用户名: 密码: 验证码:
基于永磁机构动态特性的真空断路器控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断路器分合闸时,电网的电流或者电压的相位并不确定,容易在分合闸过程中产生涌流及过电压,对电力系统产生较大的冲击。同步关合技术的出现,为缩短甚至避免出现断路器分合闸暂态过程提供了良好的解决方案。本文分析了同步关合的重要性及其实现机制,明确了断路器分合闸时间分散性是制约同步关合技术实现的主要难点。永磁真空断路器以其结构简单、零部件少、动作分散性小、可靠性高、寿命长等优点,成为实现同步关合的理想元件。然而永磁真空断路器受温度、控制电压、老化等因素的影响,分合闸时间仍会表现出较大的分散性,为减小分合闸时间分散性,同时减少操作能耗,优化真空断路器动触头的运动特性,提出了适用于一般永磁真空断路器的控制策略,主要完成了以下工作:
     对电容激励模式下永磁真空断路器的动态方程进行了分析,并以此为基础提出了基于电流源激励模式的动态方程。为分析电流源激励模式与电容激励模式的区别,建立了Ansoft仿真模型,对两种模式下,机构的动态特性进行了分析对比。由于在电流源激励模式下,真空断路器的分合闸时间不受电容容量和控制电压的影响,从而更有利于保持分合闸时间的稳定性。
     为实现基于线圈电流闭环的控制方式,文中详细分析了滞环控制方法的实现原理,针对方法的不足之处,对其进行了改进,提出了基于线性插值PID模式的滞环控制策略。分析了线性插值PID控制方式与经典PID控制的异同,并利用基于线性插值PID的滞环控制方法实现了对线圈电流的跟踪控制,为分合闸时,实现稳定、高效的电流源提供了基础。通过对合闸时线圈电流的分析,提出了获取较优动态特性曲线的方法,并通过利用改进的PID滞环控制方法,实现了对断路器分合闸特性的控制,将开关分合闸时间分散性控制在±0.3ms以内。
     为实现对永磁机构合闸时动态特性的优化,提出了变电压变输出能量(VVVE)的断路器合闸控制方法。分析了开环状态下永磁机构合闸过程的线圈电流,采用曲线拟合方式给出了合闸过程的电流方程,并对拟合方程中各项参数求解方法进行了详细的说明,给出了相应的实例证明了拟合方法的准确性。在此基础上提出了VVVE的调节方法,通过VV调节实现合闸时间的粗调,在提高合闸平均速度的同时,限制了动触头的刚合速度,通过VE调节实现了对合闸时间的微调,以及对刚合速度的控制。由于提高开关合闸平均速度与减小合闸碰撞能量一直是断路器关合过程的一个矛盾,VVVE控制方案的提出为减小上述矛盾的影响提供了很好的解决方法。
     为实现同步关合,文中设计了相应的永磁真空断路器控制器,对控制器的主要硬件构成进行了说明。结合同步关合的关键技术实现,说明了VWE在同步关合控制过程中所表现出的优异性能。虽然WVE是在12kV单稳态真空断路器实验基础上所获得的结论,但是本文通过所设计的控制器,成功将WVE控制策略用于40.5kV单稳态永磁真空断路器的控制实验中,从而说明了VVVE控制策略具有一般性。文中对40.5kV单稳态真空断路器在高低温下的合闸时间分散性进行了分析,并在此基础上,研究了如何通过控制策略实现断路器合闸时间的温度补偿,并给出针对40.5kV单稳态真空断路器的补偿方程。
When opening or closing a circuit breaker, the phase of grid current or voltage is uncertainty, which may generate inrush current or overvoltage and impact greatly on the grid. Synchronous control technology provides a good solution for this problem. The importance of synchronous control technology and its implementation mechanism was analyzed in this thesis, and it was clear that the dispersion of closing or opening time of circuit breaker is the main difficulties to achieve synchronous control technology. Since vacuum circuit breaker (VCB) with permanent magnetic actuator (PMA) has a simple structure, fewer parts, little opening or closing dispersion, high reliability, long life and many other advantages, it had become the ideal component to achieve synchronous control technology. However, the dispersion of VCB operation will be affected by the changing of environment temperature and control voltage, aging of the actuator and other factors. In order to reduce the dispersion of the operation and its power consumption, and also to improve the dynamic behavior of the moving contact in VCB, a new control technology for general VCB with permanent magnetic actuator was proposed in this thesis. The main work which had been done in this thesis is shown as follows:
     The dynamic behavior equation of PMA with capacitor as the excitation source was analyzed and based on which the dynamic behavior equation of PMA with current excitation was deduced. To analyze the difference between the two excitation modes^the simulation model was established with Ansoft. The dynamic behavior using two different sources was analyzed and compared. Since the action time of VCB can not be affected by the changing of the control voltage or capacitance of the capacitor, it will contribute to maintaining the stability of the time for opening and closing VCB.
