用户名: 密码: 验证码:
强动载荷作用下多孔金属夹芯方板的动态力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔金属以其优异的力学性能和物理特性被广泛的应用于航空航天、交通物流、军事工业以及建筑等领域,是一种集多功能与一体、能良好适应各类服役环境的先进材料。以多孔金属为芯层的夹芯结构既弥补了多孔金属本身的强度不足,又充分发挥了面板与芯层的各自优势,极大的拓宽了多孔金属材料的应用范围。关于多孔金属夹芯结构在准静态载荷和动载荷下的力学行为研究已成为国内外学者研究的热点问题。目前这一课题尚未形成系统的研究体系,仍然具有大量的问题亟待解决。相信随着研究的不断深入,多孔金属夹芯结构将在工程应用和高科技领域发挥越来越重要的作用。
     本文针对典型的铝蜂窝夹芯板和铝波纹夹芯板进行了爆炸加载实验和泡沫子弹撞击加载实验,通过改变炸药当量、距离、子弹撞击速度等载荷参数,研究了不同冲量下固支夹芯方板的变形失效模式和塑性动力响应过程。实验结果表明,芯层厚度和芯层平均密度的增大均能有效的减小后面板的最终挠度,而厚度和平均密度的增大将会增加结构的体积与质量,如何平衡抗爆性能与夹芯结构体积与质量之间的关系是夹芯结构设计的重要考虑因素。爆炸载荷作用下夹芯板的面板主要有塑性大变形、撕裂、侵入失效三种失效模式,芯层变形区域可分为压实、部分压实以及边界三个区域,在边界处将有明显的剪切失效发生。子弹撞击作用下前面板主要有压入、撕裂和“嵌入”失效,后面板为“穹”形整体变形以及局部的撕裂直至穿透。芯层的主要变形区域位于子弹撞击区域,与爆炸载荷相比,边界处不出现明显的剪切失效。夹芯板的失效模式与泡沫子弹的密度相关,在一定的冲量下,当泡沫铝相对密度较低或者较高时,子弹撞击过程中自身所耗散的内能将更少,从而子弹的动能将更多的传递给结构从而导致夹芯结构的“嵌入”失效。在强动载作用下结构的瞬时挠度将超过其最终挠度10%-40%,可能产生对被保护结构与人员的更大伤害。应变结果表明泡沫铝子弹撞击加载下结构的运动过程可以分为子弹压缩、子弹和弹托共同作用两个阶段。
     基于实验结果,采用非线性有限元软件AUTODYN对爆炸载荷和子弹冲击作用下结构的动力响应进行了数值模拟。分析了载荷与结构的作用过程、芯层的变形过程、结构各部分的能量吸收以及结构的变形机理。结果表明:相对于球面波,柱形炸药所产生的冲击波作用下,夹芯板中心所承受的载荷强度明显增大,夹芯板的塑性区域将首先在中心承载区形成并逐渐向边界处移动,夹芯板承载区域将更容易出现侵入失效。对于蜂窝夹芯板,爆炸载荷作用的初始阶段芯层就已经出现屈曲并开始压缩,当芯层达到最大压缩量之后蜂窝板的整体运动开始;而对于波纹夹芯板,由于其芯层壁厚较大,在载荷作用的初始阶段几乎和前面板同时加速,在前面板加速到最大速度的过程中才发生屈曲,并且在整体运动阶段抗弯刚度较弱的方向上将出现褶皱。在泡沫铝子弹撞击下,夹芯板将经历子弹和弹托达到共同速度时的加速撞击过程,当撞击速度较小时这一加速撞击的影响较小,随着撞击速度的增大,其影响将明显的提高,有可能对结构产生进一步的损伤。随着面板厚度的增大,芯层在子弹压缩阶段不能完全压实,在加速撞击过程中芯层将进一步的压缩。随着面板厚度、芯层厚度、芯层壁厚的增大,后面板挠度不断减小。夹芯板的能量吸收与载荷强度密切相关,较小的载荷下结构不能充分发挥能量吸收能力,而较强的载荷下结构则不能充分吸收载荷的能量而失去应有的保护作用,因此在设计中需要充分考虑夹芯结构服役环境的载荷条件。
     利用AUTODYN对强动载作用下典型的泡沫铝夹芯板的运动模式进行了分析,对Fleck模型中的耦合问题进行了研究,考察了泡沫子弹撞击载荷作用下结构的运动过程。结果表明:Fleck模型对于近场的柱状炸药起爆,有可能较低(弱冲击波或者强度较高的芯层)或者较高(强冲击波或者强度较弱的芯层)的估计芯层和面板的能量吸收从而导致计算结果的失真。对于应变强化较为明显的芯层材料,当载荷强度不足以使芯层完全密实化的情况下,如果采用均匀压缩模型将明显低估芯层在变形压缩过程中所吸收的能量。泡沫子弹撞击载荷作用下结构的响应可以分为子弹压缩、芯层压缩、子弹与夹芯板共同运动以及子弹与面板分离四个阶段。
With excellent mechanical and physical properties, porous metals are widely used in aerospace, transportation, military industry and construction field. They are multifunction materials which can adapt to different kinds of service environment. The sandwich structure with porous metal as core layer utilized the properties of each component which greatly widen the application range of porous metal materialsis. The mechanical behavior research of porous metal sandwich structure under quasi-static load and dynamic load has become a hot topic research both at domestic and overseas. Currently, the subject has not been formed into systematic study and there are plenty problems urgent to be solved. With the deepening of the study, the porous metal sandwich structure will play an increasingly important role in engineering application and high-tech areas.
