用户名: 密码: 验证码:
重型模锻压机多学科集成建模与低速稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重型模锻装备是国家的战略基础制造装备,为国民经济各行业的高端装备提供大型主承载构件与锻件,在国家重大工程、国防建设中发挥着不可替代的作用。随着200~800MN重型模锻压机的先后建立,我国已经基本具备了生产大型整体锻件的条件,但由于系统集成层面上研究工作的薄弱或缺失,我国重型模锻装备的设计、制造和运行控制等方面缺乏系统科学的整体评判准则,无法进行整体功能与可靠度预测,致使我国重型模锻装备的性能提升与高效运行受到极大的局限与束缚,严重影响模锻件产品的品质;与此同时,锻件整体精密化的发展趋势要求采用新的成形工艺实现大型锻件的高性能制造。等温模锻由于可以显著降低材料的变形抗力、改善金属的流动状态和内部组织而成为锻件精密成形的关键技术。该工艺要求压力保持时间达500s以上,这意味着重型模锻压机需要在低速的情况下进行驱动和运行,而超大惯量系统在低速下运行时极易出现爬行或抖动,严重影响产品质量,迫切需要解决装备运行的确定性与高稳定性问题。
     基于此目的,本文以生产大型整体精密化锻件的等温模锻压机为研究对象,在建立重型模锻压机系统动力学、液压控制系统、材料成形过程模拟及解决模型间数据实时交互的基础上,形成重型模锻压机多学科集成仿真模型与装备整体性能的评估与预测方法,并从装备-工艺交互作用下的材料性能演变层面出发,实现对装备低速运行过程的主动优化控制,对提高重型模锻装备动态运行性能和锻件品质具有重要的理论意义和工程应用价值。
     论文的主要研究内容如下:
     1)重型模锻压机超静定冗余约束消减的系统动力学建模
     重型模锻压机超静定复合承载的结构形式给系统带来过多的冗余约束,针对不同超静定冗余结构特征,分别提出“以力代副、以简代副、以柔代刚”的建模方法,实现冗余约束的消减或消除;针对重型模锻压机组合预应力承载结构特点,提出一种简单的预载荷施加的方法,实现预应力构件的准确建模;在上述研究的基础上,形成重型模锻压机系统动力学建模的一般方法。基于系统动力学模型的动态性能仿真结果与实测结果对比验证了模型与方法的正确性。
     2)重型模锻压机低速液压控制系统的联合建模与参数优化
     针对等温模锻工艺所提出的装备低速稳定运行要求,提出以“电子泵驱动+伺服阀控+压力补偿+比例支撑平衡”为基本结构的伺服液压驱动方案,实现系统快速响应与低速小流量的补偿控制;PID或智能PID控制作为本方案的主要控制手段,其关键为控制器参数的优化,为此,本文提出采用遗传算法自动整定控制器参数的统一方法,仿真分析验证了其效果;在建立各子系统数学、物理模型的基础上,建立低速运行液压控制系统的联合仿真模型;最后通过实验验证模型的正确性和系统的可靠性。
     3)“装备运行-材料成形”过程交互及多学科集成建模与分析
     材料成形过程的复杂性及计算结果的离散性决定了成形载荷很难直接与成形装备联合仿真模型耦合。为实现装备运行与材料成形过程的实时交互,本文提出“主应力”法建立面向多学科集成的材料成形过程变形抗力模型并通过实验对模型进行优化;联合装备运行时的系统动力学和液压控制模型,建立基于锻造全过程的重型模锻压机多学科集成仿真模型;基于该模型,系统研究重型模锻压机低速运行时的动态特性,揭示各种参数对系统低速运行时的稳定性影响规律。研究表明:非线性摩擦是影响重型模锻压机低速稳定性的关键因素。
     4)基于摩擦反馈补偿的重型模锻压机低速运行稳定性控制
     为降低非线性摩擦对系统低速运行时的稳定性影响程度,论文首先建立重型模锻压机动态特性测试系统并进行摩擦力测试;基于摩擦力特征研究,提出一种修正的Lugre摩擦模型并采用最小二乘法、最小范数搜索法和遗传算法对摩擦力动、静态参数进行辨识;针对常规PID补偿控制无法同时满足扰动抑制和响应速度要求的问题,提出采用两自由度PID、模糊自适应PID及鲁棒自适应控制方法对系统摩擦力进行补偿控制。补偿控制效果的对比研究表明:模糊PID控制的补偿效果最优,压机最低稳定运行速度0.005mm/s,速度波动率<20%。
Heavy forging press is the strategically foundational manufacturing equipment of our country; it provides the majority of the large load-bearing components and forgings for advanced equipments in all fields of the national economy and thus plays an irreplaceable role in major national projects and national defense construction. With the establishment of a series of huge forging presses of the forging force from200MN to800MN, we have already had the ability to produce large overall forgings. However, because of the weakness or lack of the research work at the level of system integrated, a systematic and scientific performance evaluation criterion for the design, manufacturing and running control of the heavy forging equipments is still unavailable. Due to the impossibility of overall functionality and reliability prediction for heavy presses, the improvement of running performance and operation efficiency have been largely limited and restricted and the quality of forgings have been greatly decreased. On the other hand, with the development of precise forgings, new forming method and process are required to complete the high performance manufacturing of large forgings. Because of the significant effects of reducing deformation resistance, isothermal forging technology has been the key to accurate forming of large components to improve metal flow state and internal organization performance of the materials. It is clear that the forging force must be maintained up to500seconds during the whole isothermal process, which means the heavy press must be running under extreme low speed for a long time. High inertia of the press will lead to working under unstable status, such as oscillating, crawling and jittering, thus greatly degrade the quality of the products. Therefore, it is urgent to improve the certainty and stability of the heavy press under low speed.
