用户名: 密码: 验证码:
超声外场下铝合金铸锭中显微疏松的数值模拟和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
显微疏松是铝合金铸锭的主要缺陷之一,其不仅影响铸锭的机械性能,而且会增加铸锭的初始疲劳裂纹。铸锭中的显微疏松形成主要有两个原因:液体凝固收缩和氢扩散。本文主要以7050铝合金超声铸造为切入点,旨在通过外场来抑制铸锭中显微疏松的形成,主要研究内容有以下几方面:
     1、通过数值模拟,研究了氢浓度,枝晶臂间距以及超声场对7050铸锭中显微疏松的影响规律。当7050铝熔体中氢浓度小于0.12cm3/100g时,铸锭中显微疏松主要是由熔体凝固收缩后补缩不足引起的,此时,枝晶臂间距对铸锭中显微疏松影响将会成为主导因素。
     2、通过7050铝合金超声铸造试验,初步获得了超声振动对枝晶臂间距和显微疏松的影响规律。当超声功率为240W时作用效果最好,一次枝晶臂间距和二次枝晶臂间距分别减小了58.1%和73.2%,铸锭横向位置处显微疏松百分比减少了14.3%-47.9%,中心位置处显微疏松百分比降幅为29.3%-44.1%。超声振动减少显微疏松的形成是除气和晶粒细化共同作用的结果,其中超声除气对抑制显微疏松起主导作用,此外,工具杆下方的声流效应显著,对促进液体补缩抑制中心疏松的形成起了积极作用。
     3、通过对工具杆端面下的声压计算,低频高功率超声波极大了增加了超声在熔体中空化深度和广度,距离工具杆端面大概150mm处声压才会降低到1.6Mpa(空化阈值)。15kHz超声振动系统在液体中作用的效果比20kHz的振动系统强烈,高功率超声处理的铸锭的组织更加致密,声流效应更加显著。当超声功率为2600W,频率为15kHz时,一次平均枝晶臂间距减小到150μΡm,而二次枝晶臂间距也降低到了60μm,分别减小了66.7%和79.3%。铸锭横截面部分区域已难以观察到二次枝晶臂。铸锭中微疏松的形成得到了进一步抑制,铸锭中横截面处显微疏松百分比减少了30.4%-56.3%,中心显微疏松减少了31.1%-53.3%。
     4、通过对工具杆端面的优化,研究了三种不同端面的工具杆对7050铝合金铸锭中显微疏松形成的影响,实验结果表明,平端面工具杆的轴向声强最大,且有明显的声流现象,抑制中心显微疏松形成的效果最好,然而在横向位置处,采用球端面工具杆施振效果较好,整个横截面显微疏松分布较均匀。虽然圆锥端面工具杆的作用范围最大,但其声强效果最弱,衰减最快,抑制显微疏松形成的效果最差。
Micro-porosity in castings is a major defect since it affects the mechanical properties, in particular the initiation of fatigue cracks. It is induced by two mechanisms, solidification shrinkage and gas segregation. This paper is aim to restrain the micro-porosity formation by introducing ultrasonic field into direct-chill casting. The main study is shown as follows:
     1. The effect of various casting process parameters on micro-porosity formation for aluminum 7050 alloy is studied. The process parameters include hydrogen content, dendrite arm spacing and ultrasonic vibration. When the hydrogen content is below 0.12cm3/100g in the 7050 aluminum melt, micro-porosity is mainly caused by the solidification shrinkage and dendrite arm spacing plays a leading role. Ultrasonic grain refinement and degassing effect can greatly inhibit the formation of micro-porosity.
     2. The functionary mechanism of ultrasonic vibration on the formation of micro-porosity in 7050 alloy is study. Experimental results showed the effect of restraining the micro-porosity formation is best when applying vibrating power 240W. PDAS and SDAS are reduced 58.1% and 73.2% respectively. The cross-section micro-porosity percentage is reduced by 14.3%-47.9% and the central micro-porosity percentage reduced by 26.3%-45.0%. The ultrasonic grain refinement and degassing effect play a (?) (?) in restraining the formation of micro-porosity and the later plays a leading role. In addition, the large-scale acoustic streaming is formed under the radiator's face. It can also contribute to improve liquid feed and restrain the formation of the central micro-porosity.
