用户名: 密码: 验证码:
H_2S/CO_2环境中L360钢点腐蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用静态挂片失重法研究了含H2S/CO2模拟油田水溶液中温度、Cl-浓度及Ca2+浓度对L360管线钢点腐蚀的影响,并利用XRD, SEM, EDS,附着力,电化学等测试方法研究了腐蚀产物膜的特征,另外本文还用概率统计法分析了蚀点分布特征。主要结论如下:
     1、通过XRD测试发现,L360管线钢在含H2S/CO2模拟油田产出水环境中,溶液的温度、Cl-浓度、Ca2+浓度的改变对腐蚀产物成分没有明显影响,均为FeS,没有发现Fe与CO2反应。说明L360管线钢的腐蚀表现为H2S腐蚀。
     2、Cl-浓度对点腐蚀发生有明显影响。当Cl-浓度为15 g/L时,腐蚀试样发生明显点蚀;当Cl-浓度大于20g/L时,试样主要发生均匀腐蚀,随着Cl-浓度的增大,腐蚀产物膜中对金属基体具有良好保护性能的四方晶系FeS含量不断减少,同时腐蚀产物膜变得更加疏松,导致腐蚀产物膜保护作用下降,均匀腐蚀速率增大。
     3、Cl-浓度为15g/L时,温度对点腐蚀发生有明显的影响。在40-70℃范围内,L360管线钢发生了不同程度的点腐蚀,并且蚀点密度和深度随温度的升高而不断增大,并且在70℃时出现了严重的坑蚀;L360管线钢的均匀腐蚀速率随着溶液温度升高先增大后减小,在60℃达到了极大值;对不同温度下腐蚀产物膜的观察发现,当温度升高至70℃时,腐蚀产物的粒度比其他温度明显变小,因此在70℃下腐蚀产物膜变得更加致密。
     4、在60℃下,腐蚀速率随Ca2+浓度的增加而增大,当Ca2+浓度为8.5g/L时,表面腐蚀产物极易脱落。在此浓度下,管线钢不仅发生点腐蚀,而且有片状的局部腐蚀发生。
     5、在40-70℃下,管线钢的最大蚀孔深度均服从Gumbel第一类近似分布。在70℃下,用泊松分布计算出了蚀孔密度为1237-1791个/m2,置信范围宽度值为553个/m2。同时蚀孔深度分布服从正态分布。
The effects of Cl-,Ca2+ concentration and temperature on pitting corrosion of L360 steel in H2S/CO2 environment were studied using methods of weight loss testing, electrochemical testing, XRD, SEM, EDS and adhesion testing. In addition, distribution characteristic of pits was analyzed. The main results are as follows:
     1. XRD tests showed that in H2S/CO2 environment, the temperature, Cl- consentraion and Ca2+ consentraion had no significant effect on corrosion scales. It illustrates that H2S corrosion is the main corrosion.
     2. Pitting corrosion occurred in 15g/L Cl- solution at constant temperature, and uniform corrosion happened when the Cl- concentration is higher than 20 g/L. As the temperature increases, corrosion products on the surface become looser and the protective property decreases.
     3. The results showed that pitting corrosion tends to be more serious with the increase of temperature (from 40℃to 70℃) in 15 g/L Cl-solution. Serious pitting corrosion occoured at 70℃. At first uniform corrosion rate increased, then decreased with the increaseing temperature. And corrosion rate reached the maximum at 60℃. SEM photos showed that particle size of the corrosion scale decreases and becomes more density when the temperature reached to 70℃.
     4. As the Ca2+ concentration increased, uniform corrosion becamed more serious. When the Ca2+ concentration reached to 8.5g/L, not only pitting corrosion occoured but also local corrosion appeared and the corrosion scale falls off easily.
     5. The measured maximum depth of pits follows the Gumbel first approximating function at 40-70℃. Pit density was calculated by poisson distribution and the density is 1237-1791a/m2 and the depth of pits obeys the normal distribution at 70℃.
引文
[1]崔之健,史秀敏,李又绿.油气储运设施腐蚀与防护[M].北京:石油工业出版社,2009.
    [2]黄新杰.带腐蚀缺陷管道剩余寿命预测方法研究[D].四川:西南石油学院,2002.