     For the above-mentioned purposes, taking isothermal forging press of large precision forgings as the object, based on model constructions of system dynamics, hydraulic control system, metal forging process and real-time data interactions among such models, a multidisciplinary integrated simulation model of the heavy forging press is established and thus a evaluation and prediction method for the overall performance of the heavy press is built up. Due to the equipment-forming interaction driven evolution research of the material properties, the model can achieve the purpose of active control of the equipment and thus is theoretically significant and valuable in engineering application for improving not only the dynamic performance of the press but also the quality of the forgings.
     Here are the main contents of this paper.
     1) Elimination of statically indeterminate redundant constraints and system dynamics modeling of the Heavy forging press.
     Statically indeterminate structures introduce too many redundant constraints to the system and make it too difficult to build a systematic dynamic model of the heavy press. Faced with different structures, methods of "rigid body flexible, force-generation kinematic pairs and constraints simplistic" are proposed to eliminate redundant constraints; for the pre-stressed structures, pre-load files of the levels are written and a simple method is proposed for the exact modeling of the forces. Based on such works, a general system dynamics modeling process is formed and typical models are built up to analyze the dynamic performance of the presses. Comparing the simulation results with the test ones, correctness of the modeling method and simulation models are validated in the end.
     2) Co-simulation and parameters optimization of the hydraulic control system of the low speed running heavy forging press.
     To satisfy the need of stable running under low speed, a new design of the low-speed hydraulic system with electrical variable displacement pump driving, high response servo valve controlling, hydraulic pressure compensation and magnetic proporgation support balancing system is proposed to achieve the purposes of rapid response and extreme small flow compensation control of the system. PID or novel PID controlling is the main strategy of this design, and parameters tuning and optimization of the controllers and extreme importment for improving the system's response and control accuracy; to do so, a Genetic Algorithm is proposed and validated to automatically tuning the controllers in this paper; then, to complete the whole electro-hydraulic control system model, numeral and physical models of all the hydraulic components are built up and a full model is integrated; finally, the new design of the hydraulic system is applied to the heavy forging press and the accuracy and reliability of the system and numerical models are examined.
     3) Processes of equipment running and metal forging interaction based on multidisciplinary integrating modeling and stability study of the press.
     Complexity of mechanical characteristics and discrete of the simulation results during metal forging simulation made it too difficult to be coupled with multi-body dynamics model and hydraulic system directly. To overcome such a difficulty, a principal stress based and multidisciplinary integration oriented forging force analytically modeling method is proposed and optimized by the experiments results to establish the forging force in this paper. Joint the force with multi-body dynamic and hydraulic models, a full forging process base and equipment-forming interaction model of the low speed heavy forging press are established. Finally, dynamic properties of the press are studied systematically and nonlinear friction force is found to be the key factor that causes the system unstable.
     4) Stability control of the heavy forging press under extreme low speed based on the friction feedback and compensation.