     3. By calculating the sound pressure field distribution in the aluminum alloy melt induced by the radiator. High power low frequency ultrasound can increase significantly cavitation depth and scope. The pressure reduce to 1.6Mpa (cavitation threshold) until 150mm from tool rod end face. Ultrasonic vibration of 15kHz is better than that of 20kHz and high power ultrasound apparently increased the density of casting. In addition, the large-scale acoustic streaming is more significant. When applying vibrating power 2600W, PDAS reduced to 150μm and SDAS also drop to 60μm. They reduced 66.7% and 79.3% respectively. It is difficult to observe SDA in ingot casting cross section. The formation of micro-porosity has been further inhibited. The cross-section micro-porosity percentage is reduced by 30.4%-56.3%and the central micro-porosity percentage reduced by 31.1%~53.3%.
     4. Micro-porosity of 7050 aluminum melt is studied by three optimized tool rod end faces. Experimental results showed axial sound intensity of the flat tool rod end face is the largest and large-scale acoustic streaming is formed under the radiator's face. Its effect of reducing DAS and inhabiting the formation of micro-porosity is the best; However, the intensity of spherical tool rod end face is stronger in cross-section. The effect zone of the conical tool rod end face is the largest, but sound Wave radiates in a small intensity and its attenuation is the fastest. Its inhibited effect is the Worst.
引文
[1]日本铸造工学会.铸造缺陷及其对策[M].北京:机械工业出版社,2008
    [2]刘静安,谢水生.铝合金材料的应用与技术开发.北京:冶金工业出版社,2004
    [3]林松波.铸件的缺陷和防止方法[M].北京:机械工业出版社,1986
    [4]X. Jiang, H. Xu, Effect of Power Ultrasound on Solidification of Aluminum A356 Alloy[J]. Material Letters,2005,59(3):190-193
    [5]O. V. Abramov, Action of High Intensity Ultrasound on Solidifying Metal[J]. Ultrasonics,1987,25(2):73-82
    [6]Eskin Georgy I. Effect of Ultrasonic (Cavitation) Treatment of the Melt on the Microstructure Evolution during Solidification of Aluminum Alloy Ingots[M]. Zeitschrift Metallkunde,2002,93(6): 502-507
    [7]Abdel-Rehim M, Reif W. Practical Applications for Solidification of Metals and Alloys under Ultrasonic Vibrations [J]. Metal,1984,38(12): 1156-1160
    [8]Puskar A. The Use of High-intensity Ultrasonic[M]. Amsterdam: Elsevier,1982,56-68
    [9]Eskin G I. Ultrasonic Treatment of Molten Aluminum[M]. Mosco W: Metallurgiya,1985,1-10
    [10]G. I. Eskin, Ultrasonic Treatment of Light Alloy Melts[M]. Amsterdam:Gordon & Breach,1998,1-5
    [11]Sterrit A, Bacon M, Bell F, Mason. Ultrasonic World Congress[M], Part 2. Berlin,1995:725-732
    [12]Visit L K, Potapov S M, Abram O V. Ultrasonic Methods for Influencing Manufacturing Processes[M]. Mosco W:Metallurgiya, 1981:67
