用户名: 密码: 验证码:
运动对正常及肥胖大鼠心内副交感神经心率调节功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究通过高脂高糖饮食饲养以及运动能力测试,建立不同运动强度训练的大鼠跑台运动模型,试探讨不同运动强度对正常及肥胖大鼠心内副交感神经心率调节功能的影响,为运动对自主神经功能影响提供参考。
     方法:10周龄雄性SD大鼠40只,经最大速度测试之后,随机将大鼠分为三组,即:空白对照组(C组)12只、中等强度运动组(M组)14只以及大强度运动组(H组)14只;4周龄雄性SD大鼠90只,随机分为两组,即普食组(C组)12只,高脂高糖饮食组(F组)78只。饲养8周后,挑选出肥胖大鼠,随机分为三组继续高脂饲养,肥胖对照组(FC组),肥胖中等强度运动组(FM组)和肥胖大强度运动组(FH组);各组大鼠运动训练8周后,测试大鼠安静状态下心率,交感神经及副交感神经阻断后的变化心率以及大鼠右心M2受体、RGS6以及KCNJ5的表达情况。
     结果:(1)8周中等强度及大强度运动训练能够显著性降低正常大鼠迷走神经心率调节功能;(2)8周中等强度运动训练显著性增加M2受体含量,但两种运动方式对RGS6和KCNJ5含量没有影响;(3)8周中等强度运动与大强度运动均能够降低M2受体、RGS6及Kir3.4mRNA的含量;(4)高脂高糖饲养8周后大鼠心率显著性低于普食组;(5)8周大强度运动能够导致肥胖大鼠心脏微细结构发生损伤;8周中等强度运动训练及大强度运动训练,不能显著性改变肥胖大鼠安静状态下的心率;(6)8周运动训练对肥胖大鼠M2受体、RGS6及KCNJ5含量没有影响;但对三者mRNA含量存在一定影响。
     结论:(1)8周中等强度及大强度运动训练能够有效降低正常成年大鼠迷走神经心率调节功能;但对肥胖大鼠影响不明显,该功能的改变并不是通过心内迷走神经调节通路实现的。(2)肥胖大鼠自主神经心率调节功能由8周时迷走神经调节占主导地位逐渐过渡到交感神经调节占主导地位,这种改变可能与高脂高糖饮食干预时间长短有关,与大鼠肥胖程度有关。(3)无论正常大鼠还是肥胖大鼠的副交感神经心率调节作用经过8周的运动训练之后,均没有产生运动强度的依赖性。
Objective:To study the effects of different intensity exercise on the heart rate regulation of the parasympathetic nervous system in normal and obese rats, using the rat treadmill model, which evaluates the measurement of fitness and is induced by the high-fat and high sucrose food. The aim is to understand the effect of different intensity exercise on the autonomic nervous system.
     Methods:40ten-week-old male SD rats were divided into three groups, after having the max running velocity measurement of all the rats. The groups were designated as C, M and H Groups.14rats ran at the mid-intensity as M Group;14rats ran at the high-intensity as H Group and the C Group was maintained as the control.group including12rats.90four-week-old male SD rats were divided into two groups, designated as C Group (12rats) being fed with normal food and F Group (78rats) being fed with high-fat and high sucrose food. After8weeks, the heaviest36rats were chosen from F Group as obese rats and divided into three groups after having the max running velocity measurement. The groups were designated as FC, FM and FH Groups.12rats ran at the mid-intensity as FM Group;12rats ran at the high-intensity as FH Group and the FC Group was maintained as the control group including12rats. After the next8weeks of training, the heart rate of the rats was tested at rest and15min after injecting atropine and/or propranolol; The Elisa and RT-PCR were used to detect the proteins and mRNA expressions of M2receptor, RGS6and Kir3.4.
     Results:(1)The regulation of heart rate by vagal was reduced by both8weeks mid-intensity exercise and8weeks high-intensity exercise.(2)8weeks mid-intensity exercise increased the expression of M2receptor, but both mid-intensity and high-intensity exercise had no effect on the expression of RGS6and KCNJ5.(3) Both kinds of exercise reduced the mRNA expressions of M2receptor, RGS6and Kir3.4.(4) The heart rate at rest of the rats with8weeks high-fat and high sucrose food were lower than the rats with the normal food.(5)8weeks of high-intensity exercise injured the microstructure of obese rats'heart, but both kinds of exercise had no effect on the heart rate at rest.(6) Both kinds of exercise had no effect on the expression of the M2receptor, RGS6and KCNJ5in the obese rats; but affected the mRNA expression of M2receptor, RGS6and Kir3.4.
