用户名: 密码: 验证码:
热泵相变储能换热器强化传热数值模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业生产和日常生活中,用于热水供应的低温热能需求量巨大。热泵技术以节能和环保的优势在制取生活热水中的应用逐渐受到关注。然而,可作为热泵热源的空气能、太阳能、地热能和工业余热等低温热能由于能量供求在时间和强度上不匹配的矛盾难以直接满足实际需求。从提高能源利用效率和环境保护的角度,基于相变储能的热泵技术能够缓解这一矛盾。相变储能有储能密度大、使用过程中温度波动小、容易控制等优点,特别是能够缩小能量产生和消耗之间的差距,被认为是热能工程应用领域重要的能源技术。
     以相变储能式热泵热水器的储能换热器为研究对象,基于传热学、流体力学、热力学和相变储能理论对储能换热器的流体流动和传热特性进行了深入系统的研究,主要包括了以下几个方面的研究工作:
     (1)首先介绍了固-液相变的微观理论,详细论述了影响相变传热过程的主要因素——成核和晶体生长。讨论了模拟相变问题的热力学第一定理模型法,建立了对固-液相变适用的数学模型和数值方法。然后讨论了热力学第二定理评估相变储能换热器的性能,用火用分析来评价储能换热器储/放能过程中能量利用的品质。最后通过实验数据严格验证了数值模拟固-液相变和自然对流问题的可靠性,数值计算结果通过与公开出版的文献实验数据对比得到检验。
     (2)数值研究了在潜热能单元内不同相变材料(Phase Change Material, PCM)腔体积分数对流体流动和传热特性的影响,计算流体动力学(Computational Fluid Dynamics,CFD)代码用于数值求解基于瞬态的非线性耦合传热。研究了PCM腔体积分数为35%~95%时的体积膨胀率、完成热储存的时间、热流、液相分数以及速度和温度场变化情况。结果表明,对PCM腔体积分数为85%时,接近加热板壁面处产生漩涡(作为换热强化因子)。当PCM腔体积分数增加时,体积膨胀率减小,然而完成储能时间增加。此外,建立了体积膨胀率和完成储能时间分别与PCM腔体积分数之间的函数关系式。界面换热率的详细研究对固-液相变传热机理提供了较深入的理解。
     (3)研究了特征长度为2mm快速储/放能的板-翅单元内的传热和流动现象。使用基于有限体积法(Finite Volume Method, FVM)数值模拟相变传热的非稳态过程。分析了热能储存/释放体系内温差对流动和传热的影响。研究表明,当温差小于20℃时,温差对热储存时的性能影响较大。在放能过程中有部分未凝固的PCM存在,另外还有一个旋涡在空气区域形成。对不同变量和研究的参数拟合出相应的数学关联式,这些关联式可用于今后的组件设计和系统优化。
     (4)应用热力学第一定理以及第二定理的火用分析对储能单元在不同结构尺寸下的储/放热性能进行了研究。在储能过程中,较大的PCM及翅片宽度和小的储能温差有利于自然对流的产生而增强换热,较高翅片的换热效果更佳。高翅片、大的PCM及翅片宽度和低翅片、小的PCM及翅片宽度收集热量的效果一致。在放能过程中,不同结构尺寸对固相分数的影响很大,然而相同尺寸下,放能温差对固相分数的影响不大,小温差有利于热传导的进行。获得的基准数据可用于该储能单元结构优化和系统设计。火用分析表明换热流体(Heat Transfer Fluid, HTF)的速度越大,火用效率相对较小。
     (5)以PCM和高效换热器为基础,对板-翅式换热器用作热泵相变储热器进行了实验研究。探讨了板-翅式热泵相变储热器中板式换热器与储能材料界面的温度变化、不同HTF流量下出口水温及出水量。结果显示:处于同一横截面不同板侧上的热电偶所测温度差别较小,温度测量曲线存在较平缓的一段。在HTF的温降相同下,HTF流量越大,放热持续时间越短。保持出口水温为40℃时,HTF流量应采用0.3m3/h且对能量的利用品质高(即火用效率高)。增大HTF流量,储能换热器的换热率也增加且系统的COP值都达到5.0以上,具有很好的节能以及因相变储能的储能密度大表现出节地的效果。研究结果为板-翅式换热器作为热泵相变储热器奠定实验基础,对板-翅式换热器广泛用于热泵相变储能装置具有一定的参考价值和实际意义。
The huge quantity of thermal energy is demanded for hot water in industrial productionand daily life. Therefore, heat pump technology is growing concern in the preparation of hotwater for energy saving and environmental advantages. However, the heat source of heatpump, such as, air energy, solar energy, geothermal energy, industrial waste energy and otherlow-temperature energy, is difficult to meet the actual demand because the supply of thermalenergy can not fulfill such a demand in terms of the mismatch both in time and intersity. Inview of the efficiency of the energy utilization and environment protection, a potential way isto use the heat pump with phase change thermal energy storage, which is considered to beimportant energy technology of thermal engineering applications, because it provides a highenergy storage density, small temperature fluctuations and is easy to control, especially itbridges the gap between energy generation and consumption.