     To reduce the influence of nonlinear friction to the stability of the press, a precision dynamic testing system is built up to obtain the friction force of the low speed running system; Based on the study of friction properties, a modified LuGre model is established, by using least squares method, minimum norm search method and genetic algorithm, parameters of the modified LuGre model are identified and validated through the experiments. In order to improve the stability of the system, normal PID, two-dof PID, fuzzy adaptive PID and robustic adaptive comprehensive control algorithm are used to establish different friction compensation methods. Comparing the control accuracy and velocity tracking errors with each other, a best compensation method is found and applied to the heavy press. Experiment results show that, the fuzzy adaptive PID control algorithm is the best one. By applying the fuzzy PID controller to the system, lowest speed of the press is about0.005mm/s and the speed fluctuation is less than20%.
引文
[1]王乐安.航空工业中的锻压技术及其发展[J].锻压技术,1994(1):57-61.
    [2]王淑云,李惠曲,东赞鹏,等.大型模锻件和模锻液压机与航空锻压技术[J].锻压装备与制造技术,2009,44(5):31-34.
    [3]庞克昌.热模/等温精密锻造技术的发展[J].上海钢研,2005,1:3-6.
    [4]陈晓慈.关于尽快启动大型压机项目,夯实国防工业基础的建议[EB/OL].(2004-03-05) [2012-08-03]. http://www.dymm.org/Html/newslist.asp?ID=164.
    [5]冯军.大型民机起落架的发展趋势与关键技术[J].航空制造技术,2009,(2):52-56.
    [6]聂宏,魏小辉.大型民用飞机起落架关键技术[J].南京航空航天大学学报,2008,40(4):427-432.
    [7]陈春,易幼平,李蓬川.超高强度钢起落架锻造成形仿真与工艺试验[J].航空精密制造技术,2012,48(3):52-54,58.
    [8]Chen Hua. Effect of forging process parameters on re-crystallization behavior of 7050 aluminum alloy [J]. Aluminum Fabrication,2007, (3):33-35.
    [9]Liang Xin, Chen Kang-hua, Chen Xue-ha. Effect of isothermal forging rate on microstructure and properties of 7085 aluminum alloy [J]. Materials Science and Engineering of Powder Metallurgy,2011,16(2):290-295.
    [10]郭鸿镇,姚泽坤,苏祖武.大型钛合金隔框锻件等温精密模锻试制研究[J].金属学报,2002,38(z1):366-369.
    [11]李蓬川.大型航空模锻件的生产现状及发展趋势[J].大型铸锻件,2011,(2):39-45.
    [12]李铭.大型飞机起落架制造技术[J].航空制造技术,2008,(21):68-71.
    [13]庞克昌.航空锻件精化的重要途径一等温锻造技术[J].金属学报,2002,(38):356-359.
    [14]S Z Hong, Z P Zeng. Technology of isothermal die forging for landing gear hub.Aviat [J]. Manufacturing Engineering,2002, (2):59-61.
    [15]Yanqiu Zhang, Debin Shan, Fuchang Xu. Flow lines control of disk structure with complex shape in isothermal precision forging [J]. Journal of Materials Processing Technology,2009,29(2):745-753.
    [16]Jackson M, Jones N G, Dye D, et al. Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti-10V-2Fe-3Al[J]. Materials Science and Engineering:A,2009,501(1):248-254.
    [17]Cavaliere P, Cerri E, Evangelista E. Isothermal forging of AA2618+20% Al2O3 by means of hot torsion and hot compression tests [J]. Materials Science and Engineering:A,2004,387:857-861.
    [18]张钰成,赖周艺,刘仲文,等.等温锻造技术的发展[C].第九届全国塑性工程学术年会,第二届全球华人先进塑性加工技术研讨会论文集(二).2005,204-207.
    [19]Erie Press Systems manufactures new press for Ladish. World's Largest Isothermal Forging Press Built for Production of Jet Engine Components [EB/OL]. (2007-07-23)[2012-08-05].http://www.eriepress.com/Forging-press-ne ws/Isothermal-Forging-Press.html.
    [20]张立斌.TC11压气机盘超塑等温锻造工艺[J].航天工艺,1996,(04):38-41.
    [21]王淑云,李惠曲,黄朝晖,等.等温锻造Ti47A12Cr1Nb合金显微组织细化机理[J].航空材料学报,2002,22(1):51-53.
    [22]李青,韩推芳,肖程波,等.等温锻造用模具材料的国内外研究发展状况[J].材料导报,2004,18(4):9-11.
    [23]陈贺.高速压力机动态优化设计[D].南京:东南大学,2010.
    [24]郭占正,苑士华,荆崇波,等.基于AMESim的液压机械无级传动换段过程建模与仿真[J].农业工程学报,2009,25(10):86-91.