     In this study, we conducted the explosive loading experiment and foam bullet impact test on typical aluminium honeycomb sandwich panels and aluminum corrugated sandwich panels. By changing the parameters such as the equivalent of explosive, distance, and the speed of the foam bullets, failure mode and the plastic dynamic response process of clamped sandwich panels under different impulse were studied. The experimental results show that the ultimate deflection of the rear panel reduced effectively by increasing height and relative density of core layer, however, this will magnify the volume and quality of the structure. Therefore, in sandwich structure design, how to balance the relationship between blast-resistance and the size and quality of sandwich structure is an important consideration. The facesheet of sandwich panels under explosion loading mainly have three failure modes, they are large plastic deformation, tear, and intrusion failure, the deformation region of core layer can be divided into three areas, which are full folded, partial folded and clamped region, obvious shear failure will occur at the boundary. In the projectile impact test, the front sheet fails by mainly local indentation and insertion, and the rear sheet shows the global deformation of "dome" form, local partial tear and even penetration. The mainly deformation area of the core laye is located in the loading area, compared with that under the explosive load, there is no obvious shear failure near the boundary. When the foam projectile has lower or higher relative density, during the impact process the more kinetic energy of projectile will transmit to the the structure which can lead to "embed" failure of sandwich panel. The instantaneous deflection of back face sheet will exceed the ultimate deflection from10%to40%under intensive dynamic load, which will produce severe harm to the protected structures and persons. Strain results indicated that under projectile impact loading the response of sandwich panels can be divided into two stages, one is foam projectile compression stage, the other is foam projectile and sabots combinded action stage.