    [3]刘相臣,张秉淑.石油和化工装备事故分析与预防[M].北京:化学工业出版社,2011.
    [4]常大海,蒋连生,肖尉等.输油管道事故统计与分析[J].油气储运,1995,14(6):48-54.
    [5]王巍,薛富津,潘小洁.石油化工设备防腐蚀技术[M].北京:化学工业出版社,2011.
    [6]杨启明,李琴,李又绿.石油化工设备腐蚀与防护[M].北京:石油工业出版社,2011.
    [7]张清玉.油气田工程实用防腐蚀技术[M].北京:中国石化出版社,2009.
    [8]杜金阳.油气管线点蚀深度的时间序列预测方法与应用研究[D].四川:西南石油学院,2005.
    [9]Crolet J L. Predincting CO2 corosion in oil and gas industry, The Institute of Materials, London, UK,1994:1.
    [10]Ikeda A, Ueda M and Mukai S. Corrosion NACE,1983,(45).
    [11]Welch G A,et al. Corrosion. NACE,1986,(337).
    [12]De Waard C, Milliams D E. Corrosion.1975,31(5):177.
    [13]熊颖,陈大钧,王君.油气田开发中的CO2腐蚀与监测[J]石油化工腐蚀与防护,2007,24(5): 1-5.
    [14]Hausler R H. Sregmann D W. CO2 corrosion and its prevention by chemical inhibition in oil and gas production, Corrosion/88,NACE,1988:363.
    [15]张学元.二氧化碳腐蚀与控制[M].北京:化学工业出版社,2000.
    [16]Schmitt G, Corrosion/83,paper No.43, NACE, Houston, TX(1988).
    [17]Warrd C D, Milliams D E. Carbonic acid corrosion of steel[J]. Corrsion science,1975, 31(5):177-181.
    [18]Ikeda A, Ueda M, Mukai S. Advances in CO2 corrosion[R]. Houston, NACE International, 1984.
    [19]Xia Z, Chou K C, Szklarska-Smialowska Z. Pitting corrosion of carbon steel in CO2 containing NaCl brine[J]. Corrosion,1989,45 (8):636-642.
    [20]Rlesenfeld F C, Blohm C L. Corrosion problems in gas purification units employing MEA solutions[J]. Petroleum Refiner,1950,29 (4):141-150.
    [21]Schmitt G. CO2 corrosion of steels, an attempt to range parameter and their effects[A]. In: Hausler R H. Giddard H P(Eds), Advances in CO2 Corrosion[C].Houslon:NACE International,1984:10-13.
    [22]Nyborg R. Initiation and growth of mesa corrosion attack during CO2 corrosion of carbon steel[A]. Corrosion[C]. Houston:NACE International,1998,48-50.
    [23]李强,高碧桦,杨开雄等.钻井作业硫化氢防护[M].北京:石油工业出版社,2006.
    [24]褚武扬.氢损伤与滞后断裂.北京:冶金工业出版社,1988:146.
    [25]武明,褚武扬,李金许等.应力和夹杂对车轮钢中氢鼓泡的影响[J].金属学报,2006,42(8):815-819.
    [26]郦建立.炼油工业中H2S的腐蚀[J].腐蚀科学与防护技术,2000,12(6):346-349.
    [27]何建宏,唐祥云,陈南平.晶粒大小对双相不锈钢的强度和氢致开裂的影响[J].金属学报:1990,26(4):257-261.
    [28]Hsiao Chi-mai, Chu Wu-yang, Zhu Feng-wu. Some contribution to the understanding of the mechanisms of hydrogen induced cracking of intermetallic compounds[A], In: Anthony W T, Lawrence Berkeley Laboratory, Berkeley, et al. Hydrogen Effect in Materials[C]Arly:TMS,1994:555-568.
    [29]熊有全.川东地区普光气田深井钻井技术[J].当代石油石化,2006,14(8):11-15.
    [30]Brondel D,Edwards R,Hayman A.et al. Corrosion in the oil industry, Oilfield Review, 1994,4:4
    [31]李鹤林,白真权,刘道新,等.模拟油田H2S/CO2环境中N80钢的腐蚀及影响因素研究[J].材料保护,2003,36(4),32.