     Conclusions:1)Both8weeks mid-intensity exercise and high-intensity exercise can reduce the heart rate regulations of vagal, but they do not have the same effect on the obesity and the effect does not work by M2receptor, KCNJ5and RGS6;2) Obesity induced by high-fat and high-sucrose food accompanys with the change in the sympathetic-vagal balance; the main effect on the autonomic nervous system is a change from vagal to sympathetic nervous system.3)it seems the heart rate regulation of autonomic nervous system does not relate the intensity of the exercise.
引文
[1]GIELEN S, SCHULER G, ADAMS V. Cardiovascular effects of exercise training:molecular mechanisms [J]. Circulation,2010,122(12):1221-38.
    [2]MALPAS S C. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease [J]. Physiol Rev,2010,90(2):513-57.
    [3]CHA Y M, CHAREONTHAITAWEE P, DONG Y X, et al. Cardiac sympathetic reserve and response to cardiac resynchronization therapy [J]. Circ Heart Fail,2011,4(3):339-44.
    [4]WEEKS K L, MCMULLEN J R. The Athlete's Heart vs. the Failing Heart:Can Signaling Explain the Two Distinct Outcomes? [J]. Physiology,2011,26(2):97-105.
    [5]常芸.运动心脏的理论与实践[M].北京:人民体育出版社,2008.
    [6]常芸.运动员心脏的热点问题与研究进展[J].体育科学,2010,10):70-9.
    [7]BURNISTON J G. Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise [J]. Proteomics,2009,9(1):106-15.
    [8]IEMITSU M, MAEDA S, JESMIN S, et al. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts [J]. Am J Physiol Heart Circ Physiol,2006,291(3):H1290-8.
    [9]BROWN M D, DAVIES M K, HUDLICKA O. The effect of long-term bradycardia on heart microvascular supply and performance [J]. Cell Mol Biol Res,1994,40(2):137-42.
    [10]KWAK H B, SONG W, LAWLER J M. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart [J]. FASEB J,2006,20(6):791-3.
    [11]LAWLER J M, KWAK H B, KIM J H, et al. Exercise training inducibility of MnSOD protein expression and activity is retained while reducing prooxidant signaling in the heart of senescent rats [J]. Am J Physiol Regul Integr Comp Physiol,2009,296(5):R1496-502.
    [12]KWAK H B, KIM J H, JOSHI K, et al. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart [J]. Faseb Journal,2011,25(3): 1106-17.
    [13]IEMITSU M, MAEDA S, JESMIN S, et al. Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a single bout of exercise [J]. J Appl Physiol, 2006,101(1):151-63.
    [14]CHEN Y J, SERFASS R C, MACKEY-BOJACK S M, et al. Cardiac troponin T alterations in myocardium and serum of rats after stressful, prolonged intense exercise [J]. Journal of Applied Physiology,2000,88(5):1749-55.
    [15]BOLUYT M O, LOYD A M, ROTH M H, et al. Activation of JNK in rat heart by exercise: effect of training [J]. Am J Physiol Heart Circ Physiol,2003,285(6):H2639-47.
    [16]NOTTIN S, DOUCENDE G, SCHUSTER I, et al. Alteration in left ventricular strains and torsional mechanics after ultralong duration exercise in athletes [J]. Circ Cardiovasc Imaging, 2009,2(4):323-30.
    [17]MONT L, ELOSUA R, BRUGADA J. Endurance sport practice as a risk factor for atrial fibrillation and atrial flutter [J]. Europace,2009,11(1):11-7.
    [18]LA GERCHE A, PRIOR D L, HEIDBUCHEL H. Clinical consequences of intense endurance exercise must include assessment of the right ventricle [J]. J Am Coll Cardiol, 2010,56(15):1263; author reply -4.
    [19]BENITO B, GAY-JORDI G, SERRANO-MOLLAR A, et al. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training [J]. Circulation,2011, 123(1):13-22.
    [20]ROWLAND T. Sudden unexpected death in young athletes:reconsidering "hypertrophic cardiomyopathy" [J]. Pediatrics,2009,123(4):1217-22.
    [21]BAGGISH A L, WOOD M J. Athlete's heart and cardiovascular care of the athlete:scientific and clinical update [J]. Circulation,2011,123(23):2723-35.
    [22]BILLMAN G E. Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death:effect of endurance exercise training [J]. Am J Physiol Heart Circ Physiol,2009, 297(4):H1171-93.
    [23]TRIPOSKIADIS F, KARAYANNIS G, GIAMOUZIS G, et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications [J]. J Am Coll Cardiol,2009,54(19):1747-62.
    [24]CAPORALI A, EMANUELI C. Cardiovascular actions of neurotrophins [J]. Physiol Rev, 2009,89(1):279-308.