     Energy storage heat exchanger for heat pump water heater with phase change thermalenergy storage is studied. Based on theory of heat transfer, fluid dynamics, thermodynamicsand theory of phase change energy storage, some researches are carried out in the following:
     (1) Firstly, the microscopic theory of solid-liquid phase change is introduced, the main factorsthat influence the phase change heat transfer process, namely, nucleation and crystal growth,is discoursed in detail. Further, the first law model of thermodynamics that simulation thephase change problems is discussed, the mathematical models and numerical methods forsolid-liquid phase change are established. Secondly, the second law of thermodynamic usedfor assessment the performance of heat exchanger with phase change energy storage isdiscussed, the quality of energy utilization of energy storage heat exchanger during energystorage and release is evaluated by exergy analysis. At last, the validation of numericalsimulation solid-liquid phase change and natural convection is rigouous verification, andexperimental data taken from the literatures are conducted to validate the model. Thenumerical results show a good agreement with the experimental ones.
     (2) In present work, the effects of different cavity volume fractions of phase change material(PCM) on fluid flow and heat transfer behavior in a latent thermal unit are studied numerically.The commercial Computational Fluid Dynamics (CFD) code is used for the numericalsolution based on transient nonlincer conjugate heat transfer. The volume expansion ratio, thetime of complete thermal storage, heat flux, liquid fraction, velocity and temperature fieldsare investigated for the range of PCM cavity volume fractions from35%to95%. It is notedthat a vortex (as a heat transfer enhancers) is present near the heating plate wall for the PCM cavity volume equal to85%. It is found that the volume expansion ratio decreases as PCMcavity volume fractions increasing, whereas the time for complete energy storage increases.Further, the correlations of the volume expansion ratio and the time of complete thermalstorage are developed as a function of PCM cavity volume fractions. The detailed knowledgeregarding interface heat transfer rate provides a deeper understanding the heat transfermechanisms.
     (3) The fluid flow and heat transfer in a plate-fin unit with a characteristic length of2mmused for rapid heat storage/release by paraffin (PCM) are investigated numerically. Transientsimulations are performed based on the finite volume method. The effect of temperaturedifferences on the fluid flow and heat transfer in the energy storage/release system is analyzed.It is found that temperature differences play a key role in the performances of energy storagewhen temperature differences are less than20℃. It is noted that part of not solidified PCMcan be observed clearly during energy release, and a vortex in the air region is formedremarkably at the moment of complete thermal energy release. The correlations are developedas a function of the associated variables. The obtained correlations are useful for futurecomponent design and system optimization.
     (4) The performance of energy storage/release of energy storage unit with various dimensionsis investigated, based on the application of the first law of thermodynamics and the secondlaw of exergy analysis. During energy storage process, small temperature difference and largewidth on PCM and fin is benefiting the natural convection formed; therefore, the heat transferis enhanced. Moreover, the better heat transfer performance is obtained for higher fin. Heatcollection is identical between high fin, large width on PCM and fin, and short fin, smallwidth on PCM and fin. During energy release process, the influence of dimensions on solidfraction is remarkable. However, the effect of temperature difference of energy release onsolid fraction is small, small temperature difference is beneficial for heat conduction.Furthermore, the obtained baseline dates are useful for energy storage unit structuraloptimization and system design. The exergy analysis shows that the larger of heat transferfluid (HTF) velocity, the smaller of exergy efficiency.