     Based on the experiment, numerical simulatons were conducted to investigate the dynamic response of the sandwich panels under explosion and impact loading by using the finite element software AUTODYN. Interaction between load and structure, deformation of the core layer, energy absorption of each part and deformation mechanism of the sandwich panels were analyzed. The results show that compare with sperical shock wave, the center of sandwich panel got a more intensive load when the shock wave obtained from cylinder charge, and the plastic region first occurred in the center of panel and then move to the boundary. The honeycomb core layer buckling immediately when the blast load act on the panel, after it's full compacted, global response started. But for corrugated core, as the thickness of core is large, the core layer almost accelerates with the front plate in the initial loading stage; buckling of core occurred in the process of front sheet getting the maximum velocity. And in the global response stage, wrinkle appeared in the direction that has a weak bending stiffness. When the sabot-foam projectile impacted the panel, accelerated impact will occurred after the sabot and the densitified foam got the same velocity. When the impact velocity of projectile is low, the influence of accelerated impact to the response of panel is small, however,with high impact velocity, this influence can't be ignored which will do further harm to the structure. With the increase of the sheet thickness, the core height and cell thickness, the final deflection of back face sheet decreased. The energy absorption of sandwich structure depends on the loading strength, when the loading strength is small, the structure cant express its whole ability, but high loading strengh may exceed the ability of structure.
     Response models of sandwich panel under intensive loading are also analyzed by unsing AUTODYN. Results demonstrate that when cylinder explosive detonated in near-field, Fleck model may underestimate(core with high compression strength) or over estimate (core with low compression strength) the energy absorption by core layer and panel, thus lead to the distortion of the calculation results. The response of the sandwich panel can be distributed into four stages under foam projectile impact loading, they are foam projectile compression, core layer compression, the common motion of projectile with sandwich panel and projectile apart from panel.
引文
[1]Gibson L J, Ashby M F. Cellular Solids:Structure and Properties [M].2nd ed, Cambridge University Press, UK,1997.
    [2]Lu G, Yu TX. Energy absorption of structures and materials [M], Cambridge: Woodhead Publishing Ltd.2003.
    [3]王志华,朱峰,赵隆茂.多孔金属夹芯结构动力学行为及其应用[M].兵器工业出版社.北京.2010.
    [4]Ashby M A, Evans A G, Fleck N.A etc. Metal Foams:A Design Guide [M]. Oxford: Butterworth Heinemann,2000.
    [5]方代宁,张一慧,崔晓东.轻质点阵材料力学与多功能设计[M].北京:科学出版社,2009.
    [6]Sosnik B. US Patent.2434775[P],1948.
    [7]Elliot C. US Patent.2751289[P],1956.
    [8]Tetsuji Miyoshi, Masao Itoh, Shigeru Akiyama etc. ALPORAS aluminum foam: Production process, properties, and applications [J]. Advanced Engineering materials. 2005,4:179-183.
    [9]Haydn N.G Wadley. Multifunctional periodic cellular metals [J]. Philosophical Transactions A,2006,364:31-68.
    [10]Allen H.G. Analysis and Design of Structural Sandwich Panels. Oxford Pergamon Press,1969.
    [11]Brittain S T, Sugimura Y, Schuelle O.J.A etc. Fabrication and mechanical performance of a mesoscale space-filling truss system [J]. Journal of Microelectromechanical Systems,2001,40(2):157-169.
    [12]Elena Bozhevolnaya, Ole Thybo Thomsen. Structurally graded core junctions in sandwich beams:quasi-static loading conditions [J]. Composite Structures,2005,70: 1-11.
    [13]Rathbun H. J, Wei Z, He M. Y. Measurement and simulation of the performance of a lightweight metallic sandwich structure with a tetrahedral truss core [J]. Journal of Applied Mechanics,2004,71:368-374.
    [14]Ruan Dong, Lu Guoxing, Wong Yat Choy. Quasi-static indentation tests on aluminium foam sandwich panels [J]. Composite Structures,2010,92:2039-2046.
    [15]Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proc phs Soc,1949, B62:676-700.
    [16]林俊德,张向荣,朱玉荣等.超高速撞击实验的三级压缩气炮技术[J].爆炸与冲击.2012,32:483-489.
    [17]Tagarielli V. L, Fleck N. A. A comparison of the structural response of clamped and simply supported sandwich beams with aluminium faces and a metal foam core [J]. Journal of Applied Mechanics,2005,72:408-417.