    [25]黄德明,吴淞.Kappa阿片受体的抗缺血性心脏保护作用——信息机制[J].生理学报,2003,55(2):115-20.
    [26]KATZ S D. In search of the optimal measure for assessment of parasympathetic control of heart rate [J]. Clin Auton Res,2010,20(1):1-2.
    [27]SCHWARTZ P J, VANOLI E, STRAMBA-BADIALE M, et al. Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction [J]. Circulation,1988,78(4):969-79.
    [28]MOU L, GATES A, MOSSER V A, et al. Transient hypoxia induces sequestration of M1 and M2 muscarinic acetylcholine receptors [J]. J Neurochem,2006,96(2):510-9.
    [29]YANG J, HUANG J, MAITY B, et al. RGS6, a modulator of parasympathetic activation in heart [J]. Circ Res,2010,107(11):1345-9.
    [30]MORENO-GALINDO E G, SANCHEZ-CHAPULA J A, SACHSE F B, et al. Relaxation gating of the acetylcholine-activated inward rectifier K+ current is mediated by intrinsic voltage sensitivity of the muscarinic receptor [J]. J Physiol,2011,589(Pt 7):1755-67.
    [31]KITAZAWA T, ASAKAWA K, NAKAMURA T, et al. M3 muscarinic receptors mediate positive inotropic responses in mouse atria:a study with muscarinic receptor knockout mice [J]. J Pharmacol Exp Ther,2009,330(2):487-93.
    [32]PADLEY J R, OVERSTREET D H, PILOWSKY P M, et al. Impaired cardiac and sympathetic autonomic control in rats differing in acetylcholine receptor sensitivity [J]. Am J Physiol Heart Circ Physiol,2005,289(5):H1985-92.
    [33]LARA A, DAMASCENO D D, PIRES R, et al. Dysautonomia Due to Reduced Cholinergic Neurotransmission Causes Cardiac Remodeling and Heart Failure [J]. Mol Cell Biol,2010, 30(7):1746-56.
    [34]ENGLISH B A, APPALSAMY M, DIEDRICH A, et al. Tachycardia, reduced vagal capacity, and age-dependent ventricular dysfunction arising from diminished expression of the presynaptic choline transporter [J]. Am J Physiol Heart Circ Physiol,2010,299(3): H799-810.
    [35]BRACK K E, COOTE J H, NG G A. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation [J]. Cardiovasc Res,2011,91(3): 437-46.
    [36]WARRIER S, BELEVYCH A E, RUSE M, et al. Beta-adrenergic- and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes detected with FRET-based biosensor [J]. Am J Physiol Cell Physiol,2005,289(2):C455-61.
    [37]MORISCO C, MARRONE C, GALEOTTI J, et al. Endocytosis machinery is required for betal-adrenergic receptor-induced hypertrophy in neonatal rat cardiac myocytes [J]. Cardiovasc Res,2008,78(1):36-44.
    [38]ZHANG P, MENDE U. Regulators of G-protein signaling in the heart and their potential as therapeutic targets [J]. Circ Res,2011,109(3):320-33.
    [39]POSOKHOVA E, WYDEVEN N, ALLEN K L, et al. RGS6/Gbeta5 complex accelerates KACh gating kinetics in atrial myocytes and modulates parasympathetic regulation of heart rate [J]. Circ Res,2010,107(11):1350-4.
    [40]NAKAYAMA H, BODI I, MAILLET M, et al. The IP3 receptor regulates cardiac hypertrophy in response to select stimuli [J]. Circ Res,2010,107(5):659-66.
    [41]ROSE R A. Keeping the clocks ticking as we age:changes in sinoatrial node gene expression and function in the ageing heart [J]. Exp Physiol,2011,96(11):1114-5.
    [42]SARIN V, MUTHUCHAMY M, HEAPS C L. Ca(2)(+) sensitization of cardiac myofilament proteins contributes to exercise training-enhanced myocardial function in a porcine model of chronic occlusion [J]. Am J Physiol Heart Circ Physiol,2011,301(4):H1579-87.
    [43]HOOVER D B, NEELY D A. Differentiation of muscarinic receptors mediating negative chronotropic and vasoconstrictor responses to acetylcholine in isolated rat hearts [J]. J Pharmacol Exp Ther,1997,282(3):1337-44.
    [44]DONG L W, TANG C, LIU M S. Biphasic redistribution of muscarinic receptor and the altered receptor phosphorylation and gene transcription are underlying mechanisms in the rat heart during sepsis [J]. Cardiovasc Res,2000,45(4):925-33.