     To achieve closed-loop control based on the coil current of PMA, the principle of hysteretic control was analyzed in detail, and an improved control strategy based on linear interpolation PID control strategy was proposed to overcome the shortcoming of traditional hysteretic control. The differences between the linear interpolation PID control strategy proposed in this paper and the traditional PID control strategy was analyzed. With the control strategy based on linear interpolation PID hysteretic control which provided a powerful tool for achieving stable and efficient current source, the coil current can be effectively tracked. By analyzing the current in coil when closing VCB, a method for obtaining optimum reference current curve to get better dynamic behavior of moving contact was proposed. With the reference current curve and the new PID hysteretic control strategy, the dispersion of opening and closing time of VCB can be limited to±0.3ms.
     In order to improve the dynamic behavior of the moving contacts in VCB, a method of varying voltage and varying output energy (VVVE) was proposed. Features of the current when closing VCB under open looped control were analyzed, and the current equation for closing VCB was given by curve fitting way. The method for solving the equation parameters was introduced in detail, and the corresponding example was given in this thesis to demonstrate the accuracy of the fitting method. Based on the method, VVVE control strategy was proposed, by varying the initial voltage (VV) with the condition that the output energy of the capacitor were maintained, the closing time could be regulated coarsely and the speed of moving contact could be limited; and by varying the output energy (VE) with the condition of maintaining the initial voltage of the capacitor, the closing time could be regulated finely, and the speed of the moving contact could also be regulated. Since reducing the collision energy between the contacts when closing VCB and increasing speed of the moving contact in order to reduce the closing time has been always a contradiction, VVVE control strategy provides an effective method for reducing the influence of the contradiction.
     A controller for controlling VCB was designed to achieve synchronous controlling technology and the main structure of the hardware was described. VVVE controlling strategy had exhibited excellent performance in the realization of synchronous controlling. Although VVVE controlling strategy was concluded from the experiments with12kV VCB, it had been successfully used to control40.5kV VCB with the controller. Many experiments were done at different temperatures with40.5kV VCB to analyze the dispersion of closing time. Based on the experiments, the compensation method for closing time changed by temperature varied was implemented.
引文
[1]周小谦.中国电力工业发展的前景[J].中国电力,1999,32(10):3-8.
    [2]任浩宁,宋智晨,周修杰,宛学智.2014-2018年中国电网行业投资分析及前景预测报告.中投顾问,2013.9
    [3]Greenwood A. Vacuum Switchgear[M]. London:The Institution of Electrical Engineering, 1994.
    [4]Okubo H, Yanabu S. Feasibility study on application of high voltage and high power vacuum circuit breaker[C]//Discharges and Electrical Insulation in Vacuum,2002.20th International Symposium on. IEEE,2002:275-278.
    [5]张维明.关于永磁机构真空断路器的特点及应用[J].农村电气化,2002,4(1):33-33.
    [6]崔寒.真空断路器永磁操动机构优化设计研究[D].沈阳工业大学,2006.
    [7]王季梅.真空开关技术与应用[M].北京:机械工业出版社,2008.
    [8]Saitoh H, Ichikawa H, Nishijima A, et al. Research and development on 145 kV/40 kA one break vacuum circuit breaker[C]//Transmission and Distribution Conference and Exhibition 2002:Asia Pacific. IEEE/PES. IEEE,2002,2:1465-1468.
    [9]Garzon R D. High voltage circuit breakers:design and applications[M]. CRC Press,2002.
    [10]张俊民,窦晓峰.一种永磁操动机构的智能控制与电子驱动装置的研制[J].高压电器,2003,39(1):27-29.
    [11]王连鹏,王尔智.真空断路器弹簧操动机构仿真与优化[J].高电压技术.2006,32(2):27-29.
    [12]游一民,郑军.永磁机构及其发展动态[J].高压电器,2001,37(1):44-47.
    [13]罗干平.126kVSF6断路器分闸时间特性统计分析[J].高电压技术,2001,27(1):67-68.
    [14]吴世宝.真空断路器永磁操动机构优化设计的研究[D].沈阳工业大学,2012.
