用户名: 密码: 验证码:
基于功能化材料的磷酸化与糖基化蛋白质高效富集及鉴定新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质组学以大规模分析细胞或生物体内的蛋白质为目的,主要开展表达蛋白质组学和功能蛋白质组学两类研究工作。生物体内蛋白质种类繁多,性质复杂,数量庞大,尤其是蛋白质翻译后修饰、蛋白质—蛋白质相互作用等现象的存在,对现行的蛋白质组学研究方法和技术提出了严峻挑战。因此,发展更多的蛋白质组学研究新技术与新方法,从而更好更快地进行蛋白质体系研究,对于解决生物体生理学、病理学以及药理学方面的重要科学问题有着重大的意义。
     翻译后修饰蛋白质组学在现今蛋白质组学中有着特殊的地位,比较常见的后修饰种类有磷酸化、糖基化、甲基化、乙酰化和泛素化修饰,其中磷酸化和糖基化蛋白质翻译后修饰的研究较多。规模化的识别、检测和鉴定生物体内这些后修饰蛋白质的表达及其变化,是翻译后修饰蛋白质组学研究的关键技术之一。然而,磷酸化和糖基化蛋白质组学研究中都面临着类似的困难,即这两类翻译后修饰蛋白质的种类虽然不少,丰度却通常较低,并且在通用的质谱鉴定中离子化效率不高,不易被质谱识别鉴定。因此,研究磷酸化和糖基化蛋白质组学,首要任务就是要将其从复杂体系中纯化出来,这也是翻译后修饰蛋白质组学发展的关键技术之一。
     功能化微米级和纳米级材料目前在科学发展的各个领域都有着很好的应用,相对于普通材料而言,它们具有极大的比表面积和极高的表面活性,特别适于生物医学领域的应用。以这些微米或纳米材料为基底,通过一些特殊的处理或者功能化基团的修饰,这些材料就能够与一些经过特定修饰的蛋白质发生相互作用,从而简化目标蛋白的分离纯化步骤,使得后续的分析更为可行。
     本论文针对蛋白质组学研究中面临的磷酸化和糖基化蛋白质高效选择性富集方面的热点难点问题,将功能化材料与蛋白质分析结合起来,开展了一系列研究工作,发展了一些基于功能化材料的磷酸化和糖基化蛋白质组学研究新技术新方法,并利用实际生物样品验证了这些新技术新方法的可行性,取得了一些创新性研究结果。
     第一章概述了蛋白质组学研究的意义和现状,集中讨论了磷酸化和糖基化蛋白质组学研究的概况、技术和方法,并就生物质谱在蛋白质组学研究技术以及新兴的翻译后修饰蛋白组学中的应用展开了一些讨论,概述了功能化材料及其在生物分析中的应用,最后提出了本论文选题的目的和意义。
     第二章利用水热法合成了具有多孔表面结构的二氧化钛微球,并将其用于鼠脑组织蛋白提取物中磷酸化肽段的富集。通过一系列的表征,确认多孔二氧化钛微球(直径1微米左右)具有锐钛矿的晶体结构,并且其比表面积达到了84.98m2/g,是同样粒径的具有光滑表面的二氧化钛微球比表面积的25倍,是商品化纳米级二氧化钛材料(直径90纳米左右)比表面积的2倍。经过条件优化,多孔二氧化钛材料和光滑二氧化钛材料都成功地在标准磷酸化蛋白p-酪蛋白(β-casein)的酶解产物中富集到了磷酸化肽,然而当将这两种材料进一步应用于较为复杂的体系,如β-casein与非磷酸化蛋白牛血清白蛋白(Bovine Serum Albumin, BSA)的酶解产物混合物中时,多孔二氧化钛材料显示了比光滑二氧化钛材料更优异的磷酸化肽选择性。在此基础上,我们还首次将三种二氧化钛材料,即多孔二氧化钛材料、光滑二氧化钛材料、商品化纳米级二氧化钛材料用于选择性富集鼠脑蛋白质提取物的酶解产物中的磷酸化肽段,分别分离鉴定出了223、47、90条磷酸化肽。这种多孔二氧化钛微球合成方法简单,成本低廉,使用灵活方便,对于磷酸化肽段的亲和效果好,经过实验验证,可以直接用于复杂体系中磷酸化肽段的分离。因其比表面积大,粒径合适,也可将其装填成亲和色谱柱进行在线的磷酸化肽段或蛋白的分离富集。
     第三章首次发展了简便的糖基化肽段靶上富集的方法用于糖基化肽段的快速分离和质谱鉴定。首先合成了纳米级金粒子,然后通过高温煅烧将这些纳米金颗粒烧结到MALDI-QIT-TOF-MS靶板上,再利用金和巯基之间的相互作用在这些纳米金颗粒表面修饰上巯基苯硼酸。硼酸分子在碱性条件下会与糖分子中的顺式二羟基发生可逆反应形成一个五元环,此五元环在酸性条件下能够解离,因此常被用来选择性富集糖基化的肽或者蛋白质。我们选用标准糖蛋白辣根过氧化物酶(Horseradish peroxidase, HRP)、胎球蛋白(Fetuin)和去唾液酸胎球蛋白(Asialofetuin, ASF)的酶解产物验证了靶板对于糖基化肽段的选择性富集能力。在HRP浓度低至2.5×10-9M时,仍能够鉴定到9条糖肽或者是糖肽碎片离子的信号。不仅仅是HRP,靶上富集糖肽的方法也成功地应用到了胎球蛋白和去唾液酸胎球蛋白酶解产物的糖肽富集中。为了进一步验证这种方法的实用性,我们用靶上富集的方法对HRP与非糖基化蛋白β-casein的酶解产物混合液中的糖肽进行了富集和鉴定,即使在HRP与β-casein的浓度比达到了l:10的条件下,也成功地从混合肽段中鉴定到了7条糖肽或糖肽碎片离子。最后,我们将HRP酶解产物与牛奶的酶解产物混合并利用靶上富集的方法对该肽段混合物进行了糖基化肽段的富集,共分离鉴定了7条HRP的糖肽或糖肽碎片离子信号。靶上富集方法快速,简便,需要的样品量少,易于实现高通量和自动化的蛋白质组学研究。在这里,我们首次发展了糖基化肽段靶上富集的方法,并通过一系列实验验证了该方法的可行性,为糖基化蛋白质组学研究开辟了新的道路。
     第四章创新性地利用“三明治”固定方法在硼酸纳米磁性微球表面固定了伴刀豆球蛋白(Concanavalin A, Con A),并将其用于糖基化蛋白的分离富集。硼酸修饰的氨基磁球曾被成功地用于标准糖肽和标准糖蛋白的富集,但当用于实际生物样品中的糖蛋白富集时,效率并不理想。Con A是凝集素中最常用的一种,它与甘露糖和葡萄糖残基有着很强的亲和作用,常被用来预富集生物样品中的糖基化蛋白质。因此我们选择Con A作为修饰物,利用硼酸和糖的共价反应首先在氨基苯硼酸纳米磁球表面修饰上一层甲基α-D-吡喃甘露糖苷,用单糖作为介质,再利用单糖和Con A的亲和作用在磁球表面固定上ConA。与在硼酸磁球表面直接固定Con A相比,利用上述“三明治”方法固定的Con A量提高了三倍。Con A纳米磁球、硼酸磁球和商品化的Con A磁球(直径1微米左右)都被用来进行人肝癌细胞株7703细胞裂解液中糖蛋白的分离富集。利用Con A纳米磁球共鉴定了包含184个糖基化位点在内的172条糖肽,这些糖肽共对应到101个糖蛋白,占鉴定蛋白总数的约68%。利用商品化的Con A磁球共鉴定了69条糖肽,对应于51个糖蛋白,占鉴定蛋白总数的约65%。而利用硼酸纳米磁球富集后鉴定到了47个蛋白,其中只有12个是糖蛋白。Con A纳米磁球制备方法简单,成本较低,固定效率高,使用也极为方便,亲和效率和商品化的Con A磁球相当,并且由于其“三明治”法固定的第一步是利用了硼酸—单糖的可逆反应,还能方便地利用这一性质对作为基底的硼酸磁球进行回收再利用,极大地节省了成本。
     总之,本论文针对翻译后修饰蛋白质组学中面临的磷酸化和糖基化蛋白质高效富集方面的热点问题,以功能化材料为基础,以发展相关的磷酸化和糖基化蛋白质组学研究新技术新方法并进行实际的应用研究为目的,探索和发展了各种不同的功能化材料的实际应用,并建立了新颖的分析方法,为解决磷酸化/糖基化肽段或蛋白质的高效分离富集及鉴定提供了有效的研究手段和方法。
Proteomics aim at large-scale analysis of proteins in all biological objects, and it constitutes of expressional proteomics and functional proteomics. Investigation of genomics and proteomics gives us insights to the physiological, pathological and pharmacological processes of cells and organisms. However, there are extremely large amount of proteins with complicated properties, e.g. post-translation, protein-protein interaction, which bring great challenge to existing analytical methods. Therefore, it is necessary to develop new techniques and methodologies for better solution of proteomic research.
