, Lee S W, Moona H S, Park J W. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources,2004 (2):270-274.
    48. Holzapfel M, Buqa H, Hardwick L J, Hahn M, Wursig A, Scheifele W, Novak P, Kotz R, Veit C, Petrat F M. Nano silicon for lithium-ion batteries. Electrochim. Acta,2006 (3):973-978.
    49. Liu H K, Guo Z P, Wang J Z, Konstantinov K. Si-based anode materials for lithium rechargeable batteries. J. Mater. Chem.,2010 (45):10055-10057.
    50. Song T, Xia J, Lee J H, Lee D H, Kwon M S, Choi J M, Wu J, Doo S K, Chang H, Park W I, Zang D S, Kim H, Huang Y, Hwang K C, Rogers J A, Paik U. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett.,2010 (5):1710-6.
    51. Xiao J, Xu W, Wang D, Choi D, Wang W, Li X, Graff G L, Liu J, Zhang J-G. Stabilization of Silicon Anode for Li-Ion Batteries. J. Electrochem. Soc. 2010 (10):A1047-A1051.
    52. Ma H, Cheng F, Chen J Y, Zhao J Z, Li C S, Tao Z L, Liang J. Nest-like Silicon Nanospheres for High-Capacity Lithium Storage. Adv. Mater.,2007 (22):4067-4070.
    53.苏发兵,陈晗,车红卫,等一种锂离子电池硅基负极复合材料及其制备方法.201110268147.5,2011-09-09,2011.
    54.张鹏昌,杨学林,余德馨,等.碳热还原原位合成锂离子电池硅/碳复合负极材料研究.无机化学学报,2011 (5):898-902.
    55.伏萍萍,宋英杰,张宏芳,等.锂离子电池用非晶硅薄膜负极材料的研究.无机化学学报,2006(10):1823-1827.
    56. Abel P R, Lin Y M, Celio H, Heller A, Mullins C B. Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation. Nano Lett.,2012 (3):2506-2516.
    57. Thakur M, Isaacson M, Sinsabaugh S L, Wong M S, Biswal S L. Gold-coated porous silicon films as anodes for lithium ion batteries. J. Power Sources, 2012,426-432.
    58. Deng H X, Chung C Y, Xie Y T, Chu P K, Wong K W, Zhang Y, Tang Z K. Improvement of electrochemical performance of Si thin film anode by rare-earth La PⅢ technique. Surf. Coat. Technol.,2007 (15):6785-6788.
    59. Shi D Q, Tu J P, Yuan Y F, Wu H M, Li Y, Zhao X B. Preparation and electrochemical properties of mesoporous Si/ZrO2 nanocomposite film as anode material for lithium ion battery. Electrochem. Commun.,2006 (10): 1610-1614.
    60. Notten P H L, Roozeboom F, Niessen R A H, Baggetto L.3-D Integrated All-Solid-State Rechargeable Batteries. Adv. Mater.,2007 (24):4564-4567.
    61. Lam C, Zhang Y F, Tang Y H, Lee, C.S., I. Bello, Lee S T. Large-scale synthesis of ultrafine Si nanoparticles by ball milling. J. Cryst. Growth,2000 (4):466-470.
    62. Cui L F, Ruffo R, Chan C K, Peng H, Cui Y. Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Lett.,2008 (1):491-495.
    63. Lee J I, Lee K T, Cho J, Kim J, Choi N S, Park S. Chemical-Assisted Thermal Disproportionation of Porous Silicon Monoxide into Silicon-Based Multicomponent Systems. Angew. Chem. Int. Ed.,2012,1-6.
    64. Sasidharan M, Liu D, Gunawardhana N, Yoshio M, Nakashima K. Synthesis, characterization and application for lithium-ion rechargeable batteries of hollow silica nanospheres. J. Mater. Chem.,2011 (36):13881-13888.
    65. Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee J Y. Reversible Lithium-Ion Storage in Silver-Treated Nanoscale Hollow Porous Silicon Particles. Angew. Chem. Int. Ed.,2012,1-6.
    66. Gierszal K P, Kim T W, Ryoo R, Jaroniec M. Adsorption and Structural Properties of Ordered Mesoporous Carbons Synthesized by Using Various Carbon Precursors and Ordered Siliceous P6mm and Ia3□d Mesostructures as Templates. J. Phys. Chem. B.,2005 (49):23263-23268.