    [18]Bart-Smith H, Hutchinson J.W, Fleck N.A, etc. Influence of imperfections on the performance of metal foam core sandwich panels [J]. International Journal of Solids and Structures,2002,39:4999-5012.
    [19]Yu Jilin, Wang Erheng, Li Jianrong, etc. Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending [J]. International Journal of Impact Engineering,2008,35:885-894.
    [20]Steeves Craig A, Fleck Norman A. Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part Ⅱ: experimental investigation and numerical modeling [J]. International Journal of Mechanical Sciences,2004,46:585-608.
    [21]Steeves Craig A, Fleck Norman A. Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part Ⅰ:analytical models and minimum weight design [J]. International Journal of Mechanical Sciences,2004,46:561-583.
    [22]Sadighi M, Pouriayevali H. Quasi-static and low-velocity impact response of fully backed or simply supported sandwich beams [J]. Journal of Sandwich Structures and Materials,2008,10:499-524.
    [23]Russell B. P, Liu T, Fleck N. A, etc. Quasi-static three-point bending of carbon fiber sandwich beams with square honeycomb cores [J]. Journal of Applied Mechanics, 2011,78:1-15.
    [24]Rubino V, Deshpande V.S, Fleck N.A. The collapse response of sandwich beams with a Y-frame core subjected to distributed and local loading [J]. International Journal of Mechanical Sciences,2007,1-14.
    [25]Rubino V, Deshpande V.S, Fleck N.A. The three-point bending of Y-frame and corrugated core sandwich beams [J]. International Journal of Mechanical Science, 2010,52:485-494.
    [26]敬霖,王志华,赵隆茂等.撞击载荷下泡沫铝夹芯梁的塑性动力响应[J].爆炸与冲击.2010,30:561-568.
    [27]Xue Zhenyu, John W. Hutchinson. Constitutive model for quasi-static deformation of metallic sandwich cores [J]. International Journal for Numerical Methods in Engineering,2004,61:2205-2238.
    [28]Zok F.W, Rathbun H.J, Wei Z, etc. Design of metallic textile core sandwich panels [J]. International Journal of Solids and Structures,2003,40:5707-5722.
    [29]Rizov V, Shipsha A, Zenkert D. Indentation study of foam core sandwich composite panels [J]. Composite Structures,2005,69:95-102.
    [30]Yan Li, An Xuefeng, Yi Xiaosu. Comparison with low-velocity impact and quasi-static indentation testing of foam core sandwich composites [J]. International Journal of Applied Physics and Mathematics,2012,2(1):58-62.
    [31]Santhanakrishnan R, Dash P. K, Joseph Stanley A, etc. Flexural property evaluation of gfrp-foam sandwich composite—an experimental approach [J]. ARPN Journal of Engineering and Applied Sciences,2012,7(10):1300-1306.
    [32]Nathan Wicks, Hutchinson John W. Performance of sandwich plates with truss cores [J]. Mechanics of Materials,2004,36:739-751.
    [33]Chen C, Fleck N.A. Size effects in the constrained deformation of metallic foams [J]. Journal of the Mechanics and Physics of Solids,2002,50:955-977.
    [34]Fleck N.A, Olurin O.B, Chen C, etc. The effect of hole size upon the strength of metallic and polymeric foams [J]. Journal of the Mechanics and Physics of Solids, 2001,49:2015-2030.
    [35]Deshpande V. S, Fleck N.A. Collapse of truss core sandwich beams in 3-points bending [J]. International Journal of Solids and Structures,2001,38:6275-6305.
    [36]Chen Antony, Kim Hyonny, Robert J. Asaro, etc. Non-explosive simulated blast loading of balsa core sandwich composite beams [J]. Composite Structures,2011,93: 2768-2784.
    [37]Radford D.D, Deshpande V.S, Fleck N.A. The use of metal foam projectiles to simulate shock loading on a structure [J]. International Journal of Impact Engineering,2005,31:1152-1171.