    [25]李江波,黄明辉,赵兴.基于ADAMS与EASY5的大型模锻液压机联合仿真[J].机械设计与制造,2011,(6):235-237.
    [26]张俊.下一代虚拟样机技术的思考[J].CAD/CAM与制造业信息化,2009,(10):12-14.
    [27]周丹.飞机数字化制造技术的发展:中国航空学会先进制造技术与航空工业高层论坛,珠海,2004-10-30[C].北京:航空制造技术杂志社,2004
    [28]罗百辉.中国装备制造业发展现状与展望[EB/OL].(2010-01-21)[2012-08-08]:http://www.molds.cn/html/2010/01/211039167416.htm.
    [29]徐建平,夏国平.我国装备制造业的国际比较及对策研究[J].中国机械工程,2008,19(20):2510-2518.
    [30]俞滨,孔祥东,姚静,等.自由锻造油压机同步乎衡控制系统联合仿真研究[J].机床与液压,2010,38(13):130-133.
    [31]陈敬,李利清,王伟.超微速锻造液压机的控制方法[A].北京市锻压学会、天津市锻压学会、山西省锻压学会、河北省锻压学会、内蒙古自治区锻压学会、河南省锻压学会.第六届华北(扩大)塑性加工学术年会文集[C].北京市锻压学会、天津市锻压学会、山西省锻压学会、河北省锻压学会、内蒙古自治区锻压学会、河南省锻压学会,2009:8.
    [32]朱荣辉.低速液压机控制系统开发[D].天津:天津大学,2007.
    [33]湛利华,王芳芳,黄明辉.装配间隙对大型模锻压机结构刚度的影响[J].现代制造工程,2012,(5).5-7.
    [34]王芳芳,湛利华,黄明辉.大型锻压机典型组合结构接触问题的研究[J].锻压技术,2011,(1).69-72.
    [35]Yibo Li, Daohui Wu, Minghui Huang, et al. Design of Parallel Bearing Structure for 800MN Forging Press with Consideration of Manufacturing Errors [J]. Applied Mechanics and Materials.2011,52:2157-2163.
    [36]Wang Fangfang, Zhan Lihua, Huang Minghui, et al. Study the Effect of Synchronized Force on Combination Frame Structure of Large Forging Press [J]. Key Engineering Materials,2011,464:576-582.
    [37]Zhou Yucai, Huang Minghui, Liu Zhongwei, et al. On hydraulic position holding system of huge water press based on iterative learning control combined with proportional-differential (PD) control [J]. Journal of Information and Computational Science,2008,5(5):2309-2316.
    [38]Deng Yi, Liu Shao-Jun, Zhou Yu-Cai, et al. Modal analysis of connection structure for the giant forging hydraulic press synchronization balance test system [J], Applied Mechanics and Materials,2011, (48):684-688.
    [39]Jiangtao T, Minghui H. Simulation Research of a Synchronous Balancing System for Hydraulic Press Based on AME/Simulink[C]//Measuring Technology and Mechatronics Automation,2009. ICMTMA'09. International Conference on. IEEE,2009,2:359-362.
    [40]Min C, Minghui H, Yucai Z, et al. Synchronism Control System of Heavy Hydraulic Press[C]//Measuring Technology and Mechatronics Automation, 2009. ICMTMA'09. International Conference on. IEEE,2009,2:17-19.
    [41]ZhongWei L, ShaoJun L, Minghui H, et al. Optimization of the giant hydraulic press's synchronism-balancing control system[C]//Measuring Technology and Mechatronics Automation,2009. ICMTMA'09. International Conference on. IEEE,2009,1:828-831.
    [42]Dasgupta K, Mandal S K, Pan S. Dynamic analysis of a low speed high torque hydrostatic drive using steady-state characteristics [J]. Mechanism and Machine Theory,2012,52:1-17.
    [43]Yixiong Hu, Jing Su, Zicheng Yan. The Application of EASY5 Software to Simulate the Operating Characteristics of Parallel-Flow Condensing Unit [J]. Procedia Engineering,2011, (12):133-140.
    [44]R.Kandiban, R.Arulmozhiyal. Speed Control of BLDC Motor Using Adaptive Fuzzy PID Controller [J]. Procedia Engineering,2012,38:306-313.
    [45]Nihat Oztiirk, Emre Celik. Speed control of permanent magnet synchronous motors using fuzzy controller based on genetic algorithms [J]. International Journal of Electrical Power & Energy Systems,2012,43(1):889-898.