     Post-translational proteomics is one of the most important subjects in proteome research. Protein post-translational modification plays key role in many biological processes. There are more than 200 reported PTMs, among which phosphorylation and glycosylation are the most studied protein modifications. However, phosphorylated and glycosylated proteins are usually of low abundance in biological samples. It is difficult to detect these proteins in mass spectrometry without sample pre-treatment. Development of purification and enrichment methods for post-translational modified proteins are in great demand.
     The application of functionalized micro-/nano-particles in biomedical research area is gaining increasing attention due to there ease of manipulation and recovery during the past decades. These particles possess great specific surface areas and high surface activity. Functional modification based on these paricles can be easily performed. Up till now, functionalized materials are extensively applied in various biomedical applications such as cell separation, drug delivery, enzyme immobilization, and protein purification. With specific modification, functionalized materials can be effectively applied in phosphorylated/glycosylated protein separation and enrichment.
     Based on the proteome research background and the development trend of functionalized materials, the research interest of this work focused on the preparation of several kinds of functionalized materials and developing a series of techniques and methods to resolve current problems in the separation and concentration of phosphorylated and glycosylated proteins. The feasibility of these techniques and methods was validated with real biological samples. This dissertation is divided into four parts.
     In Chapter 1, advances in proteome research, current research techniques and methods of phosphorylated/glycosylated proteomics, and applications of functionalized materials in biological analysis were summarized in brief. The intention and meaning of this dissertation were explained.
     In Chapter 2, mesoporous TiO2 microspheres were synthesized by simple hydrothermal reaction, and successfully developed for phosphopeptides enrichment from both standard protein digestion and real biological sample such as rat brain tissue extract. The mesoporous TiO2 microspheres (the diameter size of about 1.0μm) obtained by simple hydrothermal method were found to have a specific surface area of 84.98 m2/g, which is much lager than smooth TiO2 microspheres with same size. The surface area of mesoporous TiO2 microspheres is almost two times of commercial TiO2 nano particle (a diameter of 90 nm). Both of these two TiO2 microspheres are successfully applied to selective enrichment of phosphopeptides generated from P-casein digest. However, when they are used for phosphopeptides enrichment from a complicated peptide mixture such as P-casein and BSA digest mixture, mesoporous TiO2 microspheres exhibit strong specific selectivity compared with amorphous TiO2 microspheres with smooth surface. When they are further used for phosphopeptide enrichment from rat brain tissue extract, the mesoporous TiO2 microspheres show the highest binding capacity as well as capture efficiency for phosphopeptides.223,47, 90 phosphopeptides were identified using mesoporous TiO2 microspheres, smooth TiO2 microspheres and commercial TiO2 nanoparticles, respectively. It has been demonstrated that mesoporous TiO2 microspheres have powerful potential for selective enrichment of phosphorylated peptides. Moreover, the preparation of the mesoporous TiO2 microspheres is easy, simple and low-cost. This mesoporous TiO2 material may be further used as affinity chromatography column packing material for comprehensive phosphorylated proteome research.
     In Chapter 3, an on-plate selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a MALDI-QIT-TOF-MS stainless steel plate, then modified with 4-mercaptophenylboronic acid. These spots were used to selectively capture glycopeptides from peptide mixtures, and the captured target peptides could be analyzed by MALDI MS simply by depositon of DHB matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency.9 glycopeptides or glycopeptides fragments were identified with HRP concentration as low as 2.5×10-9 M. This on-plate glycopeptide enrichment strategy was further evaluated with other glycoproteins like fetuin, asialofetuin. It also succeeded at binding and identifying glycopeptides from a relatively complicated peptide mixture. The relatively small sample amount needed, low detection limit, and rapid selective enrichment have made this on-plate strategy promising for on-line enrichment of glycopeptides, which could be applied in high-throughput proteome research.
     In Chapter 4, Con A immobilized magnetic nanoparticles were synthesized for selective separation of glycoproteins. At first, a facile immobilization of Con A on aminophenylboronic acid-functionalized magnetic nanoparticles was performed by forming boronic acid-sugar-Con A bond in sandwich structure using methyl a-D-mannopyranoside as an intermedium. The selective capture ability of Con A modified magnetic nanoparticles for glycoproteins was tested using standard glycoproteins and cell lysate of human hepatocelluar carcinoma cell line 7703. In total 184 glycosylated sites were detected within 172 different glycopeptides corresponding to 101 glycoproteins. Also the regeneration of the protein-immobilized nanoparticles can easily be performed taking advantage of the reversible binding mechanism between boronic acid and sugar chain. The experiment results demonstrated that Con A modified magnetic nanoparticles by the facile and low-cost synthesis provided a convenient and efficient enrichment approach for glycoproteins, and are promising candidates for large scale glycoproteomic research in complicated biological samples.
     In summary, the main contributes of this dissertation is that we aimed at better solutions of post-translational modified proteome research, and developed several practical techniques for phosphorylated/glycosylated protein or peptide enrichment based on functionalized materials. According to the experiment results, these new techniques offer effective enrichment and identification of phosphorylated and glycosylated protein/peptide even in complicated biological samples, which demonstrated their powerful ability in post-translational proteome research.
引文
[1]Venter, J. C., Adams, M. D., Myers, E.W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H.O., Yandell, M., Evans, C. A., Holt, R. A., et al., The sequence of the human genome. Science 2001,291,1304-1351.
    [2]Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., Fitzhugh, W., Funke, R., Gage, D., et al., Initial sequencing and analysis of the human genome. Nature 2001,409, 860-921.
    [3]Naaby-Hansen, S., Waterfield, M. D., Cramer, R., Proteomics-post-genomic cartography to understand gene function. Trends in Pharmacological Sciences 2001,22,376-384.
    [4]. Regnier, F., Amini, A., Chakraborty, A., Geng, M., Ji, J., Riggs, L., Sioma, C., Wang, S., Zhang, X., Multidimensional chromatography and the signature peptide approach to proteomics. LC-GC,2001,19,200-213.
    [5]Blackstock, W. P., Weir, M. P., Proteomics:quantitative and physical mapping of cellular proteins. Trends in Biotechnol. 1999,17,121-127.
    [6]Rappsilber, J., Mann, M., What does it mean to identify a protein in proteomics? Trends in Biochemical Sciences 2002,27,74-78.
    [7]Giddings, J. C., Sample dimensionality-a predictor of order-disorder in component peak distribution in multidimensional separation. J. Chromatogr. A 1995,703,3-15.
    [8]Giddings, J. C., Concepts and comparisons in multidimensional separation. J. High Resol. Chromatogr. Commun.1987,10,319-323.
    [9]Reifschneider, N. H., Goto, S., Nakamoto, H., Takahashi, R., Sugawa, M., Dencher, N. A., Krause, F., Defining the Mitochondrial Proteomes from Five Rat Organs in a Physiologically Significant Context Using 2D Blue-Native/SDS-PAGE.J. Proteome Res.2006,5,1117-1132.
    [10]Babusiak, M., Man, P., Sutak, R., Petrak, J., Vyoral D., Identification of heme binding protein complexes in murine erythroleukemic cells:Study by a novel two-dimensional native separation-liquid chromatography and electrophoresis. Proteomics 2005,5,340-350.
    [11]Tan, H. T., Zubaidah, R., M., Tan, S., Hooi, S. C., Chung, M. C. M.,2-D DIGE analysis of butyrate-treated HCT-116 cells after enrichment with heparin affinity chromatography. J. Proteome Res.2006,5,1098-1106.
    [12]Van de Velde, S., Delaive, E., Dieu, M., Carryn, S., Bambeke, F. V., Devreese, B., Raes, M., Tulkens, P. M., Isolation and 2-D-DIGE proteomic analysis of intracellular and extracellular forms of Listeria monocytogene. Proteomics 2009, 9,5484-5496.
    [13]Bushey, M. M., Jorgenson, J. W., Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins. Anal.Chem.1990,62,161-167.
    [14]Holland, L. A., Jorgenson, J. W., Separation of nanoliter samples of biological amines by a comprehensive two-dimensional microcolumn liquid chromatography system. Anal. Chem.1995,67,3275-3283.
    [15]Opiteck, G. J., Lewis, K. C., Jorgenson, J. W., Comprehensive on-line LC/LC/MS of proteins. Anal. Chem.1997,69,1518-1524.
    [16]Shen, Y., Jacobs, J. M., Camp II, D. G.., Fang, R., Moore, R. J., Smith, R. D., Xiao, W., Davis, R. W., Tompkins, R. G., Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome. Anal. Chem.2004,76,1134-1144.
    [17]Hood, B. L., Zhou, M., Chan, K. C., et al., Investigation of the mouse serum proteome. J. Proteome Res.2005,4,1561-1568.