    [38]Radford D.D, Fleck N.A, Deshpande V.S. The response of clamped sandwich beams subjected to shock loading [J]. International Journal of Impact Engineering,2006,32: 968-987.
    [39]Rubino V, Deshpande V.S, Fleck N.A. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core [J]. International Journal of Impact Engineering,2008,35:829-844.
    [40]Jing Lin, Wang Zhihua, Ning Jianguo, etc. The dynamic response of sandwich beams with open-cell metal foam cores [J]. Composites:Part B,2011,42:1-10.
    [41]Rathbun H.J, Radford D.D, Xue Z, etc. Performance of metallic honeycomb-core sandwich beams under shock loading [J]. International Journal of Solids and Structures,2006,43:1746-1763.
    [42]Tagarielli V.L, Deshpande V.S, Fleck N.A. The dynamic response of composite sandwich beams to transverse impact [J]. International Journal of Solids and Structures,2007,44:2442-2457.
    [43]Russell B.P, Liu T, Fleck N.A, etc. The soft impact of composite sandwich beam s with a square-honeycomb core [J]. International Journal of Impact Engineering, 2011:1-17.
    [44]Radford D.D, McShane G.J, Deshpande V.S, etc. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures,2006,43:2243-2259.
    [45]McShane G.J, Radford D.D, Deshpande V.S, etc. The response of clamped sandwich plates with lattice cores subjected to shock loading [J]. European Journal of Mechanics A/Solids,2006,25:215-229.
    [46]Tilbrook M.T, Radford D.D, Deshpande V.S, etc. Dynamic crushing of sandwich panels with prismatic lattice cores [J]. International Journal of Solids and Structures, 2007,44:6101-6123.
    [47]Yehia A Bahei-El-Din, George J Dvorak. Enhancement of blast resistance of sandwich plates [J]. Composites:Part B,2008,39:120-127.
    [48]Christian J.Yungwirth, Haydn N.G. Wadley, John H. O'Connor,etc. Impact response of sandwich plates with a pyramidal lattice core [J]. International Journal of Impact Engineering,2008,35:920-936.
    [49]Rubino V, Deshpande V.S, Fleck N.A. The dynamic response of clamped rectangular Y-frame and corrugated core sandwich plates [J]. European Journal of Mechanics A/Solids,2009,28:14-24.
    [50]Hou Weihong, Zhu Feng, Lu Guoxing, etc. Ballistic impact experiments of metallic sandwich panels with aluminium foam core [J]. International Journal of Impact Engineering,2010,37:1045-1055.
    [51]Karagiozova D, Nurick G.N, Langdon G.S. Behaviour of sandwich panels subject to intense air blasts-Part 2:Numerical simulation [J]. Composite Structures,2009,91: 442-450.
    [52]Nurick G.N, Langdon G.S, Chi Y, etc. Behaviour of sandwich panels subjected to intense air blast-Part 1:Experiments [J]. Composite Structures,2009,91:433-441.
    [53]Chi Y, Langdon G.S, Nurick G.N. The influence of core height and face plate thickness on the response of honeycomb sandwich panels subjected to blast loading [J]. Materials and Design,2010,31:1887-1899.
    [54]Xue Zhenyu, John W Hutchinson. A comparative study of impulse-resistant metal sandwich plates [J]. International Journal of Impact Engineering,2004,30: 1283-1305.
    [55]Theobald M.D, Nurick G.N. Experimental and numerical analysis of tube-core claddings under blast loads [J]. International Journal of Impact Engineering,2010, 37:333-348.
    [56]Theobald M.D, Langdon G.S, Nurick G.N, etc. Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading [J]. Composite Structures,2010,92:2465-2475.
    [57]Langdon G.S, Karagiozova D, Theobald M.D, etc. Fracture of aluminium foam core sacrificial cladding subjected to air-blast loading [J]. International Journal of Impact Engineering,2009:1-14.
