用户名: 密码: 验证码:
CO加氢合成低碳醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文使用固定床反应器进行了CO加氢催化合成低碳醇的研究。首先通过共沉淀法和浸渍法制备了Cu-Co基催化剂和Cu-Co/SiO2催化剂,研究了添加K、Ce和Zr助剂对催化剂性能的影响。通过分析H2和CO转化率、CH4和CO2及总醇的选择性、醇的时空产率和单醇的分布,得出优化反应温度、压力和助剂添加量等反应参数。进一步应用BET、XRD和TPR等分析手段进行了催化剂表征。催化剂表征结果表明:添加助剂对催化剂的物理结构、表面物相都产生了一定的影响,尤其是对催化剂的比表面积、分散度以及还原性能影响较为显著。实验结果表明:在催化剂中添加适量助剂后,醇的时空产率和选择性将得到提升,而CH4的选择性下降。通过实验确定了催化合成低碳醇的最佳反应温度为300℃,适宜的反应压力为5Mpa;对于浸渍法制备的Cu-Co/SiO2催化剂,助剂K2O、CeO2和zrO2的最佳添加量分别为0.2%、0.2%、4%。
This paper conducted a study on synthesis of higher alcohols by catalytic hydrogenation of CO in a fixed bed reactor. Two kinds of methods for preparation of Cu-Co-based catalyst has been dealt with in this paper, one was by co-precipitation way, the other was by impregnation way. The impact of different additive amounts of K, Ce and Zr on catalytic properties of Cu-Co/SiO2catalyst was discussed. The optimum reaction temperature, reaction pressure and amount of catalyst addition has been determined by conversion ratio of hydrogen and carbon monoxide, selectivity of methane, carbon dioxide and total alcohol, space-time yield of alcohol and distribution of alcohol. Deep research and analysis on catalytic properties has been carried out by the BET, XRD and TPR, in which the physical structure and surface phase has been affected by different catalyst additives, especially the specific surface area and the dispersion, and the reducibility of the catalyst have been significantly affected. The results showed that:the space time yield-and the selectivity of alcohol increased, and the selectivity of CH4was reduced The optimal reaction temperature of producing higher alcohols reaction was300℃; The suitable reaction pressure was5Mpa The optimal addition dosage of K2O, CeO2and ZrO2on catalytic properties of Cu-Co/SiO2catalyst was0.2%,0.2%and4%.
引文
1. 付全高.中国能源问题分析及政策建议.经济研究导刊,2010,(16):8-9
    2. 梁刚.2009年世界石油探明储量、产量及在产油井数.国际石油经济,2010,18(1):65-66
    3. 倪维斗.我国的能源现状与战略对策.山西能源与节能,2008,2:1-5
    4. BP2011年世界能源统计年鉴. 英国石油公司,2011
    5. BP2030世界能源展望. 英国石油公司,2011
    6. Fattore V Notari B, Paggini A etc. Mixed oxide catalyst contg. Zinc, chromium and copper-used rof prodn. Of alcohol mixt-from synthesis gas. BE895208-A,1983.06.01
    7. Paggini A, Lagana V, Manara G, etc. Mixt. Of methanol and higher alcohol(s) prodn. From synthesis gas-using chromium, zinc and alkali metal oxide(s) catalyst, for mixing with petrol. GB2083469-A, 1982.03.24
    8. 张建国,宋昭峥,史德文,等.合成气合成低碳混合醇技术的研究.现代化工,2007,27(2):494-496