    [45]PETER J C, TUGLER J, EFTEKHARI P, et al. Effects on heart rate of an anti-M2 acetylcholine receptor immune response in mice [J]. FASEB J,2005,19(8):943-9.
    [46]LACROIX C, FREELING J, GILES A, et al. Deficiency of M2 muscarinic acetylcholine receptors increases susceptibility of ventricular function to chronic adrenergic stress [J]. Am J Physiol Heart Circ Physiol,2008,294(2):H810-20.
    [47]HOOVER D B, BAISDEN R H, XI-MOY S X. Localization of muscarinic receptor mRNAs in rat heart and intrinsic cardiac ganglia by in situ hybridization [J]. Circ Res,1994,75(5): 813-20.
    [48]HAUTALA A J, TULPPO M P, KIVINIEMI A M, et al. Acetylcholine receptor M2 gene variants, heart rate recovery, and risk of cardiac death after an acute myocardial infarction [J]. Ann Med,2009,41(3):197-207.
    [49]田振军,杜蕾.M2受体的细胞表征及运动与心脏、血管M2受体研究进展[J].体育科学,2009,11):65-71.
    [50]TAMARGO J, CABALLERO R, GOMEZ R, et al. Pharmacology of cardiac potassium channels [J]. Cardiovasc Res,2004,62(1):9-33.
    [51]STEWART A, HUANG J, FISHER R A. RGS Proteins in Heart:Brakes on the Vagus [J]. Front Physiol,2012,3(95.
    [52]NAPOLITANO C, BLOISE R, MONTEFORTE N, et al. Sudden cardiac death and genetic ion channelopathies:long QT, Brugada, short QT, catecholaminergic polymorphic ventricular tachycardia, and idiopathic ventricular fibrillation [J]. Circulation,2012,125(16): 2027-34.
    [53]SHIMIZU W, HORIE M. Phenotypic manifestations of mutations in genes encoding subunits of cardiac potassium channels [J]. Circ Res,2011,109(1):97-109.
    [54]BRUNDEL B J, VAN GELDER I C, HENNING R H, et al. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels [J]. J Am Coll Cardiol, 2001,37(3):926-32.
    [55]DOBRZYNSKI H, MARPLES D D, MUSA H, et al. Distribution of the muscarinic K+ channel proteins Kir3.1 and Kir3.4 in the ventricle, atrium, and sinoatrial node of heart [J]. J Histochem Cytochem,2001,49(10):1221-34.
    [56]YAMANUSHI T T, SHUI Z, LEACH R N, et al. Role of internalization of M2 muscarinic receptor via clathrin-coated vesicles in desensitization of the muscarinic K+ current in heart [J]. Am J Physiol Heart Circ Physiol,2007,292(4):H1737-46.
    [57]RIDDLE E L, SCHWARTZMAN R A, BOND M, et al. Multi-tasking RGS proteins in the heart:the next therapeutic target? [J]. Circ Res,2005,96(4):401-11.
    [58]POSOKHOVA E W N, ALLEN K L, ET AL. RGS6/Gβ5 Complex Accelerates IKACh Gating Kinetics in Atrial Myocytes and Modulates Parasympathetic Regulation of Heart Rate [J]. Circ Res,2010,107(11):1350-4.
    [59]YANG J H J, MAITY B, ET AL. RGS6, a Modulator of Parasympathetic Activation in Heart [J]. Circ Res,2010,107(11):1345-9.
    [60]VASAN R S, LARSON M G, ARAGAM J, et al. Genome-wide association of echocardiographic dimensions, brachial artery endothelial function and treadmill exercise responses in the Framingham Heart Study [J]. BMC Med Genet,2007,8 Suppl 1(S2.
    [61]CHAPLEAU M W, SABHARWAL R. Methods of assessing vagus nerve activity and reflexes [J]. Heart Fail Rev,2011,16(2):109-27.
    [62]COOTE J H, BOTHAMS V F. Cardiac vagal control before, during and after exercise [J]. Exp Physiol,2001,86(6):811-5.
    [63]SIBBEL S P, TALBERT M E, BOWDEN D W, et al. RGS6 variants are associated with dietary fat intake in Hispanics:the IRAS Family Study [J]. Obesity (Silver Spring),2011, 19(7):1433-8.
    [64]BARNARD R J, CORRE K, CHO H. Effect of training on the resting heart rate of rats [J]. Eur J Appl Physiol Occup Physiol,1976,35(4):285-9.
    [65]NELSON A J, JURASKA J M, RAGAN B G, et al. Effects of exercise training on dendritic morphology in the cardiorespiratory and locomotor centers of the mature rat brain [J]. J Appl Physiol,2010,108(6):1582-90.