    [58]Kumar P. Dharmasena, Haydn N.G. Wadley, Xue Zhenyu, etc. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading [J]. International Journal of Impact Engineering,2008,35:1063-1074.
    [59]Zhu Feng, Zhao Longmao, Lu Guoxing, etc. A numerical simulation of the blast impact of square metallic sandwich panels [J]. International Journal of Impact Engineering,2009,36:687-699.
    [60]Zhu Feng, Zhao Longmao, Lu Guoxing, etc. Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations [J]. International Journal of Impact Engineering,2008,35:937-951.
    [61]Cui Xiaodong, Zhao Longmao, Wang Zhihua, etc. Dynamic response of metallic lattice sandwich structures to impulsive loading [J]. International Journal of Impact Engineering,2011:1-12.
    [62]Xie Qinghai, Jing Lin, Wang Zhihua, etc. Deformation and failure of clamped shallow sandwich arches with foam core subjected to projectile impact [J]. Composites Part B:Engineering,2011:1-47.
    [63]赵桂平,卢天健.多孔金属夹层板在冲击载荷作用下的动态响应[J].力学学报,2008,40(2):194-206.
    [64]Karagiozova D, Nurick G.N, Langdon G.S, etc. Response of flexible sandwich-type panels to blast loading [J]. Composites Science and Technology,2009,69:754-763.
    [65]Shen Jianhu, Lu Guoxing, Wang Zhihua, etc. Experiments on curved sandwich panels under blast loading [J]. International Journal of Impact Engineering,2010,37: 960-970.
    [66]Jing Lin, Yang Fei, Wang Zhihua, etc. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading [J]. Latin American Journal of Solids and Structures,2013,10:631-645.
    [67]Vitaly Koissin, Andrey Shipsha, Victor Rizov. The inelastic quasi-static response of sandwich structures to local loading [J]. Composite Structures,2004,64:129-138.
    [68]Dawson M.A. Composite plates with a layer of fluid-filled, reticulated foam for blast protection of infrastructure [J]. International Journal of Impact Engineering,2009, 36:1288-1295.
    [69]Schleyer G.K, Lowak M.J, Polcyn M.A. Experimental investigation of blast wall panels under shock pressure loading [J]. International Journal of Impact Engineering, 2007,34:1095-1118.
    [70]Latourte Felix, Gregoire David, Dan Zenkert etc. Failure mechanisms in composite panels subjected to underwater impulsive loads [J]. Journal of the Mechanics and Physics of Solids,2011,59:1623-1646.
    [71]Andrews E.W, Moussa N.A. Failure mode maps for composite sandwich panels subjected to air blast loading [J]. International Journal of Impact Engineering,2009, 36:418-425.
    [72]Michel Lambert, Frank K SchAkfer, Tobias Geyer. Impact damage on sandwich panels and multi-layer insulation [J]. International Journal of Impact Engineering, 2001,26:369-380.
    [73]Ahn D.G, Nam G.H, Seong D.Y, etc. Low-velocity impact response of a thin sandwich plate with a metallic sheared dimple core subjected to a free boundary condition [J]. Materials Science and Engineering,2012,534 (A):26-36.
    [74]Wang Tao, Ma Meng, Yu Wenli, etc. Mechanical response of square honeycomb sandwich plate with asymmetric face sheet subjected to blast loading [J]. Procedia Engineering,2011,23:457-463.
    [75]Srinivasan Arjun Tekalur, Alexander E Bogdanovich, Arun Shukla. Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core [J]. Composites Science and Technology,2009,69:736-753.
    [76]Zupan Marc, Chen C, Fleck N.A. The plastic collapse and energy absorption capacity of egg-box panels [J]. International Journal of Mechanical Sciences,2003, 45:851-871.
    [77]Babak Panahi, Esmaeal Ghavanloo, Farhang Daneshmand. Transient response of a submerged cylindrical foam core sandwich panel subjected to shock loading [J]. Materials and Design,2011,32:2611-2620.