     (5) The plate-fin heat exchanger used for heat pumps phase change thermal storage is studiedby experiment, based on PCM and efficient heat exchanger. The interface temperaturechanges between plate heat exchanger and energy storage material, outlet temperature andflow in different HTF flow rates on heat pump phase change thermal storage device ofplate-fin are explored. The experimental results show that the temperature difference is smallin the same side of the plate at different cross-section by thermocouple measured, and there is a gentler section of the temperature measurement curve. The greater HTF flow rates, theshorter of exothermic under the same temperature drop of HTF. The flow rate of HTF shoulduse0.3m3/h when outlet temperature is40℃. Moreover, the high quality of using energy,namely, high exergy efficiency, is obtained for the flow rate0.3m3/h. The heat transfer rate ofenergy storage heat exchanger is increases as HTF flow rate increases. Further, the coefficientof performance (COP) of system reached5.0or above. Therefore, it presents good energyconservation and land saving due to high energy storage density. The results providedexperimental basis for the plate-fin heat exchanger used for heat pump phase change thermalstorage. The results have practical significance and reference value on plate-fin heatexchanger, which is widely used in heat pump phase change thermal storage device.
引文
[1] Bhushan B., Singh R. A review on methodology of artificial roughness used in duct ofsolar air heater[J]. Energy,2010,35(1):202-212
    [2] IEA. World energy outlook2010[R]. International Energy Agency,2010
    [3] EIA. International energy outlook[R]. Energy Information Administration,2011
    [4] IEA. CO2emissions from fuel combustion highlights[R]. International Energy Agency,2011
    [5] Fu B., Zhuang X. L., Jiang G. B., Shi J.B., et al. Environmental problems and challengesin China[J]. Environmental Science and Technology,2007,41(22):7597-7602
    [6] Andrews-Speed P. China’s ongoing energy efficiency drive: Origins, progress andprospects[J]. Energy Policy,2009,37(4):1331-1344
    [7] Zhou N., Levine M. D., Price L. Overview of current energy-efficiency policies inChina[J]. Energy Policy,2010,38(11):6439-6452
    [8] Zalba B., Marin J. M., Cabeza L. F., et al. Review on thermal energy storage with phasechange: materials, heat transfer analysis and applications[J]. Applied ThermalEngineering,2003,23(3):251-283
    [9] Dincer, S. D., Dost, S., Li X. G. Thermal energy storage applications from an energysaving perspective[J]. International Journal of Global Energy Issues,1997,9(4-6):351-364
    [10] Son C. H., Morehouse J. H. An experimental investigation of solid-state phase-changematerials for solar thermal storage[J]. Journal of Solar Energy Engineering,1991,133(4):244-249
    [11]剧霏,刘超,程军,等.蓄热材料在热泵及其它方面的应用[J].制冷,2006,25(1):40-43
    [12]崔海亭,杨锋.蓄热技术及其应用[M].北京:化学工业出版社,2004
    [13] Thirugnanasambandam M., Iniyan S., Goic R. A review of solar thermal technologies[J].Renewable and Sustainable Energy Reviews,2010,14(1):312-322.
    [14] Biswas D. P. Thermal energy storage using sodium sulfate decahydrate and water[J].Solar Energy,1977,19(1):99-100
    [15]张寅平,胡汉平,孔祥东.相变储能——理论和应用[M].合肥:中国科技大学出版社,1996
    [16] Salaun F., Devaux E., Bourbigot S., et al. Influence of the solvent on themicroencapsulation of an hydrated salt[J]. Carbohydrate Polymers,2010,79(4):964-974
    [17] Kaizawa A., Maruoka N., Kawai A., et al. Thermophysical and heat transfer properties ofphase change material candidate for waste heat transportation system[J]. Heat and MassTransfer,2008,44(7):763-769
    [18]张正国,文磊,方晓明,等.复合相变储热材料的研究与发展[J].化工进展,2003,22(4):462-465
    [19]阮德水,张大平,张道圣,等.相变储热材料的DSC研究[J].太阳能学报,1994,15(1):19-24
    [20] Kreider J. F., Kreith F. Energy storage for solar application[M]. New York: McGraw-HillBook Company, Solar Energy Handbook,1981