    [18]Dasari, S., Pereira, L., Reddy, A. P., et al., Comprehensive proteomic analysis of human cervical-vaginal fluid. J. Proteome Res.2007,6,1258-1268.
    [19]Barnea, E., Sorkin, R., Ziv, T., Beer, I., Admon, A., Evaluation of prefractionation methods as a preparatory step for multidimensional based chromatography of serum proteins. Proteomics 2005,5,3367-3375.
    [20]Zhang, J., Xu, X. Q., Gao, M. X., Yang, P. Y., Zhang, X. M., Comparison of 2-D LC and 3-D LC with post-and pre-tryptic-digestion SEC fractionation for proteome analysis of normal human liver tissue. Proteomics 2007,7,500-512.
    [21]Zhang, X., Hu, H., Xu, S., Yang, X., Zhang, J., Comprehensive two-dimensional capillary LC and CE for resolution of neutral components in traditional Chinese medicines. J. Sep. Sci.2001,24,385-391.
    [22]Cao, P., Stults, J. T., Phosphopeptide analysis by on-line immobilized metal-ion affinity chromatography-capillary electrophoresis-electrospray ionization mass spectrometry. J. Chromatogr. A 1999,853,225-235.
    [23]Mao Y., Zhang X. M., Comprehensive two-dimensional separation system by coupling capillary reverse-phase liquid chromatography to capillary isoelectric focusing for peptide and protein mapping with laser-induced fluorescence detection. Electrophoresis 2003,24,3289-3295.
    [24]Wang, Y., Rudnick, P. A., Evans, E. L., Li, J., Zhuang, Z., Devoe, D. L., Lee, C. S., Balgley, B. M., Proteome analysis of microdissected tumor tissue using a capillary isoelectric focusing-based multidimensional separation platform coupled with ESI-tandem MS. Anal. Chem.2005,77,6549-6556.
    [25]Westman-Brinkmalm, A., Karlsson, G., Brive, L. M., Hedberg-Fogel, K., Persson, R., Karlsson, H., Ekman, R., Blennow, K., Analysis of proteins from a glioma cell line by using micro-scale solution isoelectric focusing in combination with liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom.2005,19,3651-3658.
    [26]Horn, A., Kreusch, S., Bublitz, R., et al., Multidimensional proteomics of human serum using parallel chromatography of native constituents and microplate technology. Proteomics 2006,6,559-570.
    [27]Gu, X., Deng, C. H., Yan, G. Q., Zhang, X. M., Capillary array reversed-phase liquid chromatography-based multidimensional separation system coupled with MALDI=TOF-TOF-MS detection for high-throughput proteome analysis.J. Proteome Res.2006,5,3186-3196.
    [28]Gao, M. X., Zhang, J., Deng, C. H., Yang, P. Y., Zhang, X. M., Novel strategy of high-abundance protein depletion using multidimensional liquid chromatography. J. Proteome Res.2006,5,2853-2860.
    [29]Bunkenborg, J., Pilch, B. J., Podtelejnikov, A. V., et al., Screening for N-glycosylated proteins by liquid chromatography massspectrometry. Proteomics 2004,4,454-465.
    [30]Jensen, O. N., Proteomics:A Trends Guide 2000,36-42.
    [31]杨芃原,钱小红,盛龙生,生物质谱技术与方法.北京:科学出版社,2003.
    [32]孙瑞祥,董梦秋,迟浩等.基于电子捕获裂解/电子转运裂解串联质谱技术的蛋白质组学研究.生物化学与生物物理进展2010,37(1),94-102.
    [33]Cohen, P., The origins of protein phosphorylation. Nat. Cell. Biol.2002,4(5), E127-130.
    [34]Thingholm, T. E., Jensen,O. N., Larsen, M. R., Analytical strategies for phosphoproteomics. Proteomics 2009,9,1451-1468.
    [35]Rush, J., Moritz, A., Lee, K. A., et al., Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol.2005,23,94-101.
    [36]Kane, S., Sano, H., Liu, S. C. H., et al., A method to identify serine kinase substrates. J. Biol. Chem.2002,277,22115-22118.
    [37]Astoul, E., Laurence, A. D., Totty, N., Beer, S., Alexander, D. R., Cantrell, D. A., Approaches to define antigen receptor-induced serine kinase signal transduction pathways. J. Biol. Chem.2003,278,9267-9275.
    [38]Posewitz, M. C., Tempst, P., Immobilized Gallium(III) affinity chromatography of phosphopeptides.Anal. Chem.1999,77(14),2883-2892.
    [39]Ikeguchi, Y., Nakamura, H., Selective enrichment of phospholipids by titania. Anal.Sci.2000,16,541-543.
    [40]Sano, A., Nakamura, H., Chemo-affinity of titania for the column-switching HPLC analysis of phosphopeptides. Anal. Sci.2004,20,565-566.
    [41]Pinkse, M. W. H., Uitto, P. M., Hilhorst, M. J., Ooms, B., Heck, A. J. R., Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide procolumns. Anal. Chem.2004,76,3935-3943.
    [42]Kweon, H. K., Hakansson, K., Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem.2006,78, 1743-1749.
    [43]Wolschin, F., Wienkoop, S., Weckwerth, W., Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 2005,5,4389-4397.
    [44]McNulty, D. E., Annan, R. S., Hydrophilic-interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell. Proteomics 2008,7,971-980.
    [45]Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E. et al., Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 2004,101,12130-12135.
    [46]Nuhse, T. S., Stensballe, A., Jensen, O. N., Peck, S. C., Largescale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 2003,2, 1234-1243.
    [47]Han, G., Ye, M., Zhou, H., Jiang, X. et al., Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics 2008, 8,1346-1361.
    [48]Zhou, H., Watts, J. D., Aebersold, R. A. Systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol.2001,19(4),375-378.
    [49]Jaffe, H., Veeranna, Pant, H. C., Elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching. Biochemistry 1998,37,16211-16224.
    [50]Oda, Y., Nagasu, T., Chait, B. T., Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol.2001,19, 379-382.
    [51]Goshe, M. B., Conrads, T. P., Panisko, E. A., Angell, N. H., Veenstra, T. D., Smith, R. D., Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal. Chem.2001, 73,2578-2586.
    [52]Schroeder, M. J., Shabanowitz, J., Schwartz, J. C., Hunt, D. F., Coon, J. J., A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal. Chem.2004,76,3590-3598.
    [53]Kleinnijenhuis, A. J., Kjeldsen, F., Kallipolitis, B., Haselmann, K. F., Jensen, O. N., Analysis of histidine phosphorylation using tandem MS and ion-electron reactions. Anal. Chem.2007,79,7450-7456.
    [54]Stensballe, A., Jensen, O. N., Olsen, J. V., Haselmann, K. F., Zubarev, R. A., Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom.2000,14,1793-1800.
    [55]Chi, A., Huttenhower, C., Geer, L. Y., Coon, J. J. et al., Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. USA 2007, 104,2193-2198.
    [56]Zhang, L. J., Xu, Y. W., Lu, H. J., Yang, P. Y., Carboxy group derivatization for enhanced electron-transfer dissociation mass spectrometric analysis of phosphopeptides. Proteomics 2009,9,4093-4097.
    [57]Molina, H., Horn, D. M., Tang, N., Mathivanan, S., Pandey, A., Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 2007,104,2199-2204.
    [58]Bairoch, A., Apweiler, R., The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleric Acid Res.1999,27,49-54.
    [59]Helenius, A., Markus, A., Intracellular functions of N-Linked glycans. Science 2001,291,2376-2378.
    [60]代景泉,蔡耘,钱小红.蛋白质糖基化分析方法及其在蛋白质组学中的应用.生物技术通讯2005,16(3),287-292.
    [61]Spiro, R. G., Protein glycosylation:Nature, distribution, enzymatic formation and disease implications of glycopeptide bonds. Glycobiology 2002,12, 43R-56R.
    [62]Smejkal, G. B., Lazareu, A., Separation methods in proteomics. CRC Press 2006.
    [63]Brinkman-Van der Linden, E. C., Sonnenburg, J. L., Varki, A., Effects of sialic acid substitutions on recognition by Sambucus nigra leukoagglutinin and Maackia amurensis hemagglutinin, Anal. Biochem.2002,303,98-104.
    [64]Wang, L. J., Li, F. X., Sun, W., Wu, S. Z., Wang, X. R., Zhang, L., Zheng, D. X., Wang, J., Gao, Y. H., Concanavalin A-captured Glycoproteins in Healthy Human Urine. Mol. Cell. Proteomics 2006,5,560-562.
    [65]Kristiansen T. Z., Bunkenborg J., Gronborg M., Molina H., Thuluvath P. J., Argani P., Goggins M. G., Maitra A., Pandey A., A Proteomic Analysis of Human Bile. Mol. Cell. Proteomics 2004,3,715-728.