    [15]付万安,宋宝韫.高压断路器永磁操动机构的研究[J].中国电机工程学报,2000,20(8):21-26.
    [16]张月存,金浩,周红霞,等.真空断路器永磁操动机构的应用与发展[J].黑龙江电力,2006,28(4):254-255.
    [17]朱学贵,王毅.为提高分闸能力的永磁操动机构的研究与设计[J].中国电机工程学报,2006,26(7):163-167.
    [18]邹积岩,丛吉远.真空开关的电子操动与同步开关技术[J].电工技术杂志,2001(4):30-33.
    [19]齐文.电容器并联时的损耗变化.电子元件与材料[J],1990,9(4):63-64.
    [20]Goldsworthy D, Roseburg T, Tziouvaras D, et al. Controlled switching of HVAC circuit breakers:application examples and benefits[C]//Protective Relay Engineers,2008 61st Annual Conference for. IEEE,2008:520-535.
    [21]熊泰昌.真空开关电器[M].北京:中国水利水电出版社,2002.
    [22]孟凡钟.真空断路器实用技术[M].北京:中国水利水电出版社,2009.
    [23]Goedde G L, Kojovic L A, Woodworth J J. Surge arrester characteristics that provide reliable overvoltage protection in distribution and low-voltage systems[C]//Power Engineering Society Summer Meeting,2000. IEEE,2000, IEEE. Vol.4:2375-2380.
    [24]Legate A C, Brunke J H, Ray J J, et al. Elimination of closing resistors on EHV circuit breakers[J]. Power Delivery, IEEE Transactions on,1988,3(1):223-231.
    [25]周志芳.500kV断路器取消合闸电阻问题的研究[J].电网技术,1997,21(12):8-11.
    [26]刘健,倪建立,邓永辉.配电自动化系统[M].北京:中国水利水电出版,2003.
    [27]朱建.智能电网发展的对策研究[J].科技风,2012(22).
    [28]马少华.126kV高压真空断路器永磁操动机构及其同步控制技术的研究[D].沈阳工业大学,2009.
    [29]Fernandez P C, Esmeraldo P C V, Zani C R. Use of controlled switching systems in power system to mitigate switching transients, trends and benefits-Brazilian experience[C]// Transmission and Distribution Conference and Exposition:Latin America,2004 IEEE/PES. IEEE,2004:85-90.
    [30]Brunke J H, Frohlich K J. Elimination of transformer inrush currents by controlled switching. I. Theoretical considerations [J]. Power Delivery, IEEE Transactions on,2001,16(2):276-280.
    [31]Prikler L, Banfai G, Ban G, et al. Reducing the magnetizing inrush current by means of controlled energization and de-energization of large power transformers [J]. Electric power systems research,2006,76(8):642-649.
    [32]徐晓静,孙明灿,陈庆春.同步关合技术在无功补偿中的应用[J].高压电器.2007,43(5):333-339
    [33]Alexander R W. Synchronous closing control for shunt capacitors[J]. Power Apparatus and Systems, IEEE Transactions on,1985 (9):2619-2626.
    [34]Dick E P, Fischer D, Marttila R, et al. Point-on-wave capacitor switching and adjustable speed drives[J]. Power Delivery, IEEE Transactions on,1996,11(3):1367-1372.
    [35]杜金婷.永磁真空断路器同步控制技术的研究与实现[D].北京交通大学,2012.
    [36]丁富华.真空开关的选相控制及其应用研究[D].大连理工大学,2006.
    [37]段雄英,廖敏夫,丁富华,等.基于真空断路器的并联电容器组相控投切装置[J].电工技术学报,2007,22(10):78-84.
    [38]舒胜文,阮江军,黄道春,等.相控真空断路器的最佳燃弧区间研究[J].高压电器,2012,48(008):1-6.
    [39]丁富华,邹积岩,方春恩,等.相控真空断路器投切空载变压器的应用研究[J].中国电机工程学报,2005,25(3):89-93.
    [40]杨树英.电力系统概论[M].北京:中国电力出版社,2007.
    [41]黄智慧.短路故障的相控开断及在光控真空模块中的应用研究[D].大连理工大学,2012.
    [42]Ekkehard Schade. Physics of High-Current Interruption of Vacuum Circuit Breakers[J]. IEEE Transactions on Plasma science,2005,33(5):1564-1575.
    [43]郑祥,邹积岩,程卓.并联型真空发电机断路器的电流转移过程[J].高电压技术,2009(11):2709-2715.