    [21]李军,朱冬生,张立志,等.纳米技术在蓄热材料中的应用[J].材料导报,2003,17(9):135-137
    [22]林怡辉,张正国,王世平.一种新型相变蓄热材料的实验研究[J].江汉石油学院学报,2001,23(4):81-83
    [23] Shamsundar N., Srinivasan R. Analysis of energy storage by phase change with an arrayof cylindrical tubes[C]. USA San Francisco. CA: Procceedings of the Winter AnnualMeeting, ASME,1978:35-40
    [24] Silva P. D., Goncalves L. C., Pires L. Transient behaviour of a latent-heat thermal energystore: numerical and experimental studies[J]. Applied Energy,2002,73(1):83-98
    [25] Stritih U. An experimental study of enhanced heat transfer in rectangular PCM thermalstorage[J]. International Journal of Heat and Mass Transfer,2004,47(12-13):2841-2847
    [26] Lamberg P., Lehtiniemi R., Henell A. M. Numerical and experimental investigation ofmelting and freezing processes in phase change material storage[J]. International Journalof Thermal Sciences,2004,43(3):227-287
    [27] Jiji L. M., Gaye S. Analysis of solidification and melting of PCM with energygeneration[J]. Applied Thermal Engineering,2006,26(5-6):568-575
    [28] Liu M., Saman W., Bruno F. Validation of a mathematical model for encapsulated phasechange material flat slabs for cooling applications[J]. Applied Thermal Engineering,2011,31(14-15):2340-2347
    [29] Shatikian V., Ziskind G., Letan R. Numerical investigation of a PCM-based heat sinkwith internal fins[J]. International Journal of Heat and Mass Transfer,2005,48(17):3689-3706
    [30] Regin A. F., Solanki S. C., Saini J. S. Latent heat thermal energy storage using cylindricalcapsule: numerical and experimental investigations[J]. Renewable Energy,2006,31(13):2025-2041
    [31] Ismail K. A. R., Silva M. G. Numerical solution of the phase change problem around ahorizontal cylinder in the presence of natural convection in the melt region[J].International Journal of Heat and Mass Transfer,2003,46(10):1791-1799
    [32] Gui X. H., Lin B., Guo Y. X., et al. Two-dimensional transient thermal analysis of PCMcanister of a heat pipe receiver under microgravity[J]. Applied Thermal Engineering,2011,31(5):735-741
    [33] Shmueli H., Ziskind G., Letan R. Melting in a vertical cylindrical tube: Numericalinvestigation and comparison with experiments[J]. International Journal of Heat and MassTransfer,2010,53(19-20):4082-4091
    [34] Gracia A. de, Oro E., Farid M. M., et al. Thermal analysis of including phase changematerial in a domestic hot water cylinder[J]. Applied Thermal Engineering,2011,31(17-18):3938-3945
    [35] Gong Z. X., Mujumdar A. S. Finite-element analysis of cyclic heat transfer in ashell-and-tube latent heat energy storage exchanger[J]. Applied Thermal Engineering,1997,17(6):583-591
    [36] Fang M., Chen G. M. Effects of different multiple PCMs on the performance of a latentthermal energy storage system[J]. Applied Thermal Engineering,2007,27(5-6):994-1000
    [37] Khodadadi J. M., Zhang Y. Effects of buoyancy-driven convection on melting withinspherical containers[J]. International Journal of Heat and Mass Transfer,2001,44(8):1605-1618
    [38] Assis E., Katsman L., Ziskind G., et al. Numerical and experimental study of melting in aspherical shell[J]. International Journal of Heat and Mass Transfer,2007,50(9-10):1790-1804
    [39] Tan F. L., Hosseinizadeh S. F., Khodadadi J. M., et al. Experimental and computationalstudy of constrained melting of phase change materials (PCM) inside a sphericalcapsule[J]. International Journal of Heat and Mass Transfer,2009,52(15-16):3464-3472
    [40] Zivkovic B., Fujii I. An analysis of isothermal phase change of phase change materialwithin rectangular and cylindrical containers[J]. Solar Energy,2001,70(1):51-61
    [41] Saha S. K., Dutta P. Heat transfer correlations for PCM-based heat sinks with platefins[J]. Applied Thermal Engineering,2010,30(16):2485-2491