    9. 李文怀,马玉刚,张侃,等. 煤基合成气合成低碳醇进展. 煤化工,2003,(5):12-15
    10. Stevens R. R. Process for producing alcohols from synthesis gas. EP 0172431-A2,1985.07.23
    11. Quarderer G. J, Cochran G. A, Stevens R. R, etc. Prepn. of ethanol and higher alcohol from hydrogen, carbon monoxide and lower alcohol, esp. methanol. EP180719-A,1986.05.14
    12. Xu X D, Doesburg E. B. M, Scholten J. J. F. Synthesis of higher alcohols from syngas-recently patented catalysts and tentative ideas on the mechanism. Catalysis Today,1987,2(1):125-170
    13.牛玉琴,胡学武,陈正华.合成气制低碳醇Cu-Co尖晶石催化剂的制备与催化活性. 燃料化学学报,1994,22(3):252-257
    14. 安炜,牛玉琴,陈正华.ZnCrDyK和ZnCrTbK合成低碳醇催化剂的XPS表征.燃料化学学报,1995,23(3):331-336
    15. 陈函华,牛再琴,李煜,等.合成气制低碳燃料醇工业侧线模试.燃料化学学报,1991,19(1):21-26
    16. 牛玉琴,胡学武,陈正华.合成气制低碳醇Cu-Co尖晶石催化剂的在位ESCA研究.燃料化学学报,1995,23(2):131-137
    17.姜涛,牛玉琴,钟炳.在Zn-Cr催化剂上超临界相合成低碳醇的链增长机理. 燃料化学学报,2000,28(2):101-104
    18.陈小平,吴贵升,孙予罕,等.Fe调变Cu/ZrO2基催化剂上CO加氢合成低碳醇. 燃料化学学报,1999,27(4):301-304
    19.林明桂,房克功,李德宝,等.Zn、Mn助剂对CuFe合成低碳醇催化剂的影响. 物理化学学报,2008,24(5):833-838
    20. 冉宏峰,房克功,林明桂,等.Cu/Fe组成对CuFe基低碳醇催化剂的反应性能的影响. 天然气化工,2010,35(4):1-5
    21. 罗洪原.Rh/V2O3催化剂上合成二碳含氧化合物的选择性的研究. 催化学报,1988,9(3):248-253
    22. 马洪涛,王毅,包信和. 合成气制备乙醇Rh-Mn/SiO2催化剂中活性金属表面结构的表征研究. 北京大学学报(自然科学版),2001,37(2):210-214
    23. 陈维苗,丁云杰,罗洪原,等.Ti助剂对Rh-Mn-Li/SiO2催化剂CO加氢制C2含氧化物性能的影响.石油化工,2004,33:311-313
    24.江大好,丁云杰,吕元,等.CO加氢Rh-Mn-Li/SiO2催化剂配比的优化及其CO脱附行为. 催化学 报,2009,30(7):697-703
    25. 梁雪莲,董鑫,李海燕,等. 碳纳米管作为合成气制低碳混合醇Co-Cu催化剂的高效促进剂.厦门大学学报(自然科学版),2005,44(4):445-449
    26. 高旭敏,董鑫,林国栋,等.碳纳米管促进的Co-Cu氧化物基低碳醇合成催化剂的制备研究. 厦门大学学报(自然科学版),2007,46(6):797-803
    27.李经伟,丁云杰,林荣和,等.锂助剂对Rh-Mn/SiO2催化CO加氢制碳二含氧化合物性能的影响,催化学报,2010,31(3):365-369
    28.Velu S, Santosh K, Gangwal. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy & Fuels,2008,22:814-839
    29. Xu X D, Doesburg E. B. M., Scholten J. J. F. Synthesis of higher alcohols froms syngas recently patented catalysts and tentative ideas on the mechanism. Catalysis Today,1987,2(1):125-170
    30.姜涛.CO+H2合成醇体系的化学平衡分析动力学.天然气化工,1999,24(2):25~30
    31. 罗洪原.在低铑催化剂上由合成气合成乙醇的研究.天然气化工,1992:18~22
    32. 陈维苗.改善Rh基催化剂上CO加氢生成C2含氧化物性能的本质及途径.催化学报,2006,27(11):999-1004
    33. Egbebi A, Spivey J J. Effect of H2/CO ratio and temperature on methane selectivity in the synthesis of ethanol on Rh-based catalysts, Catalysis Communications,2008,9(14):2308-2311
    34. M M Bhasin, W J Bartley, P C Ellgen. T P Wilson. Synthesis gas conversion over supported Rhodium and Rhodium-Iron catalysts. Catal.,1978(54):120-128