    [13]Abramov, B Straumal, W Gust. Hypereutectic Al-Si Based Alloys with a Thixotropic Microstructure Produced by Ultrasonic Treatment[J]. Materials and Design,1997,18:321-326
    [14]VAbramov, O Abramov, V Bulgakov. Solidification of Aluminum Alloys under Ultrasonic Irradiation Using Water-cooled Resonator[J]. Materials Letters,1998:27-34
    [15]Eskin G I. Ultrasonic Treatment of Melts in Shape Casting and Continuous Casting of Light Alloys[M]. Mosco W:Mashinostroenie, 1975
    [16]李英龙,李宝绵,刘永涛等.功率超声对A1-Si合金组织和性能的影响[J].中国有色金属学报,1999,9(4):719-722
    [17]蒋日鹏,李晓谦.超声施振方式对纯铝凝固组织细化规律的研究[J].材料工程,2009,2:6-10
    [18]谢恩华,李晓谦.超声波熔体处理过程中的声流现象[J].北京科技大学学报,2009,31(11):59-62
    [19]赵忠兴,穆光华,黄金日等.超声波对铸造合金组织和性能的影 响[J].铸造,1996(3):21-25
    [20]马立群,舒光冀,陈锋等.金属熔体在超声场中凝固的研究[J].材料科学与工程,1995,13(4):2-7
    [21]潘蕾,陈锋,吴申庆.高能超声作用下金属基复合材料的制备[J].机械工程材料,2003,27(7):1-2
    [22]王俊,周尧和,舒光冀.用高能超声制备金属基复合材料的形状与发展[J].铸造,1997(12):40-42
    [23]赵忠兴,毕鉴智,郑一等.铝合金超声铸造技术[J].特种铸造及有色合金,1999(1):13-15
    [24]胡化文,陈康华,黄兰萍等.超声熔体处理对Al-Zn-Mg-Cu合金显微组织和性能的影响[J].金属热处理,2005,30(5):43-46
    [25]李新涛,高学鹏,李廷举等.连铸造过程中超声细晶技术的研究[J].稀有金属材料与工程,2007,36(3):377-380
    [26]应崇福.超声学[M].北京:科学出版社,1990,524-526
    [27]Boyle R, Taylor G. Transaction Royal Society of Canada[M]. Canada,1926:125
    [28]Kruger F, Koosmann W. German, Patent No:6004486,1931
    [29]Jahn R, Reisinger C. British, Patent No:456657,1935
    [30]Esmarch W, Rummel T, Beuther K. The Degassing of Light Metal Alloy by Sonic Vibrations[J]. Aircraft Production,1945,78(7),184
    [31]G. I. Eskin. Principles of ultrasonic treatment application for light alloys Melts [J]. Advanced Performance Materials,1997,4(2): 223-232
    [32]李晓谦,陈铭.功率超声对7050铝合金除气净化作用的实验研究[J].机械工程学报,2010,46(18):41-45
    [33]何德坪,陈锋,舒光冀.振动凝固细化晶粒新进展[J].兵器材料科学与工程,1989,12(6):4-11
    [34]李新涛,赵建强.功率超声对水平连铸Al-1%Si合金凝固的影响[J].稀有金属材料与工程,2006,35(2):294-287
    [35]聂朝辉,毛大恒,张云芳.超声波处理对铸轧铝板带组织的影响[J].轻合金加工,2006,34(4):10-13
    [36]蒋日鹏,李晓谦.超声施振深度与冷却方式对纯铝凝固组织的影响[J].北京理工大学学报,2008,28(4):5-9
    [37]程存第.超声技术-功率超声及其应用[M].陕西:陕西师范大学出版社,1993,64-71
    [38]应崇福.超声学[M].北京:科学出版社,1990,524-526
    [39]LEE C D. Effects of Micro-porosity on tensile properties of A356 aluminum alloy[J]. Materials Science and Engineering A,2007,464: 249-254
    [40]Mayer M, Papakyriacou, Zettl B. Influence of porosity on the fatigue limit of die cast magnesium and aluminum alloys[J]. Fatigue,2003, 25:245-256
    [41]Linder J, Eaxelsson M, Nilsson H. The influence of porosity on the fatigue life for sand and permanent mould cast aluminum [J]. Fatigue, 2006,28:1752-1758
    [42]Ammar H R, Samuel A M., Samuel F H. Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum -silicon casting alloys[J]. Fatigue,2008,30:1024-1035.
    [43]李军文,桃野正,付莹.超声波功率对铸锭内的气孔及组织细化的影响[J].铸造,2007,56(2):152-155.