    [66]MIZUNO M, KAWADA T, KAMIYA A, et al. Exercise training augments the dynamic heart rate response to vagal but not sympathetic stimulation in rats [J]. Am J Physiol Regul Integr Comp Physiol,2011,300(4):R969-77.
    [67]BANKS L, SASSON Z, BUSATO M, et al. Impaired left and right ventricular function following prolonged exercise in young athletes:influence of exercise intensity and responses to dobutamine stress [J]. J Appl Physiol,2010,108(1):112-9.
    [68]BILLMAN G E, KUKIELKA M, KELLEY R, et al. Endurance exercise training attenuates cardiac beta2-adrenoceptor responsiveness and prevents ventricular fibrillation in animals susceptible to sudden death [J]. Am J Physiol Heart Circ Physiol,2006,290(6):H2590-9.
    [69]BILLMAN G E, KUKIELKA M. Effects of endurance exercise training on heart rate variability and susceptibility to sudden cardiac death:protection is not due to enhanced cardiac vagal regulation [J]. J Appl Physiol,2006,100(3):896-906.
    [70]LEON A S B U G Pathophysiology of coronary heart disease and biological mechanisms for the cardioprotective effects of regular aerobic exercise [J]. american journal of lifestyle medicine,2009,3(5):379-85.
    [71]BILLMAN G E. Aerobic exercise conditioning:a nonpharmacological antiarrhythmic intervention [J]. J Appl Physiol,2002,92(2):446-54.
    [72]RENGO G, LEOSCO D, ZINCARELLI C, et al. Adrenal GRK2 lowering is an underlying mechanism for the beneficial sympathetic effects of exercise training in heart failure [J]. Am J Physiol-Heart C,2010,298(6):H2032-H8.
    [73]SOUZA S B, FLUES K, PAULINI J, et al. Role of exercise training in cardiovascular autonomic dysfunction and mortality in diabetic ovariectomized rats [J]. Hypertension,2007, 50(4):786-91.
    [74]LEEPER N J, DEWEY F E, ASHLEY E A, et al. Prognostic value of heart rate increase at onset of exercise testing [J]. Circulation,2007,115(4):468-74.
    [75]KOKKINOS P, MYERS J, DOUMAS M, et al. Heart rate recovery, exercise capacity, and mortality risk in male veterans [J]. Eur J Prev Cardiol,2012,19(2):177-84.
    [76]TSAI M W, CHIE W C, KUO T B, et al. Effects of exercise training on heart rate variability after coronary angioplasty [J]. Phys Ther,2006,86(5):626-35.
    [77]LEGRAMANTE J M, IELLAMO F, MASSARO M, et al. Effects of residential exercise training on heart rate recovery in coronary artery patients [J]. Am J Physiol Heart Circ Physiol,2007,292(1):H510-5.
    [78]JOLLY M A, BRENNAN D M, CHO L. Impact of exercise on heart rate recovery [J]. Circulation,2011,124(14):1520-6.
    [79]GAVA N S, VERAS-SILVA A S, NEGRAO C E, et al. Low-intensity exercise training attenuates cardiac beta-adrenergic tone during exercise in spontaneously hypertensive rats [J]. Hypertension,1995,26(6 Pt 2):1129-33.
    [80]CARTER J B, BANISTER E W, BLABER A P. Effect of endurance exercise on autonomic control of heart rate [J]. Sports Med,2003,33(1):33-46.
    [81]CORNELISSEN V A, VERHEYDEN B, AUBERT A E, et al. Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability [J]. J Hum Hypertens,2010,24(3):175-82.
    [82]SILVEIRA L C R, TEZINI G C S V, SCHUJMANN D S, et al. Comparison of the effects of aerobic and resistance training on cardiac autonomic adaptations in ovariectomized rats [J]. Auton Neurosci-Basic,2011,162(1-2):35-41.
    [83]SANDIP MEGHNAD HULKE M P. Cardiac adaptation to endurance training in young adult [J]. chronicles of young scientists,2011,2(2):103-8.
    [84]HEYDARI M, BOUTCHER Y N, BOUTCHER S H. High-intensity intermittent exercise and cardiovascular and autonomic function [J]. Clin Auton Res,2013,23(1):57-65.
    [85]JAMES D V, MUNSON S C, MALDONADO-MARTIN S, et al. Heart rate variability:effect of exercise intensity on postexercise response [J]. Res Q Exerc Sport,2012,83(4):533-9.
    [86]COLLIER S R, KANALEY J A, CARHART R, JR., et al. Cardiac autonomic function and baroreflex changes following 4 weeks of resistance versus aerobic training in individuals with pre-hypertension [J]. Acta Physiol (Oxf),2009,195(3):339-48.