    35. Ichikawa M. Catalytic synthesis of ethanol from CO and H2 under atmospheric pressure over pyrolysed Rhodium carbonyl clusters on TiO2,ZrO2, and La2O3 J Chem Soc Chem Commun,1978,12:566-567
    36. Katzer R, Sleight A. W, Gajardo P, et al. The Role of the Supported in CO Hy drogenation Selectivity of Supported Rhodium. Faraday Disc Chem Soc,1981,72:121-133
    37. Underwood R. P, Bell A. T. CO Hy drogenation over Rhodium Supported on SiO2, La2O3,Nd2O3 and Sm2O3. Appl CatalA,1986,21:157-168
    38. Bemal S, Botana F. J, Garcia R., et al. Preparation of lathana supported Rhodium catalysts, occurrence of heavy carbonation phenomena on the support. Appl Catal A,1987,31:267-273
    39. Vander Lee G, Schuller B, Post H, et al. On the selectivity of Rh catalysts in the formation of oxygenates. J Catal,1986,98:522-529
    40. 尹红梅,丁云杰,罗洪原,等. 铁助剂对Rh-Mn-Li/SiO2催化剂催化CO加氢制二碳含氧化合物性能的影响. 催化学报,2002,23(4):352-356
    41. 江凌,王贵昌.CO在过渡金属表面上的吸附活化.化学通报,2003,(66):1-7
    42. Heman R. G. Advances in catalytic synthesis and utilization of higher alcohols. Catalysis Today,2000,55(3): 233-245
    43. Epling W. S, Hoflund G. B, Minahan D. M. Higher alcohol synthesis reaction study VI:effect of Cr replacement by Mn on the performance of Cs-and Cs, Pd-promoted Zn/Cr spinel catalysts. Applied Catalysis A:General,1999,183:335-343
    44. David M, Minahan, William S, et al. Reaction and Surface Characteriation Study of Higher Alcohol synthesis Catalysts IX.Pd-and Alkali-Promoted Zn/Cr-Based Spinels Containing Excess ZnO. Journal of catalysis, 1998,179:241-257
    45. 邹金鑫. 转化合成气制取低碳醇的研究.北京化工大学,2009
    46. Qi H J, Li D B, Yang C, et al. Nickel and manganese co-modified K/MoS2 catalyst:high performance for higher alcohols synthesis from CO hy drogenation. Cataly sis Communications,2003,4:339-342
    47. Li D B, Yang C, Qi H J, et al. Higher alcohols synthesis over a La promoted Ni/K2CO3/MoS2 catalyst. Catalysis Communications,2004,5:605-609
    48. Li D B, Yang C, Zhao N, et al. The performances of higher alcohols synthesis over nickel modified K2CO3/MOS2 catalyst. Fuel Processing Technology,2007,88:125-127
    49. B.Scheffer, P.Amoldy, J.a.Moulijn. Sulfidability and Hydrodesulfurization Activity of Mo Catalysts Supported on alumina, Silica, and Carbon. Journal of Catalysis,1988,112:516-527
    50. Smith K. J, Anderson R. B. A Chain Growth Scheme for the Higher Alcohols Synthesis. Journal of Catalysis, 1984,85(2):428-436