    [32]李国敏.碳钢在含硫化氢及高压二氧化碳饱和的NaCl溶液中的腐蚀行为[J].中国腐蚀与防护学报,2000,20(4):204-209.
    [33]Houyi M, Cheng Z L, Li G Q et al. The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corrosion Science,2000,42:1669-1683.
    [34]张学元,王凤平,陈卓元等.油气开发中二氧化碳腐蚀的研究现状和趋势[J].油田化学,1997,14(2),190-196.
    [35]Yin Z F, Zhao W Z, Bai Z Q, et al. Corrosion behavior of SM80SS tube steel in stimulant solution containin H2S and CO2[J]. Electrochimica Acta.2008(53),3690-3700.
    [36]李鹤林.石油管工程[M].北京:石油工业出版社,1999.
    [37]Kun-Lin John Lee. Modeling of CO2 corrosion of mild steel in the presence of H2S[D]. Columbus:College of Engineering and Technology of Ohio University,2004.
    [381 Mora-Mendoza J L, Chacon-Nava J G, Zavala Olivares,et al. Influence of turbulent flow
    on the lcalized corrosion processes of mild steel with inhibited aqueous CO2 systems[J].Corrosion,2002,58 (7):608-619.
    [39]Li A Q, Bai Z Q, Huang D Z et al. Predictive model for corrosion rate of oil tubes in CO2/H2S coexistent environment part Ⅰ:building of model[J]. Journal of southwest jiaotong university.2004,12(2):141-147.
    [40]Das C, Venkateswaran G. On the formation of protective sulphide coatings on cartoon steel surfaces[J]. Corrosion Science,1987(27):1287-1299.
    [41]张清,李安全,文九巴等.温度对油管钢CO2/H2S腐蚀速率的影响[J].材料保护.2004,37(4):38-39.
    [42]Hausler R H. Laboratory investigations of the CO2 corrosion mechanism as applied to hot deep gas wells[A]. Hausler R,Giddard H P. Corrosion[C]. Houston,Texas:NACE International,1984. No.84072.
    [43]Schmitt G. Fundamental Aspects of CO2 Corrosion[A]. Hausler R, Giddard H P. Corrosion[C]. Houston, Texas:NACE International,1984.No:84010.
    [44]Fierro G, Ingo G M, Mancia F. XPS investigation on the corrosion behavior of 13Cr martensitic stainless steel in CO2-H2S-Cl- environments[J]. Corrosion,1989,45 (10) 814-823.
    [45]Fierro G, Ingo G M, Mancia F. XPS investigation on AISI 420 stainless steel corrosion in oil and gas well environments [J].Materials Science,1990,25 (2B):1407.
    [46]Dugstad A, Lunde L. Parametric study of CO2 corrosion of carbon steel [A].Hausler R. Giddard H P. Corrosion [C]. Houston, Texas:NACE International,1994.NO.94014.
    [47]Masamura K, Hashizume S, Sakai J. Polarization behavior of high alloy OCTG in CO2 environment as affected by chlorides and sulfides [J]. Corrosion,1987,43(6):359.
    [48]Arne Dugstad, Liv Lunde, Ketil Videm, Parametric study of CO2 corrosion of carbon steel. [J] Corrosion/94, paper No.14, NACE, TX,1994.
    [49]徐东林.两种油套管抗硫钢的H2S/CO2腐蚀研究[D].武汉:华中科技大学,2007.
    [50]Schmitt G, Bosch C, Pankoke U, et al. Evaluation of critical flow intensities for FILC in sour gas production. Corrosion/98[C]. Houston, TX:NACE,1998:46.
    [51]Schmitt G, Mueller M. Critical wall shear stresses in CO2 corrosion of carbon steel[C]. Corrosion/99, Houston, TX:NACE,1999:44.
    [52]俞芳,高克玮,路民旭.流动状态下X65管线钢CO2腐蚀产物膜结构和力学性能的评价[J].中国腐蚀与防护学报.2009,29(6):401-405.
    [53]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2008.
    [54]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2008.
    [55]君安远,吴素君.钢中非金属夹杂物的鉴定[J].理化检验.2007,43(8):395-399.