    [66]Rodriguez-Rineiro, A. M., Ayude, D., Rodri guez-Berrocal, F. J., Cadena, M. P., Concanavalin A chromatography coupled to two-dimensional gel electrophoresis improves protein expression studies of the serum proteome. J. Chromatogr. B 2004,803,337-343.
    [67]Qiu, R., Regnier, F. E., Comparative glycoproteomics of N-Linked complex-type glycoforms containing sialic acid in human serum. Anal. Chem. 2005,77,7225-7231.
    [68]Pilobello, K. T., Mahal, L. K. et al., Development of a lectin microarray for the rapid analysis of protein glycopatterns, ChemBioChem 2005,6,1-4.
    [69]Madera, M., Mechref, Y., Novotny, M. V., Combining lectin microcolumns with high-resolution separation Ttechniques for enrichment of glycoproteins and glycopeptides. Anal. Chem.2005,77,4081-4090.
    [70]Kaji, H., Isobe, T., et al., Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nature Biotechnology 2003,21(6),667-672.
    [71]Yang, Z. P., Hancock, W. S., Chew, T. R., et al., A study of glycoproteins in human serum and plasma reference standards (HUPO) using multilectin affinity chromatography coupled with RPLC-MS/MS. Proteomics 2005,5,3353-3366.
    [72]Bunkenborg, J., Pilch, B. J., Podtelejnikov, A. V., et al., Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics,2004,4,454-465.
    [73]Zhou, H., Hou, W. M., Denis, N. J., Zhou, H. J., Vasilescu, J., Zou, H. F. Figeys, D., Glycoproteomic reactor for human plasma. J. Proteom. Res.2009, 8(2),556-566.
    [74]Feng, S., Yang, N., Pennathur, S., Goodison, S., Lubman, D. M., Enrichment of Glycoproteins using Nanoscale Chelating Concanavalin A Monolithic Capillary Chromatography. Anal. Chem.2009,81,3776-3783.
    [75]Morris, T. A., Peterson, A. W., Tarlov, M. J., Selective Binding of RNase B Glycoforms by Polydopamine-Immobilized Concanavalin A. Anal. Chem.2009, 81,5413-5420.
    [76]Sparbier, K., Wenzel, T., Kostrzewa, M., Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J. Chromatogr. B 2006,840,29-36.
    [77]Zhang, Q. B., Tang, N., Brock, J. W. C., Mottaz, H. M. et al., Enrichment and Analysis of Nonenzymatically Glycated Peptides:Boronate Affinity Chromatography Coupled with Electron-Transfer Dissociation Mass Spectrometry. J. Proteome Res.2007,6,2323-2330.
    [78]Zhang, L. J., Xu, Y. W., Yao, H. L., Xie, L. Q., Yao, J., Lu, H. J., Yang, P. Y., Boronic Acid Functionalized Core-Satellite Composite Nanoparticles for Advanced Enrichment of Glycopeptides and Glycoproteins. Chem. Eur. J.2009, 15,10158-10166.
    [79]Xu, Y. W., Wu, Z. X., Zhang, L. J., Lu, H. J., Yang, P. Y., Webley, P. A., Zhao, D. Y., Highly Specific Enrichment of Glycopeptides Using Boronic Acid-Functionalized Mesoporous Silica. Anal. Chem.2009,81,503-508.
    [80]Li, M. Y., Lin, N., Huang, Z., Du, L. P., Altier, C., Fang, H., Wang, B. H., Selecting Aptamers for a Glycoprotein through the Incorporation of the Boronic Acid Moiety. J. AM. CHEM. SOC.2008,130,12636-12638.
    [81]Hagglund, P., Bunkenborg, J., Elortza, F., et al., A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res.2004,3(3),556-566.
    [82]Wada, Y., Tajiri, M., Yoshida, S., Hydrophilic Affinity Isolation and MALDI Multiple-Stage Tandem Mass Spectrometry of Glycopeptides for Glycoproteomics. Anal. Chem.2004,76,6560-6565.
    [83]Picariello, G., Ferranti, P., Mamone, G., Roepstorff, P., Addeo, F., Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry. Proteomics 2008,8,3833-3847.
    [84]Ramachandran, P., Boontheung, P., Xie, Y. M., Sondej, M. et al., Identification of N-Linked Glycoproteins in Human Saliva by Glycoprotein Capture and Mass Spectrometry. J. Proteome Res.2006,5,1493-1503.
    [85]Liu, T., Qian, W. J., Gritsenko, M. A., Xiao, W. Z. et al., High Dynamic Range Characterization of the Trauma Patient Plasma Proteome. Mol. Cell Proteomics 2006,5,1899-1913.
    [86]Lee, A., Kolarich, D., Haynes, P. A., Jensen, P. H., Baker, M. S., Packer, N. H., Rat liver membrane glycoproteome:enrichment by phase partitioning and glycoprotein capture. J. Proteom. Res.2009,8,1992-2003.
    [87]Whelan, S. A., Lu, M., He, J. B., Yan, W. H., Saxton, R. E., Faull, K. F., Whitelegge, J. P., Chang, H. R., Mass spectrometry (LC-MS/MS) site-mapping of N-glycosylated membrane proteins for breast cancer biomarkers. J. Proteome Res.2009,8,4151-4160.
    [88]Blake, T. A., Williams, T. L., Pirkle, J. L., Barr, J. R., Targeted N-Linked Glycosylation Analysis of H5N1 Influenza Hemagglutinin by Selective Sample Preparation and Liquid Chromatography/Tandem Mass Spectrometry. Anal. Chem.2009,81,3109-3118.
    [89]Zhou, L., Beuerman, R. W., Chew, A. P., et al., Quantitative Analysis of N-Linked Glycoproteins in Tear Fluid of Climatic Droplet Keratopathy by Glycopeptide Capture and iTRAQ. J. Proteom. Res.2009,8,1992-2003.
    [90]Chen, R., Zou, H. F., Sun, D. G., Han, G. H. et al., Glycoproteomics Analysis of Human Liver Tissue by Combination of Multiple Enzyme Digestion and Hydrazide Chemistry. J. Proteome Res.2009,8,651-661.
    [91]Mclachlin, D. T., Chait, B. T., Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol. 2001,5(5),591-602.
    [92]Wells, L., Vosseller, K., Cole, R. N., et al., Mapping sites of O-GlcNac modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 2002,1(10),791-804.
    [93]Zheng, Y. F., Guo, Z. H., Cai, Z. W., Combination of β-elimination and liquid chromatography/quadrupole time-of-flight mass spectrometry for the determination of O-glycosylation sites. Talanta 2009,78,358-363.
    [94]Hanisch, F., Teitz, S., Schwientek, T., Muller, S., Chemical de-O-glycosylation of glycoproteins for application in LC-based proteomics. Proteomics 2009,9, 710-719.
    [95]Comer, F. I., Vosseller, K., Wells, L., Accavitti, M. A. et al., Characterization of a Mouse Monoclonal Antibody Specific for O-Linked N-Acetylglucosamine. Anal. Biochem.2001,293,169-177.
    [96]Ball, L. E., Berkaw, M. N., Buse, M. G., Identification of the Major Site of O-Linked-N-Acetylglucosamine Modification in the C Terminus of Insulin Receptor Substrate-1. Mol. Cell. Proteomics 2006,5,313-323.
    [97]Sun, B. Y., Ranish, J. A., Utleg, A. G., White, J. T., et al., Shotgun glycopeptide-capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol. Cell. Proteomics 2007,6,141-149.
    [98]王克夷,糖蛋白的糖形.生命的化学1996,16(5),6-8.
    [99]陈瑶函,晏国全,周新文,杨芃原.基质辅助激光解析电离质谱和电喷雾电离质谱在辣根过氧化物酶糖肽结构分析中的应用.色谱2010,28(2),135-139.
    [100]厚瑞萍,刘英超,邓春晖,吴劲松,金属氧化物在磷酸化蛋白质组学研究中的应用.生物科技2009,19(4),85-88.
    [101]肖海军,贺筱蓉,固定化酶及其应用研究进展.生物学通报2001,36(7),9-10.
    [102]Krogh, T. N., Berg, T., Hojrup, P., Protein analysis using enzymes immobilized to paramagnetic beads. Anal. Biochem.1999,274,153-162.
    [103]Chen, J., Su, D., Latex particles with thermo-flocculation and magnetic properties for immobilization of a-chymotrypsin. Biotechnol. Prog.2001,17, 369-375.
    [104]Wang, Y. J., Caruso, F., Enzyme encapsulation in nanoporous silica spheres. Chem. Commun.2004,13,1528-1529.
    [105]Li, Y., Yan, B., Deng, C. H., et al., Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres. Proteomics 2007,7(14), 2330-2339.
    [106]Zhang, Y., Wang, X. Y., Shan, W., Wu, B. Y., Fan, H. Z., Yu, X. J., Tang, Y. Yang, P. Y., Enrichment of Low-Abundance Peptides and Proteins on Zeolite Nanocrystals for Direct MALD1-TOF MS Analysis. Angew. Chem. Int. Ed. 2005,44,615-617.