    [78]Kumar P. Dharmasena, Haydn N.G. Wadley, Xue Zhenyu, etc.. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading [J]. International Journal of Impact Engineering 2008,35:1063-1074.
    [79]Li Renfu, George A Kardomateas, George J. Simitses. Nonlinear response of a shallow sandwich shell with compressible core to blast loading [J]. Journal of Applied Mechanics,2008,75:1-10.
    [80]Michelle S. HooFatt, Harika Surabhi, Gao Yifei. Blast response of sandwich shells with crushable foam cores [C]. Proceedings of the IMPLAST 2010 Conference.
    [81]Terry Hause, Liviu Librescu. Dynamic response of doubly-curved anisotropic sandwich panels impacted by blast loadings [J]. International Journal of Solids and Structures,2007,44:6678-6700.
    [82]Benjamin Schimizze, Steven F. Son, Rahul Goel, etc. An experimental and numerical study of blast induced shock wave mitigation in sandwich structures [J]. Applied Acoustics,2013,74:1-9.
    [83]Liang Cho-Chung, Yang Ming-Fang, Wu Pin-Wen. Optimum design of metallic corrugated core sandwich panels subjected to blast loads [J]. Ocean Eng.2001,28: 825-861.
    [84]Sohrab Kazemahvazi, Dan Zenkert. Corrugated all-composite sandwich structures. Part 1:Modeling [J]. Compos Sci Technol.2009,69:913-919
    [85]Sohrab Kazemahvazi, Daniel Tanner, Dan Zenker. Corrugated all-composite sandwich structures. Part 2:Failure mechanisms and experimental programme [J]. Compos Sci Technol.2009,69:920-925.
    [86]Fleck N.A, Deshpande V.S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics,2004,71:386-401.
    [87]Xue Zhenyu, John W. Hutchinson. A comparative study of impulse-resistant metal sandwich plates [J]. International Journal of Impact Engineering,2004,30: 1283-1305.
    [88]Xue Zhenyu, John W. Hutchinson. Preliminary assessment of sandwich plates subject to blast loads [J]. International Journal of Mechanical Sciences,2003,45: 687-705.
    [89]Liang Yueming, Alexander V. Spuskanyuk, Shane E. Flores, etc. The Response of metallic sandwich panels to water blast. Journal of Applied Mechanics.2007,72: 81-99.
    [90]McShane G.J, Deshpande V.S, Fleck N.A. Underwater blast response of free-standing sandwich plates with metallic lattice cores [J]. International Journal of Impact Engineering,2010,37:1138-1149.
    [91]Tilbrook M.T, Deshpande V.S, Fleck N.A. The impulsive response of sandwich beams:Analytical and numerical investigation of regimes of behavior [J]. Journal of the Mechanics and Physics of Solids,2006,54:2242-2280.
    [92]Qin Qing Hua, Wang T.J. A theoretical analysis of the dynamic response of metallic sandwich beam under impulsive loading [J]. European Journal of Mechanics A/Solids,2009,28:1014-1025.
    [93]Qin Qinghua, Wang, T.J. Plastic Analysis of Metal Foam Core Sandwich Beam Transversely Loaded by a Flat Punch:Combined Local Denting and Overall Deformation [J]. Journal of Applied Mechanics.2012 (79):041010-041012.
    [94]Qin, Q. H. and Wang, T. J. An analytical solution for the large deflections of a slender sandwich beam with a metallic foam core under transverse loading by a flat punch [J].Compos. Struct.2009 (88):509-518.
    [95]Zhu Feng, Wang Zhihua, Lu Guoxing, etc. Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading [J]. International Journal of Impact Engineering,2010,37:625-637.
    [96]Zafer Kazanct. Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses [J]. International Journal of Non-Linear Mechanics, 2011,46:807-817.