    [42] Talati F., Mosaffa A. H., Rosen M. A. Analytical approximation for solidificationprocesses in PCM storage with internal fins: imposed heat flux[J]. Heat and MassTransfer,2011,47(4):369-376
    [43] Huang M. J., Eames P. C., Norton B., et al. Natural convection in an internally finnedphase change material heat sink for the thermal management of photovoltaics[J]. SolarEnergy Materials&Solar Cells,2011,95(7):1598-1603
    [44] Lacroix M., Benmadda M. Numerical simulation of natural convection dominatedmelting and solidification from a finned vertical wall[J]. Numerical Heat Transfer, PartA-Applications,1997,31(1):71-86
    [45] Lecomte D., Mayer D. Design method for sizing a latent heat store/heat exchanger in athermal system[J]. Applied Energy,1985,21(1):55-78
    [46] Banaszek J., Domanski R., Rebow M., et al. Exerimental study of solid-liquid phasechange in a spiral thermal energy storage unit[J]. Applied Thermal Engineering,1999,19(12):1253-1277
    [47] Ismail K. A. R., Henriquez J. R. Numerical and experimental study of spherical capsulespacked bed latent heat storage system[J]. Applied Thermal Engineering,2002,22(15):1705-1716
    [48]胡军,董华,周恩泽,等.螺旋盘管式相变储热单元储热性能[J].太阳能学报,2006,27(4):399-403
    [49] Yanadori M., Masuda T. Heat transferential study on a heat storage container with phasechange material [J]. Solar Energy,1986,36(2):169-177
    [50]谢军龙,叶燕琴,陈焕新,等.蓄冷空调内融冰U形盘管融冰过程的数学模型[J].暖通空调,2009,39(3):119-122
    [51] Rabin Y., Bar-Niv I., Korin E., et al. Intedrated solar collector storage system based on asalt-hydrate phase-change material[J]. Solar Energy,1995,559(6):435-444
    [52] Ismail K. A. R., Alves C. L. F., Modesto M. S. Numerical and experimental study on thesolidification of PCM around a vertical axially finned isothermal cylinder[J]. AppliedThermal Engineering,2001,21(1):53-77
    [53] Ismail K. A. R., Lino F. A. M. Fins and turbulence promoters for heat transferenhancement in latent heat storage systems[J]. Experimental Thermal and Fluid Science,2011,35(6):1010-1018
    [54] Shatikian V., Ziskind G., Letan R. Numerical investigation of a PCM-based heat sinkwith internal fins: Constant heat flux[J]. International Journal of Heat and Mass Transfer,2008,51(5-6):1488-1493
    [55] Wu S. Y., Zhu D. S., Zhang X. R., et al. Preparation and melting/freezing characteristicsof Cu/Paraffin nanofluid as Phase-Change Material (PCM)[J]. Energy&Fuels,2010,24(3):1894-1898
    [56] Lamberg P., Siren K. Analytical model for melting in a semi-infinite PCM storage withan internal fin[J]. Heat and Mass Transfer,2003,39(2):167-176
    [57] Ettouney H., Alatiqi I., Al-Sahali M., et al. Heat transfer enhancement in energy storagein spherical capsules filled with paraffin wax and metal beads[J]. Energy Conversion andManagement,2006,47(2):211-228
    [58] Zhou D., Zhao C. Y. Experimental investigations on heat transfer in phase changematerials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering,2011,31(5):970-977
    [59] Sari A., Karaipekli A. Thermal conductivity and latent heat thermal energy storagecharacteristics of paraffin/expanded graphite composite as phase change material[J].Applied Thermal Engineering,2007,27(8-9):1271-1277
    [60] Mills A., Farid M., Selman J. R., et al. Thermal conductivity enhancement of phasechange materials using a graphite matrix[J]. Applied Thermal Engineering,2006,26(14-15):1652-1661
    [61] Frusteri F., Leonardi V., Vasta S., et al. Thermal conductivity measurement of a PCMbased storage system containing carbon fibers[J]. Applied Thermal Engineering,2005,25(11-12):1623-1633
    [62] Agyenim F., Hewitt N., Eames P., et al. A review of materials, heat transfer and phasechange problem formulation for latent heat thermal energy storage systems (LHTESS)[J].Renewable and Sustainable Energy Reviews,2010,14(2):615-628