    67. Wang K, He X, Wang L, Ren J, Jiang C, Wan C. Si, Si/Cu core in carbon shell composite as anode material in lithium-ion batteries. Solid State Ionics,2007 (1-2):115-118.
    68. http://www.mitsui-kinzoku.co.jp/en/pdf/2008/topics 080410.pdf.
    69. Kang Y M, Park M S, Lee J Y, Liu H K. Si-Cu/carbon composites with a core-shell structure for Li-ion secondary battery. Carbon,2007 (10): 1928-1933.
    70. Cao F F, Deng J W, Xin S, Ji H X, Schmidt O G, Wan L J, Guo Y-G. Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries. Adv. Mater.,2011 (38):4415-4420.
    71. Murugesan S, Harris J T, Korgel B A, Stevenson K J. Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries. Chem. Mater.,2012 (7):1306-1315.
    72. Liu Y, Chen B, Cao F, Chan H L W, Zhao X, Yuan J. One-pot synthesis of three-dimensional silver-embedded porous silicon micronparticles for lithium-ion batteries. J. Mater. Chem.,2011 (43):17083-17086.
    73. Yu Y, Gu L, Zhu C, Tsukimoto S, van Aken P A, Maier J. Reversible Storage of Lithium in Silver-Coated Three-Dimensional Macroporous Silicon. Adv. Mater.,2010 (20):2247-2250.
    74.王忠,田文怀,刘小鹤,等.硅镍纳米颗粒的氢电弧等离子体制备及电化学性能研究.无机化学学报,2006 (4):661-665.
    75. Rui H, Fan X, Shen W, Zhu J. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett.,2009 (13): 133119.
    76.王保峰,杨军,解晶莹,等.锂离子电池用硅/碳复合负极材料.化学学报,2003(10):1572-1576.
    77. Dimov N, Fukuda K, Umeno T, Kugino S, Yoshio M. Characterization of carbon-coated silicon:Structural evolution and possible limitations. J. Power Sources,2003 (1):88-95.
    78. Wang G X, Yao J, Liu H K. Characterization of Nanocrystalline Si-MCMB Composite Anode Materials. J. Electrochem. Solid-State Lett.,2004 (8): A250-A253.
    79. Kim H, Cho J. Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material. Nano Lett.,2008 (11):3688-3691.
    80. Li X, Meduri P, Chen X, Qi W, Engelhard M H, Xu W, Ding F, Xiao J, Wang W, Wang C, Zhang J-G, Liu J. Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes. J. Mater. Chem.,2012 (22): 11014-11017.
    81. Park Y, Choi N S, Park S, Woo S H, Sim S, Jang B Y, Oh S M, Park S, Cho J, Lee K T. Si-Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithium-Ion Batteries. Adv. Eng. Mater.,2012,1-7.
    82. Kim H, Han B, Choo J, Cho J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed., 2008 (52):10151-4.
    83. Zhao Y, Liu X, Li H, Zhai T, Zhou H. Hierarchical micro/nano porous silicon Li-ion battery anodes. Chem. Commun.,2012 (42):5079-81.
    84.范丽珍,王明珊,陶华超一种以硅藻土为原料制备多孔硅/炭复合材料及应用.201110122231.6,2011-05-12,2011.
    85.范丽珍,陶华超一种多孔硅/碳复合材料及其制备方法.201110116676.3, 2011-05-06,2011.
    86.温兆银,杨学林,许晓雄,等一种锂离子电池硅/碳/石墨复合负极材料及其制备方法.200510030785.8,2005-10-27,2005.
    87. Zheng Y, Yang J, Wang J, Nuli Y. Nano-porous Si/C composites for anode material of lithium-ion batteries. Electrochim. Acta,2007 (19):5863-5867.
    88. Zuo P, Yin G, Ma Y. Electrochemical stability of silicon/carbon composite anode for lithium ion batteries. Electrochim. Acta,2007 (15):4878-4883.
    89.苏发兵, 陈晗, 翟世辉 废触体作为锂离子电池负极材料的应用201210103692.3,2012-04-09,2012.
    90. Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater.,2010 (4):353-358.