    [97]Deshpande V.S, Fleck N.A. One-dimensional response of sandwich plates to underwater shock loading [J]. Journal of the Mechanics and Physics of Solids,2005, 53:2347-2383.
    [98]Li Renfu, George A. Kardomateas, George J. Simitses. Point-wise impulse (blast) response of a composite sandwich plate including core compressibility effects [J]. International Journal of Solids and Structures,2009,46:2216-2223.
    [99]Joseph A. Main, George A. Gazonas. Uniaxial crushing of sandwich plates under air blast:Influence of mass distribution [J]. International Journal of Solids and Structures,2008,45:2297-2321.
    [100]Qiu X, Deshpande V.S, Fleck N.A. Dynamic response of a clamped circular sandwich plate subject to shock loading [J]. Journal of Applied Mechanics,2004, 71:637-645.
    [101]Qiu X, Deshpande V.S, Fleck N.A. Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading [J]. European Journal of Mechanics A/Solids,2003,22:801-814.
    [102]Qiu X, Deshpande V.S, Fleck N.A. Impulsive loading of clamped monolithic and sandwich beams over a central patch [J]. Journal of the Mechanics and Physics of solids,2005,53:1015-1046.
    [103]John W. Hutchinson, Xue Zhenyu. Metal sandwich plates optimized for pressure impulses [J]. International Journal of Mechanical Sciences,2005,47:545-569.
    [104]Tagarielli V.L, Deshpande V.S, Fleck N.A. Prediction of the dynamic response of composite sandwich beams under shock loading [J]. International Journal of Impact Engineering,2010,37:854-864.
    [105]McMeeking R.M, Spuskanyuk A.V, He M.Y, etc. An analytic model for the response to water blast of unsupported metallic sandwich panels [J]. International Journal of Solids and Structures,2008,45:478-496.
    [106]Ashkan Vaziri, John W. Hutchinson. Metal sandwich plates subject to intense air shocks [J]. International Journal of Solids and Structures,2007,44:2021-2035.
    [107]敬霖,王志华,赵隆茂.爆炸荷载作用下结构冲量的测量[J].实验力学.2009,24:151-156.
    [108]Menkes SB, Opat HJ. Tearing and shear failures in explosively loaded clamped beams [J]. Exp Mech 1973; 13:480-486.
    [109]敬霖.强动载作用下泡沫金属夹芯壳结构的动力学行为及失效机理研究[D].太原:太原理工大学,2012.
    [110]AUTODYN. Century dynamics. Theory manual [M].2005.
    [111]AUTODYN. Century dynamics. Remapping tutorial [M].2005.
    [112]胡时胜,王悟,潘艺等.泡沫材料的应变率效应[J].爆炸与冲击.2003,23:13-18.
    [113]Jones N. A theoretical study of the dynamic plastic behaviour of beams and plates with finite-deflections [J]. International Journal of Solids and Structures, 1971(7):1007-29.
    [114]Mahmadi K, Aquelet N, Souli M etc. ALE multi-material formulation of high explosive detonation using LS-DYNA3D [C]. Proceedings of 2002 ASME Pressure Vessels and Piping Division Conference, Vancouver:ASME,2002.
    [115]N. Kambouchev, L. Noels, R. Radovitzky. Nonlinear compressibility effects in fluid-structure interaction and their implications on the air-blast loading of structures [J]. Journal of Applied Physics.2006(100):063519.
    [116]Taylor, G. I. The Pressure and Impulse of Submarine Explosion Waves on Plates[C]. The Scientific Papers of G. I. Taylor, Vol Ⅲ, Cambridge Univ. Press, Cambridge, UK,1963:287-303.
    [117]Sergey L. Lopatnikov, Bazle A. Gama, John W. Gillespie Jr. Modeling the progressive collapse behavior of metal foams[J]. International Journal of Impact Engineering.2007 (34):587-595.
    [118]李翼祺,马素贞.爆炸力学[M].科学出版社.北京.1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700