    [56]乐可襄,许俊贻,程维玮.16Mn冷轧带钢表面缺陷分析[J].钢铁研究学报.2003,15(1):16-19.
    [57]冉启芳.无损检测方法的分类及其特征简介[J].无损检测.1999,21(2):75-80.
    [58]GB/T 18590-2001,[S]金属和合金的腐蚀—点蚀评定方法.
    [59]弗里德曼.金属机械性能[M].北京:机械工业出版社,1982.
    [60]李久青,杜翠薇.腐蚀试验方法及监测技术[M].北京:中国石化出版社,2007.
    [61]李劲风,张昭,程英亮等.NaCl溶液中A1-Li合金腐蚀过程的电化学特征[J].金属学报,2002,38(7):760-765.
    [62]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [63]Ren C Q, Liu D X, Bai Z Q, et al. Corrosion behavior of oil tube steel in stimulant solution with hydrogen sulfide and carbon dioxide[J]. Materials Chemistry and Physics, 2005,93:305.
    [64]Hamdy A S, Sa'eh A G, Shoeib M A, et al. Evaluation of corrosion and erosion-corrosion resistances of mild steel in sulfide-containing NaCl aerated solutions [J]. Electrochimica Acta,2007(52):7068.
    [65]张鉴清,电化学测试技术[M],北京:化学工业出版社,2010.
    [66]张鉴清.电化学噪声的分析与应用Ⅱ[J].中国腐蚀与防护学报,2002,22(4):241-249.
    [67]张昭,张鉴清,王建明,等.硫酸钠溶液中A12024-T3孔蚀过程的电化学噪声特征[J].中国有色金属学报,2001,11(2):1-4.
    [68]Hladky K, Dawson J L. The measurement of corrosion using electrochemical 1/f noise[J]. Corrosion Science.1982,22:231-237.
    [69]Gabrielli C, Huet F, Keddam M, Oltra R. A review of the probabilistic aspects of localized corrosion [J]. Corrosion,1990,46:266-278.
    [70]Flis J, Dawson J L, Gill J, Wood G C. Impedance and electrochemical noise measurements on iron and iron-carbon alloys in hot caustic soda[J]. Corrosion Science,1991,8:877-892.
    [71]董泽华,郭兴蓬,郑家燊等.16Mn钢局部腐蚀中的电化学噪声特征[J].中国腐蚀与防护学报,2002,22(5),290-294.
    [72]张绍,张鉴清,王建明等.硫酸钠溶液中2024-T3铝合金孔蚀过程的电化学噪声特征[J].中国有色金属学报.2002,12(S1),245-249.
    [73]曹发和,程英亮,张绍等.LC4铝合金在氯化钠溶液中的孔蚀特征[J].中国有色金属学报.2002,12(S1),245-249.
    [74]林海潮,曹楚南.孔蚀过程的电化学噪声研究[J].中国腐蚀与防护学报,1986,6:141-148.
    [75]周计明.油管钢在含CO2/H2S高温高压水介质中的腐蚀行为及防护技术的作用[D].西安:西北工业大学,2002.
    [76]Wikjord A G, Rummery T E, Doern F E.et al. Corrosion and deposition during the exposure of carbon steel to hydrogen sulphide-water solutions[J]. Corrosion Science, 1980,20:651-671.
    [77]曹楚南.腐蚀试验数据的统计分析[M].北京:化学工业出版社,1988.
    [78]王蕾,李帆.埋地钢质燃气管道点蚀数据的概率统计分析[J].煤气与热力.2004,24, (12):657-659.
    [79]肖珩,李久青.铝镁合金点蚀试验数据的统计分析[J].北京科技大学学报,1995,16:97-102.
    [80]王萍,马群.N80钢点蚀实验数据的统计分析[J].腐蚀科学与防护技术.2006,18(3):233-235.
    [81]王蕾,李帆.埋地钢质燃气管道点蚀数据的概率统计分析[J].煤气与热力.2004,24,(12):657-659.
    [82]王水勇,任爱.利用Gumbel极值分布预测管道最大腐蚀深度[J].腐蚀科学与防护技术,2008,20(5):358-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700