    [87]AUBERT A E, SEPS B, BECKERS F. Heart rate variability in athletes [J]. Sports Med,2003, 33(12):889-919.
    [88]AUBERT A E, BECKERS F, RAMAEKERS D. Short-term heart rate variability in young athletes [J]. J Cardiol,2001,37 Suppl 1(85-8.
    [89]LOW S, CHIN M C, DEURENBERG-YAP M. Review on epidemic of obesity [J]. Ann Acad Med Singapore,2009,38(1):57-9.
    [90]彭朝胜,王玮,等.肥胖患者静息心率增加与隐性高血压的关系[J].海军总医院学报,2009,4):
    [91]杨秋萍,张溪,韩睿,等.肥胖程度对心率变异性的影响[J].中国临床康复,2006,48):
    [92]AMANO M, KANDA T, UE H, et al. Exercise training and autonomic nervous system activity in obese individuals [J]. Med Sci Sports Exerc,2001,33(8):1287-91.
    [93]KIM J A, PARK Y G, CHO K H, et al. Heart rate variability and obesity indices:emphasis on the response to noise and standing [J]. J Am Board Fam Pract,2005,18(2):97-103.
    [94]FIORINO P N, BARBARA MUNHOZ MONTEIRO; BECHARA, ANA CAROLINA CARNEIRO; ET AL. Acute Effect of High-Fat Diet on Autonomic and Metabolic Functions in Adult Rats [J]. Journal of Hypertension,2012,
    [95]KIMURA T, MATSUMOTO T, AKIYOSHI M, et al. Body fat and blood lipids in postmenopausal women are related to resting autonomic nervous system activity [J]. Eur J Appl Physiol,2006,97(5):542-7.
    [96]NAGAI N M T, KITA H, MORITANI T. Automomic nervous system activity and the state and development of obesity in Japanese school children [J]. obes Res,2003,11(1):25-32.
    [97]NAGAI N M T. Effect of physical activity on autonomic nervous system function in lean and obese children [J]. Int J Obes Relat Metab Disord,2004,28(1):27-33.
    [98]VANDERLEI L C, PASTRE C M, FREITAS JUNIOR I F, et al. Analysis of cardiac autonomic modulation in obese and eutrophic children [J]. Clinics (Sao Paulo),2010,65(8): 789-92.
    [99]KAUFMAN C L, KAISER D R, STEINBERGER J, et al. Relationships of cardiac autonomic function with metabolic abnormalities in childhood obesity [J]. Obesity (Silver Spring),2007,15(5):1164-71.
    [100]YAKINCI C, MUNGEN B, KARABIBER H, et al. Autonomic nervous system functions in obese children [J]. Brain Dev,2000,22(3):151-3.
    [101]KAUFMAN C L, KAISER D R, KELLY A S, et al. Diet revision in overweight children: effect on autonomic and vascular function [J]. Clin Auton Res,2008,18(2):105-8.
    [102]GAO Y Y, LOVEJOY J C, SPARTI A, et al. Autonomic activity assessed by heart rate spectral analysis varies with fat distribution in obese women [J]. Obes Res,1996,4(1): 55-63.
    [103]ARRONE L J, MACKINTOSH R, ROSENBAUM M, et al. Cardiac autonomic nervous system activity in obese and never-obese young men [J]. Obes Res,1997,5(4):354-9.
    [104]LINDMARK S, LONN L, WIKLUND U, et al. Dysregulation of the autonomic nervous system can be a link between visceral adiposity and insulin resistance [J]. Obesity Research, 2005,13(4):717-28.
    [105]QUILLIOT D, ZANNAD F, ZIEGLER O. Impaired response of cardiac autonomic nervous system to glucose load in severe obesity [J]. Metabolism,2005,54(7):966-74.
    [106]MATSUMOTO T, MIYAWAKI C, UE H, et al. Comparison of thermogenic sympathetic response to food intake between obese and non-obese young women [J]. Obesity Research, 2001,9(2):78-85.
    [107]LAEDERACH-HOFMANN K, KUPFERSCHMID S, MUSSGAY L. Links between body mass index, total body fat, cholesterol, high-density lipoprotein, and insulin sensitivity in patients with obesity related to depression, anger, and anxiety [J]. Int J Eat Disorder,2002, 32(1):58-71.
    [108]KARASON K, MOLGAARD H, WIKSTRAND J, et al. Heart rate variability in obesity and the effect of weight loss [J]. Am J Cardiol,1999,83(8):1242-7.
    [109]PETRETTA M, BONADUCE D, DE FILIPPO E, et al. Assessment of cardiac autonomic control by heart period variability in patients with early-onset familial obesity [J]. Eur J Clin Invest,1995,25(11):826-32.