    [44]段雄英,廖敏夫,丁富华,等.相控开关在电网中的应用及关键技术分析[J].高压电器,2007,43(2):113-117.
    [45]方春恩,段雄英,邹积岩.基于自适应神经元的短路电流参数提取[J].中国电机工程学报,2003,23(8):115-118.
    [46]Poltl A, Frohlich K. A new algorithm enabling controlled short circuit interruption[J]. Power Delivery, IEEE Transactions on,2003,18(3):802-808.
    [47]袁召,罗楚军,方春恩,等.基于半波Fourier算法的故障选相控制系统的设计[J].高电压技术,2013,39(004):869-875.
    [48]Das J C. Analysis and control of large-shunt-capacitor-bank switching transients[J]. Industry Applications, IEEE Transactions on,2005,41(6):1444-1451.
    [49]Horinouchi K, Tsukima M, Tohya N, et al. Synchronous controlled switching by vacuum circuit breaker (VCB) with electromagnetic operation mechanism[C]//Electric Utility Deregulation, Restructuring and Power Technologies,2004.(DRPT 2004). Proceedings of the 2004 IEEE International Conference on. IEEE,2004,2:529-534.
    [50]Tsutada H, Hirai T, Kohyarna H, et al. Development of synchronous switching controller for gas circuit breakers[C]//Transmission and Distribution Conference and Exhibition 2002:Asia Pacific. IEEE/PES. IEEE,2002,2:807-812.
    [51]Chang G W, Shih M H, Chu S Y, et al. An efficient approach for tracking transients generated by utility shunt capacitor switching[J]. Power Delivery, IEEE Transactions on,2006,21(1): 510-512.
    [52]游一民,陈德桂,张银昌,等.真空断路器关合速度与预击穿对同步关合的影响研究[J].电工技术学报,2004,19(7):85-89.
    [53]罗礼全,谢将剑,王毅.永磁真空断路器预击穿特性实验研究[J].高电压技术,2012,38(4):899-904.
    [54]丁富华,邹积岩,段雄英.相控开关的最佳投切相位研究[J].高压电器.2005,41(6):408-411.
    [55]方春恩,邹积岩,丛吉远,等.并联电容器组同步投切策略的研究[J].电力设备,2004,5(9):18-20.
    [56]张庆杰,袁海文,刘颖异.计及温度的永磁操动机构动态特性仿真与分析[J].电机与控制学报,2011,15(5):57-62.
    [57]杨茜,张英,叶祖标.永磁机构真空断路器的机械特性受温度影响的研究[J].高压电器,2013,7:011.
    [58]张永斌,袁海文.基于DSP及永磁机构真空断路器的同步分合闸控制装置[J].高压电器,2009,45(1):116-119.
    [59]赵佳,吕家锋.基于分布式神经网络的同步合闸时间预测方法研究[J].上海电气技术,2012(1):36-39.
    [60]白申义,魏金成,孙树平.智能断路器的同步关合控制研究[J].西华大学学报(自然科学版),2009,28(1):17-20.
    [61]孙浩,徐建源,杨志勇,等.同步关合永磁机构真空断路器驱动控制器的研究[J].低压电器,2010(1):12-16.
    [62]谢将剑,李鹏,崔国荣.基于永磁操动机构的同步关合关键技术的研究[J].高压电器,2010,46(7):1-7
    [63]方春恩,周承鸣,邹积岩.同步断路器的统计特性分析及自适应控制[J].高压电器.2006,42(3):183-185
    [64]丁富华,邹积岩,段雄英,郑占锋.采用数字信号处理器的永磁机构同步控制系统[J].电网技术.2005,29(11):39-44
    [65]韩冬军,王军,李川等.一种新型低压永磁真空开关控制器的研制[J].电测与仪表,2011,48(544):81-85.
    [66]陈明帆,段雄英,黄智慧,等.真空开关动作时间的自适应控制[J].中国电机工程学报,2010,30(36):22-26.
    [67]方春恩,李伟,杨立锋,等.采用模糊控制和脉冲宽度调制技术的同步真空开关位置伺服控制器设计[J].高电压技术,2012,38(006):1327-1333.
    [68]李天辉,方春恩,王军,等.同步真空断路器高精度位置控制研究[J].高压电器,2010,46(3):37-40.
    [69]林莘.永磁机构与真空断路器[M].机械工业出版社.ISBN7-111-10258-4,2002.5
    [70]林莘,徐建源,高会军.永磁操动机构动态特性计算与分析[J].中国电机工程学报,2002,22[6]:85-88.