    [107]Tian, R. J., Zhang, H., Ye, M. L., Jiang, X. G., Hu, L. H., Li, X., Bao, X. H., Zou, H. F., Selective Extraction of Peptides from Human Plasma by Highly Ordered Mesoporous Silica Particles for Peptidome Analysis. Angew. Chem. Int. Ed.2006,45,1-5.
    [108]Shen, W. W., Xiong, H. M., Xu, Y., Cai, S. J., Lu, H. J., Yang, P. Y. ZnO-poly(methyl methacrylate) nanobeads for enriching and desalting low-abundant proteins followed by direactly MALD1-TOF MS analysis. Anal. Chem.2008,80,6758-6763.
    [109]Chen, H. M., Xu, X. Q., Yao, N., Deng, C. H., Yang, P. Y., Zhang, X. M., Facile synthesis of C8-functionalized magnetic silica microspheres for enrichment of low-concentration peptides for direct MALD1-TOF MS analysis. Proteomics 2008,8,2778-2784.
    [110]Chen, H. M., Qi, D. W., Deng, C. H., Yang, P. Y., Zhang, X. M., Preparation of C60-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALD1-TOF MS analysis, Proteomics 2009,9,380-387.
    [111]Muszylnska, G., Andersson, L., Porath, J., Selective adsorption of phospho-proteins on gel-immobilized ferric chelate. Biochemistry 1986,25(22), 6850-6853.
    [112]Li, Y., Lin, H. Q., Deng, C. H., Zhang, X. M., et al. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. J. Proteome Res.2007,6(11), 4498-4510.
    [113]Kweon, H. K., Hakansson, K., Selective Zirconium Dioxide-Based Enrichment of Phosphorylated Peptides for Mass Spectrometric Analysis. Anal. Chem.2006, 78(6),1743-1749.
    [114]Li, Y., Lin, H. Q., Deng, C. H., Zhang, X. M., et al., Rapid and selective enrichment of phosphorylated peptides using gallium oxide coated magnetic microspheres for mass spectrometric analysis. Proteomics 2008,8(2),238-249.
    [115]Chen, C. T., Chen, W. Y., Tsai, P. J., Chien, K. Y., Yu, J. S., Chen. Y. C., Rapid Enrichment of Phosphopeptides and Phosphoproteins from Complex Samples Using Magnetic Particles Coated with Alumina as the Concentrating Probes for MALDI MS Analysis. J. Proteome Res.2007,6(1),316-325.
    [116]Nishimura, S., Niikura, K., Kurogochi, M., et al., Hith-throughput protein glycomics:combined use of chemoselective glycoblotting and MALDI/TOF mass spectrometry. Angew. Chem. Int. Ed.2005,44,91-96.
    [117]Korogochi, M., Amano, M., Fumoto, M., Takimoto, A., Kondo, H., Nishimura, S., Reverse glycoblotting allows rapid-enrichment glycoproteomics of biopharmaceuticals and disease-related biomarkers. Angew. Chem. Int. Ed.2007, 46,1-7.
    [118]Furukawa, J., Shinohara, Y., Kuramoto, H., et al., Comprehensive approach to structural and functional glycomics based on chemoselective glycoblotting and sequential tag conversion. Anal. Chem.2008,80,1094-1101.
    [1]Graves, J. D., Krebs, E. G., Protein Phosphorylation and Signal Transduction. Pharmacol. Ther.1999,82,111-121.
    [2]Hunter, T., Signaling-2000 and beyond. Cell 2000,100,113-127.
    [3]Kweon, H. K., Hakansson, K., Selective Zirconium Dioxide-Based Enrichment of Phosphorylated Peptides for Mass Spectrometric Analysis. Anal. Chem.2006, 78,1743-1749.
    [4]McLachlin, D. T., Chait, B. T., Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol.2001,5,591-602.
    [5]Mann, M., Ong, S. E., Gronborg, M., Steen, H., Jensen, O. N., Pandey, A., Analysis of protein phosphorylation using mass spectrometry:deciphering the phosphoproteome. Trends Biotechnol.2002,20,261-268.
    [6]Schweppe, R. E., Haydon, C. E., Lewis, T. A., Resing, K. A., Ahn, N. G., The Characterization of Protein Post-Translational Modifications by Mass Spectrometry. Acc. Chem. Res.2003,36,453-461.
    [7]Chalmers, M. J., Kolch, W., Emmett, M. R., Marshall, A. G., Identification and analysis of phosphopeptides. J. Chromatogr. B 2004,803,111-120.
    [8]Cantin, G. T., Yates, J. R., Strategies for shotgun identification of post-translational modifications by mass spectrometry. J. Chromatogr. A 2004, 7053,7-14.
    [9]Meng, F., Forbes, A. J., Miller, L. M., Kelleher, N. L., Detection and localization of protein modifications by high resolution tandem mass spectrometry. Mass spectrum. Rev.2005,24,126-134.
    [10]Neville, D. C., Rozanas, C. R., Price, E. M., Gruis, D. B., Verkman, A. S., Townsend, R. R., Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci.1997,6(11),2436-2445.
    [11]Posewitz, M. C., Tempst, P., Immobilized Gallium(III) Affinity Chromatography of Phosphopeptides. Anal. Chem.1999,71,2883-2892.
    [12]Nuhse, T. S., Stensballe, A., Jensen, O. N., Peck, S. C., Large-scale Analysis of in Vivo Phosphorylated Membrane Proteins by Immobilized Metal Ion Affinity Chromatography and Mass Spectrometry. Mol. Cell. Proteomics 2003,2, 1234-1243.
    [13]Wang, J. L., Zhang, Y. J., Jiang, H., Cai, Y, Qian, X. H., Phosphopeptide detection using automated online IMAC-capillary LC-ESI-MS/MS. Proteomics 2006,6,404-411.
    [14]Zhou, H. J., Ye, M. L., Dong, J., Han, G. H., et al., Specific Phosphopeptide Enrichment with Immobilized Titanium Ion Affinity Chromatography Adsorbent for Phosphoproteome Analysis. J. Proteome Res.2008,7, 3957-3967.
    [15]Pandey, A., Podtelejnikov, A. V., Blagoev, B., Bustelo, X. R., Mann, M., Lodish, H. F., Analysis of receptor signaling pathways by mass spectrometry: Identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. USA 2000,97,179-184.
    [16]Ficarro, S. B., Chertihin, O., Westbrook, V. A., White, F., Jayes, F., Kalab, P., Marto, J. A., Shabanowitz, J., Herr, J. C., Hunt, D. F., Visconti, P. E., Phosphoproteome Analysis of Capacitated Human Sperm:Evidence of Tyrosine Phosphorylation of A Kinase-Anchoring Protein 3 and Valosin-Containing Protein/p97 during Capacitation. J. Biol. Chem.2003,278,11579-11589.
    [17]Zhou, H., Watts, J. D., Aebersold, R., A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol.2001,19,375-378.
    [18]McLachlin, D. T., Chait, B. T., Improved β-Elimination-Based Affinity Purification Strategy for Enrichment of Phosphopeptides.Anal. Chem.2003,75, 6826-6836.
    [19]Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., Villen, J., Li, J., Cohn, M. A., Cantley, L. C., Gygi, S. P., Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 2004,101, 12130-12135.
    [20]Ballif, B. A., Villen, J., Beausoleil, S. A., Schwartz, D., Gygi, S. P., Phosphoproteomic Analysis of the Developing Mouse Brain. Mol. Cell. Proteomics 2004,3,1093-1101.
    [21]Pinkse, M. W. H., Uitto, P. M., Hilhorst, M. J., Ooms, B., Heck, A. J. R., Selective Isolation at the Femtomole Level of Phosphopeptides from Proteolytic Digests Using 2D-NanoLC-ESI-MS/MS and Titanium Oxide Precolumns. Anal. Chem.2004,76,3935-3943.
    [22]Sui, S. H., Wang, J. L., Yang, B., et al., Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy. Proteomics 2008,8,2024-2034.
    [23]Han, G. H., Ye, M. L., Zhou, H. J., Jiang, X. N., et al, Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics 2008,8,1346-1361.
    [24]Sano, A., Nakamura, H., Titania as a Chemo-affinity Support for the Column-switching HPLC Analysis of Phosphopeptides:Application to the Characterization of Phosphorylation Sites in Proteins by Combination with Protease Digestion and Electrospray Ionization Mass Spectrometry. Anal. Sci. 2004,20,861-864.
    [25]Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., Jorgensen, T. J. D., Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns. Mol. Cell. Proteomics 2005,4, 873-886.
    [26]Lo, C. Y., Chen, W. Y., Chen, C. T., Chen, Y. C., Rapid Enrichment of Phosphopeptides from Tryptic Digests of Proteins Using Iron Oxide Nanocomposites of Magnetic Particles Coated with Zirconia as the Concentrating Probes.J. Proteome Res.2007,6,887-893.