    51. Graves G D. Higher Alcohols Formed from Carbon Monoxide and Hydrogen. Ind Eng Chem,1931,23:138.
    52. Kevin J, Robert B. Anderson A chain growth scheme for the higher alcohols synthesis. Jounal of Catalysis, 1984,85(2):428-436
    53.Norman L. Holy, Thomas F.Carey Ethanol and n-propanot from syngas. Applied Catalysis,1985(2),19: 219-223
    54. Xu X D, Doesburg E. B. M., Scholten J. J. F. Synthesis of higher alcohols from syngas recently patented catalysts and tentative ideas on the mechanism. Catalysis Today,1987,2(1):125-170
    55. Burcham M M, Herman R G, Klier K. Higher alcohol synthesis over double bed Cs-Cu/ZnO/Cr2O3 catalysts: Optimizing the yields of 2-methyl-l-propanol (isobutanol). Industrial & Engineering Chemical Research, 1998,37(12):4657-4668
    56. Slaa J C, Vanomman J G, Ross J R H, The synthesis of higher alcohols using modified Cu/ZnO/Al2O3 catalysts. Catalysis Today,1992,15(1):129-148
    57. Baker J E, Burch R, Niu Y Q, Investigation of CoAl2O4,, Cu/CoAl2O4 and Co/CoAl2O4 catalysts for the formation of oxygenates from A carbon monoxide-carbon dioxide-hydrogen mixture. Applied Catalysis, 1991,73(1):135-152
    58.郭睿劫,黄伟,杨雁南.Cu-Co基催化剂中碱及氧化物助剂的作用.煤炭转化,1999,22(4):30-35
    59. Kiennemann A, Idriss H, Kieffer R, Chaumette P, Durand, D Study of the MECHANISM of higher alcohol synthesis on Cu-ZnO-Al2O3 catafysts by catalytic tests, probe molecules, and temperature programmed desorption studies. Industrial & Engineering Chemcial Research,1991,30(6):1130-1138
    60. F Fisher, H Tropsch. The preparation of synthetic oil mixtures from carbon monoxide and hydrogen. Brennstoff-Chem.1926(4):276-285
    61. A Streitwieser, C H. Health Cock. Introduction to Organic Chemistry.London:Collier-Macmillan,1976: 279-320
    62. J T Kummer, P H Emmett. The reaction of cobalt hydrotetracarbony carbonyl with olefin.J.Am.Chem.Soc., 1953(75):5177-5182
    63. H Orita, S Naito, K Taman. Mechanism of formation of C2-oxygenates compounds from CO+H2 reaction over SiO2-supported Rh catalystsJ.Catal,1984(90):183-193
    64. M Ichikawa, T Fukushima, Mechanism of syngas conversion into C2-oxygenates such as ethanol catalysed on a Si02-supported Rh-Ti catalysts,J.Chem.Soc.Chem.Commun,1985(6):321-323
    65. M Ichilawa Cluster-derived supported catalysts and their use.CHEMTECH,1982(12):674-680
    66. W M H Sachtler, M Ichilawa. Catalytic site requirements for elementary steps in syngas conversion to oxygenates over promoted rhodium.J.Phys Chem,1986(90):4752-4758