    [46]Zhen-hai Guo, Jie Wu, Hai-yan Lu, et al. A case study on a hybrid wind speed forecasting method using BP neural network.Knowledge-Based Systems [J], 2011,24(7):1048-1056.
    [47]贺仁良,李尧忠.磨床低速爬行现象的鱼刺图及其分析[J].液压与气动,1997,(3):27-28.
    [48]胡佑德,马东升,张莉松.伺服系统原理与设计[M].第二版.北京:北京理工大学出版社,1999.
    [49]张卯瑞,梅晓榕,庄显义.高精度液压伺服系统改善低速性能的几项措施[J].哈尔滨工业大学学报,1998,30(4):66-68.
    [50]Herbert E Merritt.Hydraulic control systems [M]. Cincinnati:John Wiley&Sons, Inc.1971.
    [51]C Canudas de Wit, K J Astrom, K Braun. Adaptive friction compensation in DC motor drives [J], IEEE Trans:Robot. Automatica,1987, RA-3, (6):681-685.
    [52]P Lischinsky, C Ccanudas-de-Wit, G Morel. Friction Compensation for an Industrial Hydraulic Robot [J]. IEEE Control Systems,1999,19(1):25-32.
    [53]Dowson D. History of Tribology [M]. London:Longman Ltd.1966.
    [54]张晓巧,王兴松.摩擦模型及其磁滞特性的研究[J].中国科技论文在线,2007,(3):192-197.
    [55]Stribeck R. Die wesentlichen eigenschaften der gleitund rollenlager [J]. Zeitschrift Des Vereines Deutcher Ingenieure.1902,46 (38):1342-1348, 1432-1437.
    [56]Bo L C, Pavelescu D. The friction-speed relation and its influence on the critical velocity of the stick-slip motion [J].Wear,1982,82(3):277-289.
    [57]D Karnopp. Computer simulation of slip-stick friction in mechanical dynamic systems [J]. Journal of Dynamic Systems, Measurement, and Control,1985, (107):100-103.
    [58]B Armstrong, P Dupont, C C de Wit. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction [J]. Automatica,1994,30(7):1994.
    [59]B Armstrong-Helouvry. Control of Machines with Friction [M]. Boston:Kluwer Academic Publishers,1991.
    [60]Dahl P R. A solid friction model[R].Aerosapce Corp. El Segundo CA,1968.
    [61]J W Macki, P Nistri, P Zecca.Mathematical Models for Hysteresis [J].SIAM Review,1993,35(1):94-123.
    [62]M A Krasnoselskij, A V Pokrovskij. Systems with hysteresis [M]. New York: Springer,1980.
    [63]Bliman P A, Sorine M. Friction modeling by hysteresis operators. Application to Dahl, sticktion and Stribeck effects [J]. Pitman Research Notes In Mathematics Series,1993:10-11.
    [64]C C de Wit, H Olsson, K J Astrom.A New Model for Control of System with Friction [J].IEEE Trans. On Automatic Control.1995,40(3):419-425.
    [65]Henrik Olsson. Control Systems with Friction [D]. Sweden:Lund Institute of Technology, University of Lund,1996.
    [66]T Wey. Modeling and Observer Design for Hydraulic Cylinders [J].Department of Measurement and Control,1995,40(3):66-71.
    [67]程俊兰.液压伺服系统的摩擦力分析及补偿研究[D].秦皇岛:燕山大学,2004.
    [68]D A Haessing, Jr B Friedland. On the Modeling and Simulation of Friction [J]. Journal of Dynamic Systems, Measurement, and Control.1991,113(9):354-361.
    [69]Menon K, Krishnamurthy K. Control of Low Velocity Friction and Gear Backlash in a Machine Tool Feed Drive System[J].Mechatronics,1999, 9:33-51.
    [70]Feemster M, Vedagarbha P, Dawson D M. Adaptive Control Techniques for Friction Compensation [J].Mechatronics,1999,9:125-145.
    [71]张国柱,陈杰,李志平.直线电机伺服系统的自适应模糊摩擦补偿[J].电机与控制学报,2009,13(1):154-160.
    [72]付永领,牛建军,王岩.Stribeck模型模糊整定及其在转台控制中的应用[J].北京航空航天大学学报,2009,35(6):701-704.
    [73]Misovec K M, Annaswamy A M. Friction Compensation Using Adaptive Non-linear Control with Persistent Excitation [J]. International Journal of Control,1999,72(5):457-479.