    [44]Samuel A M. Effect of melt treatment solidification conditions and porosity level on the tensile properties of A319 [J].Mater Sci,1997, 94:219-225
    [45]Roy N. porosity formation in Al-9Wt pct Si-Wt pct Cu alloy system[J]. Mater Sci,1997,31:1243-1254
    [46]La Orchan W.Grain refinement, modification and melt hydrogen-their effects on micro-porosity,shrinkage and impact properties in A356 alloy [J].AFS Trans,1992,100:415-424
    [47]Emadi D,Gruzleski J. Effect of casting and melt variables on porosity in directionally-solidfied Al-Si alloys [J]. AFS Trans,1994, 102:307-312
    [48]Mohanty P S.Mechanism of heterogeneous nucleation of pores in metals and alloys[J]. Metall Trans,1993,24A:1845-1856
    [49]Chen X.Influence of melt cleanliness on pore formation in aluminum-silicon alloys [J]. Int J Cast Metal Res,1996,9(1):17-26
    [50]Mohanty P S.Experimental study on pore nucleation by inclusions in aluminium casting [J]. AFS Trans,1995,103:555-564
    [51]Fang Q T, Granger D A. Porosity formation in modified and unmodified A356 alloy casting[J]. AFS Trans,1989,97:989-1000
    [52]Pan E N, Chiou H S. Effect of modification and solidifications on the feeding behavior of A356 Al alloy [J]. AFS Trans,1991,97: 605-621
    [53]Sigworth G K, Wang C. Porosity formation in modified and unmodified Al-Si alloy castings[J]. AFS Trans,1994,102:245-261
    [54]Denton J R, Spittle J. Solidification and susceptibility to hydrogen absorption of Al-Si alloy containing strontium [J]. Mater Sci Techno,1985,1:305-311
    [55]Argo D, Gruzleski J E. Porosity in modified aluminium alloy castings[J]. AFS Trans,1988,96:65-47
    [56]Iwahori H, Yonekura K.Occuring behavior of porosity and feeding capabilities of sodium and strontium-modified Al-Si alloys[J]. AFS Trans,1990,98:167-173
    [57]Fuoco R, Correa E R. Effect of modification treatment on micro-porosity formation in A356 Al alloy [J]. AFS Trans,1996,104: 1151-1157
    [58]Kim J M, Won H W. Feeding behavior of modified and unmodified Al-Si alloys[J]. AFS Trans,1996,104:743-749
    [59]Lee Y W, Chang E. The role of solidus velocity in the feeding behavior of Al-7Si-0.3Mg alloy plate casting[J]. Mater Sci Eng,1990, A124:233-240
    [60]Pan E N, Lin C S. Effect of solidification parameter on the feeding efficiency of A356 aluminum alloy[J]. AFS Trans,1990,98:735-745
    [61]Samuel A M. A metal graphic study of porosity and fracture behavior in relation to the tensile properties in A319[J]. metal Mater Trans, 1995,26A:2359-2372
    [62]Edwards G A, Sigworth G K. Microporosity formation in casting alloys[J]. AFS Trans,1997,105:809-817
    [63]Taylor J A, Schaffer G B. The role of iron in the formation of porosity in Al-Si-Cu-base casting alloys[J]. metal Mater Trans,1999, 30A:1643-1662
    [64]Lee P D, Chirazi A. Modeling microporosity in Aluminium-Silicon alloys [J]. Light Metals,2001,1:15-30
    [65]Niyama E, Uchida T. A method of shrinkage prediction and its application to steel casting practices[J]. AFS Int, Cast. Met,1982,9: 52-63
    [66]Kubo K, Pehlke R D. Mathematical modeling of porosity formation in solidification[J]. Metallic Trans,1985,16:359-366
    [67]Anson J P, Gruzleski J E. The Quantitative discrimination between shrinkage and gas microporosity in cast aluminum alloys uing spatial data analysis [J]. Materials Characterization,1999,43:319-335
    [68]田荣璋,王祝堂.铝合金及其加工手册[M].长沙:中南大学出版社,2000.1,第二版:425.
    [69]杜强,王利明.A356铝合金显微疏松与二次枝晶臂距的计算机模拟[J].中国有色金属学报,2001,11(2):226-229
    [70]Kelkinzoku. Effect of grain size and dendritic arm spacing on tensile properties of continuous-cast 6061 aluminium alloy billets [J]. Journal of Japan Institute of Light Metals,1997,47:98-103
    [71]胡汉起.金属凝固原理[M].北京:机械工业出版社,1991,83-89
    [72]Conley J G, Huang J. Modeling the effects of cooling rate, hydrogen content, grain refiner and modifier on micro-porosity formation in Al A356 alloys[J]. Materials Science and Engineering A, 2000,285:49-55
    [73]Chow r C Y, Blindt R.A, Kamp A, Grocutt P, R.C. Stimulation of ice crystallization with ultrasonic cavitation microscopic studies[J].Phys,2003,77:315-318.
    [74]M'Hamdi M. On modeling the interplay between micro-porosity formation and hot tearing in aluminum direct-chill casting[J]. Materials Science and Engineering A,2005,413:105-108.
    [75]谢恩华,李晓谦.超声波对铝合金熔体的有效细化区域[J].材料科学与工艺,2010,2:55-59
    [76]孙渝生.激光多普勒测量技术及其应用[M].上海:上海科学技术文献出版社,1995
    [77]杨岳峰.引线键合超声换能系统的设计与动力学研究[D].长沙:中南大学,2007
    [78]刘荣光.超声波在铝熔体中的声场分布和空化效应及其对凝固过程影响[硕士学位论文].长沙:中南大学,2007,12:43-44
    [79]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001:351-355,452-464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700