    67. J S Kristoff, D F Shriver. (a):Activation of carbon monoxide by carbon and oxygen coordination.Lewis acid and proton induced reduction of carbon monoxide.ACS Symp.Ser.,1981(152):1-18; (b):Adduct formation and carbonyl rearrangement of polynuclear carbonyls in the presence of group Ⅲ halides.Inorg.Chem., 1974(13):499-506
    68. C P Horwitz, D F Shriver. C and O-bonded metal carbonyls:formation, structures, and reactions. Adv. Organomet. Chem,1984(23):219-305
    69. 汪海有,刘金波,傅锦坤,等.合成气转化为乙醇的反应机理.物理化学学报,1991(7):681-687
    70. 汪海有,刘金波,傅锦坤,等.用同位素研究合成气制乙醇的反应机理.分子催化,1991,5(1):16-23
    71. 汪海有,刘金波,许金来,等.铑催化合成气制乙醇反应中CO断键途径的研究.分子催化,1994(8):1]1-116
    72. 蔡启瑞,彭少逸碳一化学中的催化作用.北京:化学工业出版社,1995:167-186
    7了.郭睿劫,黄伟,谢克昌.Cu-Co基催化剂的TPR研究. 煤炭转化,2003,26(2).91-94
    74.杨勇,陶智超,张成华,等. 焙烧温度对Fe-Mn催化剂结构和F-T合成性能影响. 燃料化学学报,2004,32(6):717-722
    75. 韩利华,芮玉兰,郭绍义,等.共沉淀法制备铜系催化剂及其稳定性的研究.环境科学与技术,2006,29(8):10-11
    76. 成艳,李钢,马书启,等.负载型金催化剂催化乙醇选择氧化反应.催化学报,2008,29(10):1009-1014
    77.黄利宏,储伟,洪景萍,等.碳纳米管对Rh-Ce-Mn/SiO2催化剂催化CO加氢合成含氧化合物性能的影响.2006,27(7):596-600
    78. 罗洪原,尹红梅,丁云杰,等. 合成气制C2含氧化物的Rh-Mn-Li-Fe/SiO2催化剂的优化研究. 石油化工,2004,194-196
    79. 陈维苗,丁云杰,罗洪原,等. 制备方法和条件对Rh-Mn-Li-Ti/SiO2催化剂CO加氢制含氧化物性能的影响.应用化学,2005,22(5):470-474
    80. 张继光. 催化剂制备过程技术. 中国石化出版社,2006:47-50
    81.孙琪,杨佳,任亮.溶胶-凝胶法制备Cu/SiO2催化剂的表征与性能.辽宁师范大学学报(自然科学版),2008,31(2):189-191
    82.赫崇,衡汪仁. 溶胶-凝胶法制备钯催化剂的织构与性能. 物理化学学报,2003,]9(10):952--956
    83. 王亚权. 铑基催化剂催化CO加氢合成乙醇. 催化学报,1999,20(1):7-11
    84. 郭宪吉,李利民,刘淑敏,等.并流淤浆混合法制备铜基甲醇合成催化剂及助剂A1203的作用研究.燃料化学学报,2007,35(3):329-333
    85. 田艳明.熔融法制备Fe-Cu系合成醇燃料催化剂及其性能研究.郑州大学硕士论文,2006
    86. 田芳,毛旭辉,张学俊,等.离子交换水解法制备纳米TiO2光催化剂.武汉大学学报(理学版),2006,52(4):444-448
    87. 徐慧远,储伟,邹俊.CO加氢合成低碳醇用Cu-Co/SiO2催化剂的反应性能研究. 工业催化,2008,16(10):105-109
    88. Hanaoka T, Kim W. Y, Kishida M, et al. Enhancement of CO hydrogenation activity of Rh/SiO2 with low rhodium content. Chem Lett,1997,7:645-646
    89. 李德宝,马玉刚,齐会杰,等.CO加氢合成低碳混合醇催化体系研究新进展.化学进展,2004,16(4):584-592.
    90.刘金尧,陈晓,刘崇微,等.碱金属添加剂对Cu-Co催化剂催化CO+H2合成低碳混合醇的影响.天然气化工,1996,21(1):19-25
    91.张伟,罗洪原,周焕文,等. CO加氢合成C2含氧化合物Rh-Sm/SiO2催化剂的研究. 催化学报,,1999,20(3):259-262
    92. 张伟,罗洪原,周焕文,等. CO加氢合成C2含氧化合物Rh-Sm-V-Li/SiO2催化剂的研究. 催化学报,1999,20(3):285-289
    93.士丽敏,储伟,徐慧远,等.稀土Ce对Cu-Co氧化物催化剂结构与性能的影响. 稀有金属材料与工程,2009,38(8):1382-1385
    94.毛东森,郭强胜,俞俊,等.Ce添加对Cu-Fe/SiO2催化合成气制低碳醇性能的影响. 物理化学学报,2011,27(11):2639-2645
    95. Xu R, Yang C, Wei W, et al. Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas. Journal of Molecular Catalysis A:Chemical,2004,221(1-2):51-58
    96.刘源,胡泽善,钟炳,等.CUO/ZrO2合成甲醇催化剂的TPR研究.催化学报,1996,17(3): 256-259
    97.赫文秀,安胜利,张永强,等.铈-锆-镧的掺杂对基催化剂性能的影响.无机盐工业,2010,42(8):21-23
    98.杨鹏程,蔡小海,谢有畅.共沉淀CuO-ZrO2复合氧化物分散态结构研究. 物理化学学报,2003,19(8):714-717
    99.杨文书,银董红,常杰,等.助剂对Co/HMS催化剂结构和F-T合成性能的影响. 化学学报,2003,61(51:681-687

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700