    [74]Lischinsky P, Canudas de Wit C, Morel G. Friction Compensation for an Industrial Hydraulic Robot [J].IEEE Control Systems,1999,2:25-32.
    [75]Han Me Kim, Soo Hong Park, Seong Ik Han.Precise friction control for the nonlinear friction system using the friction state observer and sliding mode control with recurrent fuzzy neural networks [J]. Mechatronics,2009,19 (6):805-815.
    [76]Wu Guoqiang, Lai Ru, Liu Xiangdong.Parameters Identification of Valve Dynamic Damping System Based on LuGre Model and Adaptive Chaotic Particle Swarm Algorithm [J]. Procedia Engineering,2012,29:3732-3736.
    [77]龚文,王庆丰.液压挖掘机上车结构参数与液压缸摩擦力参数辨识[J].中国机械工程,2010,21(9):1098-1101.
    [78]吴盛林,刘春芳.基于LuGre模型的电液伺服系统摩擦力矩动态补偿[J].机床与液压,2003,(2):67-69.
    [79]Tung E D, Anwar G, Tomizuka M. Low Velocity Friction Compensation and Feedforward Solution Based on Repetitive Control [J]. ASME Journal of DynamicSyst ems, Measurement, and Control,1993,115:279-284.
    [80]Tzes A, Peng P Y, Guthy J. Genetic-Based Fuzzy Clustering for DC-Motor Frict ion Identifi cation and Compensation[J]. IEEE Trans. on Control Systems Technology,1998,6(1):462-472.
    [81]黄进,叶尚辉,陈其昌.基于自调整量化因子模糊控制器的摩擦补偿研究[J].机械设计与研究,1999(1):27-29.
    [82]Larsen G A, Cetinkunt S, Donmez A. CMAC Neural Network Control for High PrecisionMotion Control in the Presence of Large Friction [J]. ASME Journal of Dynamic Systems, Measurement, and Control,1995,117:415-420.
    [83]Lee S W, Kim J H. CMAC network-based robust controller for systems with friction[C]//Decision and Control,1995., Proceedings of the 34th IEEE Conference on. IEEE,1995,3:2938-2939.
    [84]黄进,叶尚辉.基于CMAC网络的摩擦补偿研究[J].中国机械工程,1999,10(3):269-272.
    [85]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45-52.
    [86]O A Bauchau, C L Bottasso, Y G Nikishkov. Modeling rotorcraft dynamics with finite element multibody procedures.Mathematical and Computer Modelling [J],2001,33(10-11):1113-1137.
    [87]Paolo Santini, Paolo Gasbarri. General background and approach to multibody dynamics for space applications [J]. Acta Astronautica,2009,64(11):1224-1251.
    [88]ISO. Mechanical Vibration and Shock:Evaluation of Human Exposure to Whole-body Vibration. Part 1, General Requirements:International Standard ISO 2631-1:1997 (E) [M]. ISO,1997.
    [89]Prashant S.Rao, David Roccaforte, Ron Campbell. Developing an ADAMS Model of an Automobile Using Test Data [G]//Mechanical Dynamics, Inc. SAE, NO:2002-01-1567. Detroit:Hao ZhouVisteon, Inc.2002.
    [90]吴生富.150MN锻造液压机本体组合结构研究[D].燕山大学:燕山大学,2006.
    [91]湛利华,黄明辉,彭伟波.基于变形协调的叠层垫板组合结构有限元分析[J].中国机械工程,2010,(10):1227-1231
    [92]林峰,颜永年,吴任东.重型模锻液压机承载结构的发展[J].锻压装备与制造技术,2007,(5):27-31.
    [93]杨固川,于江,陈文,等.大型模锻液压机机架结构分析研究.锻压技术.2010,35(3):109-113.
    [94]Sandor George N; Erdman Arthur G. Advanced Mechanism Design:Analysis and Synthesis [M]. New Jersey:Prentice-Hall,1984.
    [95]俞新陆.液压机的设计与应用[M].北京:机械工业出版社.2007
    [96]彭伟波,黄明辉,段智勇.等高度垫板组板厚组合规律研究[J].锻压技术,2008,33(3):118-120.
    [97]彭伟波,黄明辉.大型模锻液压机组合垫板有限元分析[J].机械设计与制造,2008,(2):70-72.
    [98]吴道辉,黄明辉,湛利华.内外拉杆预紧组合结构预紧力配置规律的研究[J].现代制造工程,2011,(4):116-119.