    [110]MANDIGOUT S, MELIN A, FAUCHIER L, et al. Physical training increases heart rate variability in healthy prepubertal children [J]. Eur J Clin Invest,2002,32(7):479-87.
    [111]STUTZMAN S S, BROWN C A, HAINS S M, et al. The effects of exercise conditioning in normal and overweight pregnant women on blood pressure and heart rate variability [J]. Biol Res Nurs,2010,12(2):137-48.
    [112]CASTELLO V, SIMOES R P, BASSI D, et al. Impact of aerobic exercise training on heart rate variability and functional capacity in obese women after gastric bypass surgery [J]. Obes Surg,2011,21(11):1739-49.
    [113]FIGUEROA A, BAYNARD T, FERNHALL B, et al. Endurance training improves post-exercise cardiac autonomic modulation in obese women with and without type 2 diabetes [J]. Eur J Appl Physiol,2007,100(4):437-44.
    [114]GUTIN B, OWENS S, SLAVENS G, et al. Effect of physical training on heart-period variability in obese children [J]. J Pediatr,1997,130(6):938-43.
    [115]GUTIN B, BARBEAU P, LITAKER M S, et al. Heart rate variability in obese children: relations to total body and visceral adiposity, and changes with physical training and detraining [J]. Obes Res,2000,8(1):12-9.
    [116]NAGAI N, HAMADA T, KIMURA T, et al. Moderate physical exercise increases cardiac autonomic nervous system activity in children with low heart rate variability [J]. Childs Nerv Syst,2004,20(4):209-14; discussion 15.
    [117]GAMELIN F X, BAQUET G, BERTHOIN S, et al. Effect of high intensity intermittent training on heart rate variability in prepubescent children [J]. Eur J Appl Physiol,2009, 105(5):731-8.
    [118]WANG Y, WISLOFF U, KEMI O J. Animal models in the study of exercise-induced cardiac hypertrophy [J]. Physiol Res,2010,59(5):633-44.
    [119]JAIN M, LIAO R, NGOY S, et al. Angiotensin Ⅱ receptor blockade attenuates the deleterious effects of exercise training on post-MI ventricular remodelling in rats [J]. Cardiovasc Res,2000,46(1):66-72.
    [120]PERRINO C, GARGIULO G, PIRONTI G, et al. Cardiovascular effects of treadmill exercise in physiological and pathological preclinical settings [J]. Am J Physiol Heart Circ Physiol,2011,300(6):H1983-9.
    [121]MORASKA A, DEAK T, SPENCER R L, et al. Treadmill running produces both positive and negative physiological adaptations in Sprague-Dawley rats [J]. Am J Physiol-Reg I,2000, 279(4):R1321-R9.
    [122]CHICCO A J, MCCUNE S A, EMTER C A, et al. Low-intensity exercise training delays heart failure and improves survival in female hypertensive heart failure rats [J]. Hypertension, 2008,51(4):1096-102.
    [123]TANG X Y, HONG H S, CHEN L L, et al. Effects of Prior Different Intensities Exercise on Infarct Region Function and Angiogenesis of Left Ventricle in Myocardial Infarction Rats [J]. Heart,2010,96(A63-A.
    [124]FARAH C, MEYER G, ANDRE L, et al. Moderate exercise prevents impaired Ca2+ handling in heart of CO-exposed rat:implication for sensitivity to ischemia-reperfusion [J]. Am J Physiol Heart Circ Physiol,2010,299(6):H2076-81.
    [125]BUPHA-INTR T, LAOSIRIPISAN J, WATTANAPERMPOOL J. Moderate intensity of regular exercise improves cardiac SR Ca2+ uptake activity in ovariectomized rats [J]. J Appl Physiol,2009,107(4):1105-12.
    [126]KEMI O J, HARAM P M, LOENNECHEN J P, et al. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function [J]. Cardiovasc Res,2005,67(1):161-72.
    [127]WISLOFF U, HELGERUD J, KEMI O J, et al. Intensity-controlled treadmill running in rats: VO(2 max) and cardiac hypertrophy [J]. Am J Physiol Heart Circ Physiol,2001,280(3): H1301-10.
    [128]LACHANCE D, PLANTE E, BOUCHARD-THOMASSIN A A, et al. Moderate exercise training improves survival and ventricular remodeling in an animal model of left ventricular volume overload [J]. Circ Heart Fail,2009,2(5):437-45.
    [129]DEMIREL H A, POWERS S K, ZERGEROGLU M A, et al. Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat [J]. J Appl Physiol,2001, 91(5):2205-12.