    91. Gao P, Fu J, Yang J, Lv R, Wang J, Nuli Y, Tang X. Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material. Phys. Chem. Chem. Phys.,2009 (47): 11101-11105.
    92. Ji L, Zhang X. Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. Electrochem. Commun.,2009 (6): 1146-1149.
    93. Guo J C, Sun A, Wang C S. A porous silicon-carbon anode with high overall capacity on carbon fiber current collector. Electrochem. Commun.,2010 (7): 981-984.
    94. Song T, Lee D H, Kwon M S, Choi J M, Han H, Doo S G, Chang H, Park W I, Sigmund W, Kim H, Paik U. Silicon nanowires with a carbon nanofiber branch as lithium-ion anode material. J. Mater. Chem.,2011 (34): 12619-12621.
    95. Gohier A, Laik B, Kim K H, Maurice J L, Pereira-Ramos J P, Cojocaru C S, Van P T. High-rate capability silicon decorated vertically aligned carbon nanotubes for li-ion batteries. Adv. Mater.,2012 (19):2592-7.
    96. Ivanov V, Nagy J B, Lambin P, Lucas A, Zhang X B, Zhang X F, Bernaerts D, Van Tendeloo G, Amelinckx S, Van Landuyt J. The study of carbon nanotubules produced by catalytic method. Chem. Phys. Lett.,1994 (4): 329-335.
    97. Suryanarayanan R, Frey C. A., Sastry S. M. L, Waller B. E., Buhro W. E. Deformation, recovery, and recrystallization behavior of nanocrystalline copper produced from solution-phase synthesized nanoparticles. J. Mater. Res.,1997,449-450.
    98. Rodriguez N. M. A review of catalytically grown carbon nanofibers. J. Mater. Res.,1993,3233-3249.
    99. Du C, Gao C, Yin G, Chen M, Wang L. Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries. Energy. Enviro. Sci.,2011 (3):1037-1042.
    100. Liu W R, Wang J H, Wu H C, Shieh D T, Yang M H, Wu N L. Electrochemical Characterizations on Si and C-Coated Si Particle Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc.,2005 (9):A1719-A1725.
    101. Kima B C, Uonoa H, Satoa T, Fusea T, Ishiharaa T, Sennab M. Li-ion battery anode properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill. Solid State Ionics,2004 (1-4):33-37.
    102.Kurita N, Endo M. Molecular orbital calculations on electronic and Li-adsorption properties of sulfur-, phosphorus- and silicon-substituted disordered carbons. Carbon,2002 (3):253-260.
    103. Wolf H, Pajkic Z, Gerdes T, Willert-Porada M. Carbon-fiber-silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition. J. Power Sources,2009 (1): 157-161.
    104. Xie J, Cao G S, Zhao X B. Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells. Mater. Chem. Phys.,2004 (2-3): 295-299.
    105. Holzapfel M, Buqa H, Scheifele W, Novak P, Petrat F M. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem. Commun.,2005 (12):1566-8.
    106. Novoselov K S, Geim A K, Morozov S V, et, al. Electrical Field Effect in Atomically Thin Carbon Films. Science,2004,666-669.
    107.Dikin D A, Stankovich S, Zimney E J. Preparation and characterization of graphene oxide paper. Nature,2007,457-460.
    108. Geim A K, Novoselov K S. The rise of graphene. Nat Mater.,2007183-191.
    109. Lee S H, Seo S D, Jin Y H, al e. A graphite foil electrode covered with electrochemically exfoliated graphene nanosheets. Electrochem. Commun. 2010,1419-1422.
    110. Jae H J, Jung D W, kong B S, al e. The effect of graphene nanosheets as an additive for anode materials in lithium. J. Chem. Eng.,2011 (11):2202-2205.
    111.Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman B D. Enhanced Electrochemical Lithium Storage by Graphene Nanoribbons. J. Am. Chem. Soc.,2010 (36):12556-12558.
    112. lijima S. Helical microtubules of graphitic carbon. Nature,1991 (7):56-58.
    113. Zhang D, Zhao Y, Goodenough J B, Lu Y, Chen C, Wang L, Liu J. Exfoliation from carbon nanotubes versus tube size on lithium insertion. Electrochem. Commun.,2011 (2):125-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700