    [99]天津市锻压机床厂.中小型液压机设计计算——主机的设计计算.天津:天津人民出版社.1977.
    [100]谭建平,周俊峰,黄长征.300MN模锻水压机操纵系统改造方案研究[J].机械科学与技术,2006,25(12):2-3.
    [101]Yu Qing, Hong Jiazhen. A new violation correction method for constrained multibody systems. Acta Mechanica Sinica,1998,30(3):300-306.
    [102]Zhao Weijia, Pan Zhenkuan. Least square algorithms and constraint stabilization for Euler-Lagrange equations of multibody system dynamics. Acta Mechanica Sinica.2002,34(4):594-603.
    [103]Arnold M, Fuchs A, Fiihrer C. Efficient corrector iteration for DAE time integration in multibody dynamics.Computer Methods in Applied Mechanics and Engineering.2006,195(50-51):6958-6973.
    [104]陈立平,张云清,任卫群,等.机械系统动力学分析及Adams应用教程[M].北京:清华大学出版社.2005.
    [105]齐朝晖,许永生,方慧青.多体系统中的冗余约束.力学学报.2011,43(2):390-8.
    [106]姜自伟.机械系统动力学仿真柔性体建模技术研究[D].武汉:华中科技大学,2007.
    [107]R R Craig, MCC, Bampton. Coupling of substructures for dynamics analyses [J].AIAA Journal,1968,6(7):1313-1319.
    [108]Wallrapp O. Standardization of Flexible Body Modeling in Multibody System Codes, Part I:Definition of Standard Input Data*[J]. Journal of Structural Mechanics,1994,22(3):283-304.
    [109]Kane T R, Levinson D A. The use of Kane's dynamical equations in robotics[J]. The International Journal of Robotics Research,1983,2(3):3-21.
    [110]陈萌.基于虚拟样机的接触碰撞动力学仿真研究[D].武汉:华中科技大学,2003.
    [111]刘明.800MN巨型模锻压机的多体系统动力学建模与仿真研究[D].长沙:中南大学,2012.
    [112]路甬祥.流体传动与控制技术的历史进展与展望[J].机械工程学报,2001,37(10):1-7.
    [113]叶小华,岑豫皖,颜志国,等.绿色液压技术的研究现状与展望[J].机床与液压,2011,39(18):106-111.
    [114]Ho T H, Ahn K K. Design and control of a closed-loop hydraulic energy-regenerative system [J]. Automation in Construction,2012,22:444-458.
    [115]Fleischfresser, Wolfgang. The energy saving potential of modern hydraulics: Part 1-Load sensing and proportional hydraulics. Diesel Progress International Edition,2005,24(5):30-33.
    [116]Sheng-wu Xu. Three phases for development of hydraulic transmission control [J]. Hydraulics Pneumatics & Seals,2005,5:24-31.
    [117]Pumps & Motors:Catalogue Y11-2500/UK [M/OL]. Karats:Parker Hannifin GmbH & Co.KG, Hydraulic Controls Division,2010[2012-09-03]. http://www. parker.com/portal/site/PARKER/menuitem.734d2913eb3c11da13576f849420d1 ca/?vgnextoid=d195f87357e28110VgnVCM10000048021dacRCRD&refineLan guage=EN&localeCode=EN&searchAttr=searchResult&parentCh=FindCatlogI d&vgnextcatid=1174763&literaturetype=Service+Manuals+%2F+User+Guides.
    [118]R Ewald, J Hutter, D Kretz. Proportional Valve and Servo Valve [M]. Hannover: Rexroth Bosch Group, Training Divisions.2003.
    [119]Installation and User's Manual for Electro-hydraulic Control Pump, PV Series: Catalogue HY11-PV1017-42/UK [M/OL]. Karats:Parker Hannifin GmbH & Co.KG, Hydraulic Controls Division,2008[2012-09-03]. http://www. parker.com/portal/site/PARKER/menuitem.734d2913eb3c11da13576f849420d1 ca/?vgnextoid=d195f87357e28110VgnVCM10000048021dacRCRD&refineLan guage=EN&localeCode=EN&searchAttr=searchResult&parentCh=FindCatlogI d&vgnextcatid=1174763&literaturetype=Service+Manuals+%2F+User+Guides.
    [120]Astrom K J. PID controllers:theory, design and tuning [J]. Instrument Society of America,1995.
    [121]Noah Manring. Hydraulic Control Systems [M]. Cincinnati:John Wiley&Sons, Inc.2005.