    [27]Shin, E. W., Han, J. S., Jang, M., Min, S. H., Park, J. K., Rowell, R. M., Phosphate Adsorption on Aluminum-Impregnated Mesoporous Silicates: Surface Structure and Behavior of Adsorbents. Environ. Sci. Technol.2004,38, 912-917.
    [28]Wolschin, F., Wienkoop, S., Weckwerth, W., Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 2005,5,4389-4397.
    [29]Chen, C. T., Chen, W. Y., Tsai, P. J., Chien, K. Y., Yu, J. S., Chen, Y. C., Rapid Enrichment of Phosphopeptides and Phosphoproteins from Complex Samples Using Magnetic Particles Coated with Alumina as the Concentrating Probes for MALDI MS Analysis. J. Proteome Res.2007,6,316-325.
    [30]Zhou, H. J., Tian, R. J., Ye, M. L., Xu, S. Y., et al., Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis 2007,28,2201-2215.
    [31]Xu, S., Whitin, J. C., Yu, T. T., Zhou, H., Sun, D., Sue, H., Zou, H., Cohen, H. J., Zare, R. N., Capture of Phosphopeptides Using a-Zirconium Phosphate Nanoplatelets. Anal. Chem.2008,80,5542-5549.
    [32]Pan, C. S., Ye, M. L., Liu, Y. G., Feng, S., et al., Enrichment of Phosphopeptides by Fe3+-Immobilized Mesoporous Nanoparticles of MCM-41 for MALDI and Nano-LC-MS/MS Analysis.J. Proteome Res.2006,5,3114-3124.
    [33]Li, Y., Qi, D., Deng, C., Yang, P., Zhang, X., Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. J. Proteome Res.2008,7,1767-1777.
    [34]Li, Y., Leng, T., Lin, H., Deng, C., et al., Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption mass spectrometry. J. Proteome Res.2007,6,4498-4510.
    [35]Li, Y., Wu, J., Deng, C., et al., Novel approach for synthesis of Fe3O4@TiO2 core-shell microsphere and its application to highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chem. Commun.2008,46, 564-566.
    [36]Li, Y., Liu, Y., Tang, J., Lin, H., Yao, N., Shen, X., Deng, C., Yang, P., Zhang, X., Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. J. Chromatogr. A 2007,1172,57-71..
    [37]Li, Y., Xu, X., Qi, D., et al., Novel Fe3O4@TiO2 Core-Shell Microspheres for Selective Enrichment of Phosphopeptides in Phosphoproteome Analysis. J. Proteome Res.2008,7,2526-2538.
    [38]Ikeguchi, Y., Nakamura, H., Selective Enrichment of Phospholipids by Titania. Anal. Sci.2000,16,541-543.
    [39]Jiang, Z. T., Zuo, Y. M., Synthesis of Porous Titania Microspheres for HPLC Packings by Polymerization-Induced Colloid Aggregation (PICA). Anal. Chem. 2001,73,686-688.
    [40]Kawahara, M., Nakamura, H., Nakajima, T., Titania and zirconia:possible new ceramic microparticulates for high-performance liquid chromatography. J. Chromatogr. A 1990,515,149-158.
    [41]Sano, A., Nakamura, H., Chemo-affinity of Titania for the Column-switching HPLC Analysis of Phosphopeptides. Anal. Sci.2004,20,565-566.
    [42]Jensen, S. S., Larsen, M. R., Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Comm. Mass Spectrom.2007,21,3635-3645.
    [43]Mohammed, S., Kraiczek, K., Pinkse, M. W., Lemeer, S., Benschop, J. J., Heck, A. J., Chip-Based Enrichment and NanoLC-MS/MS Analysis of Phosphopeptides from Whole Lysates. J. Proteome Res.2008,7,1565-1571.
    [44]Liang, S. S., Makamba, H., Huang, S. Y., Chen, S. H., Nano-titanium dioxide composites for the enrichment of phosphopeptides. J. Chromatogr. A 2006,1116, 38-45.
    [45]Chen, C. T., Chen, Y. C., Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem.2005,77,5912-5919.
    [46]Torta,F., Fusi, M., Casari, C. S., Bottani, C. E., Bachi, A., Titanium Dioxide Coated MALDI Plate for On Target Analysis of Phosphopeptides. J. Proteome Res.2009,5,1932-1942.
    [47]Shui, W. Q., Fan, J., Yang, P. Y., Nanopore-Based Proteolytic Reactor for Sensitive and Comprehensive Proteomic Analyses. Anal. Chem.2006,78, 4811-4819.
    [48]Tian, R. J., Zhang, H., Ye, M. L., Zou, H. F., et al., Selective Extraction of Peptides from Human Plasma by Highly Ordered Mesoporous Silica Particles for Peptidome Analysis. Angew. Chem. Inter. Ed.2007,46,962-965.
    [49]Wang, P. Y., Zhao, L., Wu, R., Zhong, H., et al., Phosphonic Acid Functionalized Periodic Mesoporous Organosilicas and Their Potential Applications in Selective Enrichment of Phosphopeptides. J. Physical Chem. C 2009,113,1359-1366.
    [50]Yan, J. Y., Li, X. L., Cheng, S. Y., Ke, Y. X., Liang, X. M., Facile synthesis of titania-zirconia monodisperse microspheres and application for phosphopeptides enrichment. Chem. Commun.2009,20,2929-2931.
    [51]Chen, D., Huang, F., Cheng, Y., Caruso, R. A., Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes:A Superior Candidate for High-Performance Dye-Sensitized Solar Cells. Adv. Mater.2009,21, 2206-2210.
    [52]Keller, A., Nesvizhskii, A.I., Kolker, E., Aebersold, R., Empirical Statistical Model To Estimate the Accuracy of Peptide Identifications Made by MS/MS and Database Search. Anal. Chem.2002,74,5383-5392.
    [53]Kraus, K. A., Philips, H.O., Carlson, T. A., Johnson, J. S., Proceedings of the second International conference on Peaceful Uses of Atomic Energy. Geneva, Switzerland,1958,3.
    [54]Imami, K., Sugiyama, N., Kyono, Y., et al., Automated Phosphoproteome Analysis for Cultured Cancer Cells by Two-Dimensional NanoLC-MS Using a Calcined Titania/C18 Biphasic Column. Anal. Sci.2008,24,161-166.
    [55]Thingholm, T. E., Jensen,0. N., Robinson, P. J., Larsen, M. R., The in Vivo Phosphorylation and Glycosylation of Human Insulin-like Growth Factor-binding Protein-5. Mol. Cell. Proteomics 2007,6,1392-1405.
    [1]Roth, J., Protein N-glycosylation along the secretory pathway:Relationship to organelle topography and function, protein quality control, and cell interactions. Chem. Rev.2002,102,285-303.
    [2]Helenius, A., Aebi, M., Intracellular functions of N-linked glycans. Science 2001,291,2364-2369.
    [3]Allahverdian, S., Patchell, B. J., Dorscheid, D. R., Carbohydrates and epithelial repair-More than just post-translational modification. Curr. Drug Targets 2006, 7,597-606.
    [4]Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A., Dwek, R. A., Glycosylation and the immune system. Science 2001,291,2370-2376.
    [5]Bertozzi, C. R., Kiessling, L. L., Chemical glycobiology. Science 2001,291, 2357-2364.
    [6]O'Donnell, N., Intracellular glycosylation and development. Biochim. Biophys. Acta 2002,1573,336-345.
    [7]Cloos, P. A., Christgau, S., Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology 2004,5,139-158.
    [8]Kaji, H., Saito, H., Yamauchi, Y., Shinkawa, T., Taoka, M., Hirabayashi, J., Kasai, K., Takahashi, N., Isobe, T., Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol.2003,21,667-672.
    [9]Zhang, H., Li, X., Martin, D. B., Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol.2003,21,660-666.
    [10]Hagglund, P., Bunkenborg, J., Elortza, F., Jensen, O. N., Roepstorff, P., A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res.2004,3,556-566.
    [11]Wada, Y., Tajiri, M., Yoshida, S., Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem.2004,76,6560-6565.
    [12]Sparbier, K., Wenzel, T., Kostrzewa, M., Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J. Chromatogr. B 2006,840,29-36.
    [13]Frantzen, F., Grimsrud, K., Heggli, D. E., Sundrehagen, E., Protein-boronic acid conjugates and their binding to low-molecular-mass cis-diols and glycated hemoglobin. J. Chromatogr. B 1995,670,37-45.
    [14]Lee, J. H., Kim, Y. S., Ha, M. Y., Lee, E. K., Choo, J. B., Immobilization of Aminophenylboronic Acid on Magnetic Beads for the Direct Determination of Glycoproteins by Matrix Assisted Laser Desorption Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom.2005,16,1456-1460.
    [15]Zhou, W., Yao, N., Yao, G. P., Deng, C. H., Zhang, X. M., Yang, P.Y., Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem. Commun.2008, 5577-5579.