    [71]周丽丽,方春恩,李伟等.27.5kV永磁机构真空断路器动作特性仿真与试验研究[J].高压电器,2008,44(3):214-216.
    [72]Nitu S, Nitu C, Tuluca G, et al. Dynamic behavior of a vacuum circuit breaker mechanism[C]//Discharges and Electrical Insulation in Vacuum,2008. ISDEIV 2008.23rd International Symposium on Discharges and Electrical Insulation in Vacuum. Bucharest, Romania. IEEE,2008,1:181-184.
    [73]马少华,王季梅.72.5kV高压真空断路器永磁操动机构的研究与设计[J].中国电机工程学报,2001,21(12):109-114.
    [74]游一民,陈德桂,孙志强等.基于动态分析的永磁机构最佳设计参数的选择[J].电工电能新技术,2004,23(1):43-46.
    [75]Liu F, Guo H, Yang Q, et al. An improved approach to calculate the dynamic characteristics of permanent magnetic actuator of vacuum circuit breaker[J]. Applied Superconductivity, IEEE Transactions on,2004,14(2):1918-1921.
    [76]王海峰,徐建源.永磁操动机构磁场数值计算和结构分析[J].高压电,2002,38[1]:11-13.
    [77]曾闻,陈德桂,李兴文.一种分析永磁操动机构动态特性的方法[J].低压电器,2008(7):5-7.
    [78]娄建勇,荣命哲,邹洪超,等.单线圈单稳态永磁式接触器机构动力学特性仿真分析[J].中国电机工程学报,2004,24(4):120-124.
    [79]谭东现,牟坚,丁铁勇.永磁机构磁场计算与仿真分析[J].低压电器,2007(7):7-10.
    [80]朱思国,欧阳红林,刘鼎,等.基于电流滞环控制的H桥级联型逆变器新型调制方法[J].电工技术学报,2013(2):212-218.
    [81]张代润,刘红萍.单相有源电力滤波器的滞环控制策略分析[J].电机与控制学报,1998,2(3):153-157.
    [82]郑建勇,黄金军,尤鋆,等.基于电流滞环控制的z源光伏并网系统研究[J].电机与控制学报,2010,14(5):61-67.
    [83]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工程学报,2006,26(9):108-112.
    [84]马立华,陈伯时.电流滞环跟踪控制分析[J].电气自动化,1995,17(1):4-7.
    [85]韩晓新,宋克岭,李怡麒,等.基于改进滞环电流控制策略的有源电力滤波器[J].控制工程,2011,18(2):191-193.
    [86]王宗峰,郭玲,李跃峰,等.滞环比较跟踪控制技术[J].中国电源博览,2010,7.
    [87]吕锦柏,王毅,谢将剑,等.基于线圈电流的永磁真空断路器控制方法[J].高电压技术,2013,39(004):860-868.
    [88]陶永华,尹怡欣,葛卢生.新型PID控制及其应用[M].北京:机械工业出版社,1999.
    [89]Kiam Heong Ang, Gregory Chong, Yun Li. PID Control System Analysis, Design and Technology[J]. IEEE Transaction on Control System Technology,2005,13(4):559-576.
    [90]Neath M J, Swain A, Madawala U, et al. An Optimal PID Controller for a Bidirectional Inductive Power Transfer System Using Multi-objective Genetic Algorithm[J]. IEEE Transaction on Power Electronics,2013,29(3):1523-1531.
    [91]黄瑜珑,王静君,徐国政,等.配永磁机构真空断路器运动特性控制技术的研究[J].高压电器,2005,41(5):321-323.
    [92]Jinbo L, Yi W, Jiangjian X, et al. An efficient method for improving switching reliability of permanent magnetic vacuum circuit breaker[C]//Electric Power Equipment-Switching Technology (ICEPE-ST),2011 1st International Conference on. IEEE,2011:233-236.
    [93]吕锦柏,王毅,常广,等.优化的永磁真空断路器合闸控制方法[J].高电压技术,2013,39(11):2836-2844.
    [94]魏本纪.双稳态永磁操动机构与真空断路器的特性配合问题探讨[J].高压电器,2002,38(1):27-30
    [95]邬钢,李进.VD4型真空断路器合闸线圈烧毁的故障分析[J].高电压技术.2006,32(1):121-122.
    [96]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2000.
    [97]刘慧丛,邢阳,李卫平,等.铝电解电容在湿热环境下的贮存可靠性[J].宇航材料工艺,2011(3):87-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700