    [122]4/4-way servo solenoid directional control valves, directly operated, with electrical position feedback and on-board electronics (OBE) [M/OL]. Stuttgart: Rexroth, Bosch Group,2008[2012-09-03]. http://www.boschrexroth.com/RDSe rch/rd/r_29035/re29035_2010-10.pdf.
    [123]张利平.液压控制系统及设计[M].北京:化学工业出版社.2006.
    [124]Tajjudin M, Adnan R, Ishak N, et al. Model reference input for an optimal PID tuning using PSO[C]//Control System, Computing and Engineering (ICCSCE), 2011 IEEE International Conference on. IEEE,2011:162-167.
    [125]Liu Zhong, Liu Deng, Guo Lanzhong. The research of manipulator's hydraulic driven system on fuzzy immune PID control [J]. Applied Mechanics and Materials,2012,220:1817-1822.
    [126]Bevrani H, Bevrani H. PID Tuning:Robust and Intelligent Multi-Objective Approaches [J]. Advances in PID Control,2011, (12):167-86.
    [127]Mo H, Yin Y. Research on PID tuning of servo-system based on Bacterial Foraging Algorithm[C]//Natural Computation (ICNC),2011 Seventh International Conference on. IEEE,2011,3:1758-1762.
    [128]Ali H, Ikramullah M I, Shahzad M, et al. Genetic Algorithm Based PID tuning for Controlling Paraplegic Humanoid Walking Movement[J]. International Journal of Computer Science,2012,9 (44-3):275-285.
    [129]Randy L Haupt, Sue Ellen Haupt. Practical Genetic Algorithms [M]. Cincinnati: John Wiley & Sons, Inc.,2004.
    [130]程晓东.恒功率恒压泵变量特性及应用研究[D].北京:中国石油大学,2007.
    [131]史时喜.恒功率变量泵的特性研究[D].成都:西南交通大学,2008.
    [132]C G Negoita, D Vasiliu, Ne Vasiliu, et al. Modeling, simulation, and identification of the servo pumps [J]. Earth and Environmental Science,2010 (12):1-10.
    [133]Atos Master Catalog D-150/4e:Modular Pressure compensators, type HC, KC and JPS-2-ISO 4401 Sizes 06,10 and 16 [M/OL]. Sesto Calende:ATOS.2009 [2012-12-01]. http://www.atos.com/english/technical_tables/english/D 150.pdf.
    [134]赵景波,孙浩洋,管殿.西门子S7-300/400PLC快速入门手册[M].北京:化学工业出版社,2012.
    [135]刘心宇,张继忠,程仕平,等.纯铝(L2)高温本构方程的研究[J].中南工业大学学报.1997,28(2):156-159.
    [136]DEFORM 3D Version 6.1(sp1) User's Manual. Columbus:Scientific Forming Technologies Corpration.2007.
    [137]冯斌.液压油有效体积弹性模量及测量装置的研究[D].杭州:浙江大学.2011.
    [138]刘丽兰,刘宏昭,吴子英,等.机械系统中摩擦模型的研究进展[J].力学进展.2008,38(2):201-213.
    [139]帅长红.液压机设计、制造新工艺新技术及质量检验标准规范实务全书[M].北京:北方工业出版社,2006.
    [140]Xuan Bo Tran, Nur Hafizah, Hideki Yanada. Modeling of dynamic friction behaviors of hydraulic cylinders [J].Mechatronics,2012, (22):65-75.
    [141]帅词俊.熔锥型光纤器件的流变成形机理、规律与技术研究[D].长沙:中南大学.2006.
    [142]C Canudas de Wit, H Olsson, K J htrom, P Lischinsky. A New Model for Control of Systems with Friction [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL,1995,40(3):419-424.
    [143]Sun Hong-xin, Wang Xiu-yong, Chen Zheng-qing.Parameter Identification of LuGre Model with Improved Genetic Algorithms [J] Journal of Wuhan University of Technology,2009,31(23):113-117.
    [144]A. Scottedard Hodel, C.E. Hall.Variable-structure PID control to prevent integrator windup.IEEE Trans. Ind. Electron.,201148 (2):442-451.
    [145]K S Tang, Kim Fung Man, Guanrong Chen, et al. An Optimal Fuzzy PID Controller [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. 2001,48(4):757-765.
    [146]Meigoli Vahid, Nikravesh Seyyed, Kamaleddin Yadava. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates.Systems and Control Letters [J],2012,61(10):973-979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700