    [16]Knochenmuss, R., Ion formation mechanisms in UV-MALDI. Analyst 2006, 131,966-986
    [17]Stensballe, A., Jensen, O. N., Simplified sample preparation method for protein identification by matrix-assisted laser desorption/ionization mass spectrometry: In-gel digestion on the probe surface. Proteomics 2001,1,955-966.
    [18]Ericsson, D., Ekstrom, S., Nillsson, J., Bergquist, J., Marko-Varga, G., Laurell, T., Downsizing proteolytic digestion and analysis using dispenser-aided sample handling and nanovial matrix-assisted laser/desorption ionization-target arrays. Proteomics 2001,1,1072-1081.
    [19]Warscheid, B., Fenselau, C. A., A targeted proteomics approach to the rapid identification of bacterial cellmixtures by matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 2004,4,2877-2892.
    [20]Li, Y., Yan, B., Deng, C. H., Tang, J., Liu, J. Y., Zhang, X. M., On-plate digestion of proteins using novel trypsin-immobilized magnetic nanospheres for MALDI-TOF-MS analysis. Proteomics 2007,7,3661-3671.
    [21]Shiwa, M., Nishimura, Y, Wakatabe, R., et al., Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem. Biophys. Res. Commun. 2003,309,18-25.
    [22]Purohit, S., Podolsky, R., Schatz, D., Muir, A., Hopkins, D., Huang, Y. H., She, J. X., Assessing the utility of SELDI-TOF and model averaging for serum proteomic biomarker discovery. Proteomics 2006,6,6124-6133.
    [23]Akashi, T., Yamori, T., A novel method for analyzing phosphoproteins using SELDI-TOF MS in combination with a series of recombinant proteins. Proteomics,2007,7,2350-2354.
    [24]Konig, S., Target coatings and desorption surfaces in biomolecular MALDI-MS. Proteomics 2008,8,706-714.
    [25]Wright, G. L., Cazares, L. H., Leung, S. M., Nasim, S., Adam, B. L., Yip, T. T., Schellhammer, T. T., Gong, L., Vlahou, A., Proteinchip surface enhanced laser desorption/ionization (SELDI) mass spectrometry:a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis.1999,2,264-276.
    [26]Kiernan, U. A., Tubbs, K. A., Gruber, K., Nedelkov, D., Niederkofler, E. E., Williams, P., Nelson, R. W., High-Throughput Protein Characterization Using Mass Spectrometric Immunoassay. Anal. Biochem.2002,301,49-56.
    [27]Nedelkov, D., Nelson, R. W., Exploring the limit of detection in biomolecular interaction analysis mass spectrometry (BIA/MS):detection of attomole amounts of native proteins present in complex biological mixtures. Anal. Chim. Acta 2000,423,1-7.
    [28]Nelson, R. W., Nedelkov, D., Tubbs, K. A., Biomolecular interaction analysis mass spectrometry. Anal. Chem.2000,72,404A-411A.
    [29]Tan, F., Zhang, Y. J., Wang, J. L., Wei, J. Y, Qin, P. B., Cai, Y, Qian, X. H., Specific capture of phosphopeptides on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry targets modified by magnetic affinity nanoparticles. Rapid Commun. Mass Spectrom.2007,21, 2407-2414.
    [30]Qiao, L., Roussel, C., Wan, J. J., Yang, P. Y., Girault, H. H., Liu, B. H., Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis. J. Proteome Res.2007,6,4763-4769.
    [31]Xu, J., Li, S. Y, Weng, J., Wang, X. F., Zhou, Z. M., Yang, K., Liu, M., Chen, X., Cui, Q., Cao, M. Y., Zhang, Q. Q., Hydrothermal Syntheses of Gold Nanocrystals:From Icosahedral to Its Truncated Form. Adv. Funct. Mater.2008, 18,277-284.
    [32]Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F., Yan, H. Q., One-Dimensional Nanostructures:Synthesis, Characterization, and Applications. Adv. Mater.2003,15,353-389.
    [33]Daniel, M. C., Astruc, D., Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004,104,293-346.
    [34]Wiley, B., Sun, Y. G., Mayers, B., Xia, Y. N., Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver. Chem. Eur. J.2005,11,454-463.
    [35]Nuzzo, R. G., Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc.1983,105,4481-4483.
    [36]Azzaroni,O., Vela, M. E., Martin, H., Hernandez Creus, A., Andreasen, G., Salvarezza, R. C., Electrodesorption kinetics and molecular interactions at negatively charged self-assembled thiol monolayers in electrolyte solutions. Langmuir 2001,17,6647-6654.
    [37]Rawn, J. D., Lienhard, G. E., Binding of boronic acids to chymotrypsin. Biochemistry 1974,13,3124-3130.
    [38]Wuhrer, M., Hokke, C. H., Deelder, A. M., Glycopeptide analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry reveals novel features of horseradish peroxidase glycosylation. Rapid Commun. Mass Spectrom.2004,18,1741-1748.
    [39]Lo., C. Y., Chen., W. Y., Chen, C. T., Chen, Y. C., Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as theconcentrating probes. J. Proteome Res.2007,6,887-893.
    [40]Hagiwara, S., Kawai, K. Anti, A., et al., Lactoferrin concentration in milk from normal and subclinical mastitic cows. Vet. Med. Sci.2002,65,319-323.
    [1]Kaji, H., Kamiie, J., Kawakami, H., Kido, K., Yamauchi, Y., Shinkawa, T., Taoka, M., Takahashi, N., Isobe, T., Proteomics Reveals N-Linked Glycoprotein Diversity in Caenorhabditis elegans and Suggests an Atypical Translocation Mechanism for Integral Membrane Proteins. Mol. Cell. Proteomics 2007,6, 2100-2109.
    [2]Morelle, W., Canis, K., Chirat, F., Faid, V., Michalski, J., The use of mass spectrometry for the proteomic analysis of gycosylation. Proteomics 2006,6, 3993-4015.
    [3]Haltiwanger, R. S., Lowe, J. B., Role of glycosylation in development. Annu. Rev. Biochem.2004,73,491-537.
    [4]Wang, L. J., Li, F. X., Sun, W., Wu, S. Z., Wang, X. R., Zhang, L., Zheng, D. X., Wang, J., Gao, Y. H., Concanavalin A-captured Glycoproteins in Healthy Human Urine. Mol. Cell. Proteomics 2006,5,560-562.
    [5]Cao, J., Shen, C. P., Wang, H., Shen, H. L., Chen, Y. H., Nie, A. Y., Yan, G. Q., Lu, H. J., Liu, Y. K., Yang, P. Y., Identification of N-Glycosylation Sites on Secreted Proteins of Human Hepatocellular Carcinoma Cells with a Complementary Proteomics Approach. J. Proteome Res.2009,8,662-672.
    [6]Xu, Z. B., Zhou, X. W., Lu, H. J., Wu, N., Zhao, H. B., Zhang, L. N., Zhang, W., Liang, Y. L., Wang, L. Y., Liu, Y. K., Yang, P. Y., Zha, X. L., Comparative glycoproteomics based on lectins affinity capture of N-linked glycoproteins from human Chang liver cells and MHCC97-H cells. Proteomics 2007,7, 2358-2370.
    [7]Mao, X. L., Luo, Y, Dai, Z. P., Wang, K. Y., Du, Y. G., Lin, B. C., Integrated Lectin Affinity Microfluidic Chip for Glycoform Separation. Anal. Chem.2004, 76,6941-6947.
    [8]Bundy, J. L., Fenselau, C., Lectin and Carbohydrate Affinity Capture Surfaces for Mass Spectrometric Analysis of Microorganisms. Anal. Chem.2001,73, 751-757.
    [9]Kamra, A., Gupta, M. N., Crosslinked concanavalin A-O-(diethylaminoethyl)-cellulose-An affinity medium for concanavalin A-interacting glycoproteins. Anal. Biochem.1987,164,405-410.
    [10]Sparbier, K., Wenzel, T., Kostrzewa, M., Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J. Chromatogr. B 2006,840,29-36.
    [11]Kristiansen, T. Z., Bunkenborg, J., Gronborg, M., Molina, H., Thuluvath, P. J., Argani, P., Goggins, M. G., Maitra, A., Pandey, A., A Proteomic Analysis of Human Bile. Mol. Cell. Proteomics 2004,3,715-728.
    [12]Rodriguez-Rineiro, A. M., Ayude, D., Rodriguez-Berrocal, F. J., Cadena, M. P., Concanavalin A chromatography coupled to two-dimensional gel electrophoresis improves protein expression studies of the serum proteome. J. Chromatogr. B 2004,803,337-343.
    [13]Zhou, H., Hou, W. M., Denis, N. J., Zhou, H. J., Vasilescu, J., Zou, H. F., Figeys, D., Glycoproteomic Reactor for Human Plasma. J. Proteom. Res.2009,8, 556-566.