    [130]EMTER C A, MCCUNE S A, SPARAGNA G C, et al. Low-intensity exercise training delays onset of decompensated heart failure in spontaneously hypertensive heart failure rats [J]. Am J Physiol Heart Circ Physiol,2005,289(5):H2030-8.
    [131]COLLINS H L, LOKA A M, DICARLO S E. Daily exercise-induced cardioprotection is associated with changes in calcium regulatory proteins in hypertensive rats [J]. Am J Physiol Heart Circ Physiol,2005,288(2):H532-40.
    [132]COPP S W, DAVIS R T, POOLE D C, et al. Reproducibility of endurance capacity and VO2peak in male Sprague-Dawley rats [J]. J Appl Physiol,2009,106(4):1072-8.
    [133]BEXFIELD N A, PARCELL A C, NELSON W B, et al. Adaptations to high-intensity intermittent exercise in rodents [J]. J Appl Physiol,2009,107(3):749-54.
    [134]BOISSIERE J, EDER V, MACHET M C, et al. Moderate exercise training does not worsen left ventricle remodeling and function in untreated severe hypertensive rats [J]. Journal of Applied Physiology,2008,104(2):321-7.
    [135]BOOTH F W, LAYE M J, SPANGENBURG E E. Gold standards for scientists who are conducting animal-based exercise studies [J]. J Appl Physiol,2010,108(1):219-21.
    [136]MULLIN W J, HERRICK R E, VALDEZ V, et al. Adaptive responses of rats trained with reductions in exercise heart rate [J]. JAppl Physiol,1984,56(5):1378-82.
    [137]LIN Y C, HORVATH S M. Autonomic nervous control of cardiac frequency in the exercise-trained rat [J]. J Appl Physiol,1972,33(6):796-9.
    [138]BARBIER J, RELAND S, VILLE N, et al. The effects of exercise training on myocardial adrenergic and muscarinic receptors [J]. Clin Auton Res,2006,16(1):61-5.
    [139]FAVRET F, HENDERSON K K, CLANCY R L, et al. Exercise training alters the effect of chronic hypoxia on myocardial adrenergic and muscarinic receptor number [J]. J Appl Physiol,2001,91(3):1283-8.
    [140]MARTINEZ D G, NICOLAU J C, LAGE R L, et al. Effects of long-term exercise training on autonomic control in myocardial infarction patients [J]. Hypertension,2011,58(6): 1049-56.
    [141]BARBIER J, RANNOU-BEKONO F, MARCHAIS J, et al. Effect of training on betal beta2 beta3 adrenergic and M2 muscarinic receptors in rat heart [J]. Med Sci Sports Exerc, 2004,36(6):949-54.
    [142]王友华,田振军.不同运动训练对大鼠心脏功能和副交感神经的影响研究[J].体育科学,2009,29(5):59-65.
    [143]LEVIN B E. Sympathetic activity, age, sucrose preference, and diet-induced obesity [J]. Obes Res,1993,1(4):281-7.
    [144]HWANG L L, WANG C H, LI T L, et al. Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice [J]. Obesity (Silver Spring),2010,18(3):463-9.
    [145]NADAL-CASELLAS A, PROENZA A M, LLADO I, et al. Sex-dependent differences in rat hepatic lipid accumulation and insulin sensitivity in response to diet-induced obesity [J]. Biochem Cell Biol,2012,90(2):164-72.
    [146]BAGNOL D, AL-SHAMMA H A, BEHAN D, et al. Diet-induced models of obesity (DIO) in rodents [J]. Curr Protoc Neurosci,2012, Chapter 9(Unit 9 38 1-13.
    [147]BUETTNER R, SCHOLMERICH J, BOLLHEIMER L C. High-fat diets:Modeling the metabolic disorders of human obesity in rodents [J]. Obesity,2007,15(4):798-808.
    [148]TRUETT A A, BORNE A T, MONTEIRO M P, et al. Composition of dietary fat affects blood pressure and insulin responses to dietary obesity in the dog [J]. Obes Res,1998,6(2): 137-46.
    [149]BARELLA L F, DE OLIVEIRA J C, BRANCO R C S, et al. Early Exposure to a High-Fat Diet has more Drastic Consequences on Metabolism Compared with Exposure During Adulthood in Rats [J]. Horm Metab Res,2012,44(6):458-64.
    [150]SCOMPARIN D X, GOMES R M, GRASSIOLLI S, et al. Autonomic activity and glycemic homeostasis are maintained by precocious and low intensity training exercises in MSG-programmed obese mice [J]. Endocrine,2009,36(3):510-7.
    [151]ZAHORSKA-MARKIEWICZ B, KUAGOWSKA E, KUCIO C, et al. Heart rate variability in obesity [J]. Int J Obes Relat Metab Disord,1993,17(1):21-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700