    [14]Feng, S., Yang, N., Pennathur, S., Goodison, S., Lubman, D. M., Enrichment of Glycoproteins using Nanoscale Chelating Concanavalin A Monolithic Capillary Chromatography. Anal. Chem.2009,81,3776-3783.
    [15]Lahiri, J., Isaacs, L., Tien, J., Whitesides, G. M., A Strategy for the Generation of Surfaces Presenting Ligands for Studies of Binding Based on an Active Ester as a Common Reactive Intermediate:A Surface Plasmon Resonance Study. Anal. Chem.1999,71,777-790.
    [16]Mallik, R., Wa, C., Hage, D. S., Development of Sulfhydryl-Reactive Sillica for Protein Immobilization in High-Performance Affinity Chromatography. Anal. Chem.2007,79,1411-1424.
    [17]Lee, Y. C., Block, G., Chen, H., et al., One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A. Protein Expr. Purif.2008,62,223-229.
    [18]Deiters, A., Cropp, A., Mukherji, M., Chin, J. W., Anderson, J. C., Schultz, P. G., Adding Amino Acids with Novel Reactivity to the Genetic Code of Saccharomyces Cerevisiae. J. Am. Chem. Soc.2003,125,11782-11783.
    [19]Devaraj, N. K., Collman, J. P., Copper Catalyzed Azide-Alkyne Cycloadditions on Solid Surfaces:Applications and Future Directions. QSAR Comb. Sci.2007, 26,1253-1260.
    [20]Gauchet, C., Labadie, G. R., Poulter, C. D., Regio- and Chemoselective Covalent Immobilization of Proteins through Unnatural Amino Acids. J. Am. Chem. Soc.2006,128,9274-9275.
    [21]Morris, T., Peterson, A., Tarlov, M., Selective Binding of RNase B Glycoforms by Polydopamine-Immobilized Concanavalin A. Anal. Chem.2009,81, 5413-5420.
    [22]Jaipuri, F., Collet, B., Pohl, N., Synthesis and quantitative evaluation of Glycero-D-manno-heptose binding to concanavalin a by fluorous-tag assistance. Angew. Chem. Int. Ed. 2008,47,1707-1710.
    [23]Sato, K., Kodama, D., Endo, Y., et al., Preparation of Insulin-Containing Microcapsules by a Layer-by-Layer Deposition of Concanavalin A and Glycogen. J. Nanosci. Nanotechnol.2009,9,386-390.
    [24]Li, Y., Yan, B., Deng, C. H., Tang, J., Liu, J. Y., Zhang, X. M., On-plate digestion of proteins using novel trypsin-immobilized magnetic nanospheres for MALDI-TOF-MS analysis. Proteomics 2007,7,3661-3671.
    [25]Chen, H. M., Xu, X. Q., Yao, N., Deng, C. H., Yang, P. Y., Zhang, X. M., Facile synthesis of C8-functionalized magnetic silica microspheres for enrichment of low-concentration peptides for direct MALDI-TOF MS analysis. Proteomics 2008,8,2778-2784.
    [26]Chen, H. M., Qi, D. W., Deng, C. H., Yang, P. Y., Zhang, X. M., Preparation of C60-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALDI-TOF MS analysis, Proteomics 2009,9,380-387.
    [27]Li, Y., Liu, Y C., Tang, J., Lin, H. Q., Yao, N., Shen, X. Z., Deng, C. H., Yang, P. Y., Zhang, X. M., Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. J. Chromatogr. A 2007,1172,57-71.
    [28]Zhou, W., Yao, N., Yao, G. P., Deng, C. H., Zhang, X. M., Yang, P. Y., Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem. Commun.2008, 43,5577-5579.
    [29]Chen, M., Ying, W. T., Song, Y. P., Liu, X., Yang, B., Wu, S. F., Jiang, Y., Cai, Y., He, F. C., Qian, X. H., Analysis of human liver proteome using replicate shotgun strategy. Proteomics 2007,7,2479-2488.
    [30]Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Empirical Statistical Model To Estimate the Accuracy of Peptide Identifications Made by MS/MS and Database Search. Anal. Chem.2002,74,5383-5392.
    [31]Wiseman, S. B., Singer, T. D., Applications of DNA and protein microarrays in comparative physiology. Biothchnol. Adv.2002,20,379-389.
    [32]Sasakura, Y., Kanda, K., Yoshimura-Suzuki, T., Matsui, T., Fukuzono, S., Hi Han, M., Shimizu, T., Protein Microarray System for Detecting Protein-Protein Interactions Using an Anti-His-Tag Antibody and Fluorescence Scanning:Effects of the Heme Redox State on Protein-Protein Interactions of Heme-Regulated Phosphodiesterase from Escherichia coli. Anal. Chem.2004, 76,6521-6527.
    [33]Bucura, B., Danet, A. F., Marty, J. L., Cholinesterase immobilisation on the surface of screen-printed electrodes based on concanavalin A affinity. Analytica Chimica Acta 2005,530,1-6.
    [34]Nandigala, P., Chen, T. H., Yang, C., Hsu, W. H., Heath, C., Immunomagnetic isolation of islets from the rat pancreas. Biotechnol. Prog.1997,13,844-848.
    [35]Deng, Y. H., Deng, C. H., Yang, D., Wang, C. C., Fu, S. K., Zhang, X. M., Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes. Chem. Commun.2005,44, 5548-5550.
    [36]Gupta, P. K., Hung, C. T., Magnetically controlled targeted micro-carrier systems Life Sci.1989,44,175-186.
    [37]Deng, Y. H., Wang, C. C., Shen, X. Z., Yang, W. L., Jin, L., Gao, H., Fu, S. K., Preparation, Characterization, and Application of Multistimuli-Responsive Microspheres with Fluorescence-Labeled Magnetic Cores and Thermoresponsive Shells. Chem. Eur. J.2005,11,6006-6013.
    [38]Horak, C., Rittich, B., Safar, J., Spanova, A., Lenfeld, J., Benes, M. J., Properties of RNase A Immobilized on Magnetic Poly(2-hydroxyethyl methacrylate) Microspheres. Biotechnol. Prog.2001,17,447-452.
    [39]Guiseppi-Elie, A., Sheppard, N. F., Brahim, S., Narinesingh, D., Enzyme microgels in packed-bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays. Biotechnol. Bioeng.2001,75,475-484.
    [40]Santos, A. D., Thiers, V., Sar, S., Derian, N., Bensalem, N., Yilmaz, F., Bralet, M., Ducot, B., Brechot, C., Demaugre, F., Contribution of laser microdessection-based technology to proteomic analysis in hepatocellular carcinoma developing on cirrhosis. Proteomics Clin. Appl.2007,1,545-554.
    [41]Bergstrand, C.G., Czar, B., Demonstration of a new protein fraction in serum from the human fetus. Scand. J. Clin. Lab. Invest.1956,8,174-179.
    [42]MacCoss, M.J., Computational analysis of shotgun proteomics data. Curr. Opin. Chem. Biol.2005,9,88-94.
    [43]Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., Gygi, S. P., Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis:the yeast proteome. J. Proteome Res.2003,2,43-50.
    [44]Elias, J. E., Gibbons, F. D., King, O. D., Roth, F. P., Gygi, S. P., Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nat. Biotechnol.2004,22,214-219.
    [45]Feng, J. T., Liu, Y. K., Song, H. Y., Dai, Z., Qin, L. X., Almofti, M. R., Fang, C. Y., Lu, H. J., Yang, P. Y., Tang, Z. Y., Heat-shock protein 27:A potential biomarker for hepatocellular carcinoma identified by serum proteome abalysis. Proteomics 2005,5,4581-4588.
    [46]Sun, W., Xing, B. C., Sun, Y., Du, X. J., Lu, M., Hao, C. Y., Lu, Z., Mi, W., Wu, S. F., Wei, H. D., Gao, X., Zhu, Y. P., Jiang, Y., Qian, X. H., He, F. C., Proteome Analysis on Hepatocellular Carcinoma by Two-dimensional Difference Gel Electrophoresis:Novel Protein Markers in Hepatocellular Carcinoma Tissues. Mol. Cell. Proteomics 2007,6,1798-1808.
    [47]Qin, L. X., Tang, Z. Y., The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol.2002,8,385-392.
    [48]Qin, L. X., Tang, Z. Y., Recent progress in predictive biomarkers for metastatic recurrence of human hepatocellular carcinoma:a review of the literature. J. Cancer Res. Clin. Oncol.2004,130,497-513.
    [49]Sun, B. Y., Ranish, J. A., Utleg, A. G., White, J. T., Yan, X. W., Lin, B. Y., Hood, L., Shotgun Glycopeptide Capture Approach Coupled with Mass Spectrometry for Comprehensive Glycoproteomics. Mol. Cell. Proteomics 2007,6,141-149.
    [50]Liu, X. C., Boronic Acids as Ligands for Affinity Chromatography. Chin. J. Chromatogr.2006,24,73-80
    [51]Yang, Z., Hancock, W. S., Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column.J. Chromotogr. A 2004,1053,79-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700