    [63] Velraj R., Seeniraj R. V., Hafner B., et al. Heat transfer enhancement in a latent heatstorage system[J]. Solar Energy,1999,65(3):171-180
    [64] Jegadheeswaran S., Pohekar S. D. Performance enhancement in latent heat thermalstorage system: A review[J]. Renewable and Sustainable Energy Reviews,2009,13(9):2225-2244
    [65] Cabeza L. F., Mehling H., Hiebler S., et al. Heat transfer enhancement in water whenused as PCM in thermal energy storage[J]. Applied Thermal Engineering,2002,22(10):1141-1151
    [66] Fukai J., Hamada, Y., Morozumi Y., et al.Effect of carbon-fiber brushes on conductiveheat transfer in phase change materials[J].International Journal of Heat and MassTransfer,2002,45(24):4781-4792
    [67] Medrano M., Yilmaz M. O., Nogues M., et al. Experimental evaluation of commercialheat exchangers for use as PCM thermal storage systems[J]. Applied Energy,2009,86(10):2047-2055
    [68]孙旋.中常温相变蓄热的理论与实验研究[D].北京:北京工业大学,2003
    [69]唐刚志,李隆健,崔文智,等.针翅管式相变蓄热器传热特性的实验研究[J].郑州大学学报(工学版),2008,29(3):69-72
    [70] Liu Z. L., Sun X., Ma C. F. Experimental investigations on the characteristics of meltingprocesses of stearic acid in an annulus and its thermal conductivity enhancement byfins[J]. Energy Conversion and Management,2005,46(6):959-969
    [71] Agyenim F., Eames P., Smyth M. A comparison of heat transfer enhancement in amedium temperature thermal energy storage heat exchanger using fins[J]. Solar Energy,2009,83(9):1509-1520
    [72] Velraj R., Seeniraj R. V., Hafner B., et al. Experimental analysis and numerical modellingof inward solidification on a finned vertical tube for a latent heat storage unit[J]. SolarEnergy,1997,60(5):281-290
    [73] Eftekhar J., Sheikh A. H., Lou D. Y. S. Heat transfer enhancement in a paraffin waxthermal storage system[J]. Journal of Solar Energy Engineering,1984,106(3):299-306
    [74] Akgun M., Aydin O., Kaygusuz K. Thermal energy storage behavior of a paraffin duringmelting and solidification[J]. Energy Sources Part A-Recovery Utilization andEnvironmental Effects,2007,29(14):1315-1326
    [75] Akgun M., Aydin O., Kaygusuz K. Experimental study on melting/solidificationcharacteristics of a paraffin as PCM[J]. Energy Conversion and Management,2007,48(2):669-678
    [76]王剑锋,陈光明,陈邦国,等.组合相变材料储热系统的储热速率研究[J].太阳能学报,2000,21(3):258-264
    [77]候欣宾,袁修干,崔海亭.组合相变材料换热管吸热器性能的数值分析[J].太阳能学报,2002,23(6):805-808
    [78] Padmanabhan P. V., Murthy Krishna M. V. Outward phase change in a cylindrical annulswith axial fins on the inner tube[J]. International Journal of Heat and Mass Transfer,1986,29(12):1855-1868
    [79]姜益强,齐琦,姚杨,等.圆柱形壳管式相变蓄热单元的释热特性[J].哈尔滨工业大学生学报,2008,40(6):927-930
    [80]周素娟,张小松,殷勇高.套管型相变蓄热装置蓄热过程动态模拟[J].流体机械,2008,36(1):58-61
    [81] Ismail K. A. R., Abugderah M. M. Performance of a thermal storage system of thevertical tube type[J]. Energy Conversion and Management,2000,41(11):1165-1190
    [82] Gadgil A., Gobin D. Analysis of two-dimensional melting in rectangular enclosures inpresence of convection[J]. Journal of Heat Transfer,1984,106(1):20-26
    [83] Pal D., Joshi Y. K. Melting in a side heated tall enclosure by a uniformly dissipating heatsource[J]. International Journal of Heat Mass Transfer,2000,44(2):375-387
    [84]郭茶秀,张务军,魏新利,等.板式石蜡储热器传热的数值模拟[J].能源技术,2006,27(6):243-248
    [85] Sparrow E. M., Larsen E. D., Ramsey T. W. Freezing on a finned tube for eitherconduction-controlled or natural-convection-controlled heat transfer[J]. InternationalJournal of Heat Mass Transfer,1981,24(2):273-284
    [86] Smith R. N., Koch J. D. Numerical solution for freezing adjacent to a finned surface[C].In proceedings of the Seventh International Heat Transfer Conference, Muchen, Germany,1982,69-74
    [87] Choi J. C., Kim S. D. Heat-transfer characteristics of a latent heat storage system usingMgCl2·6H2O[J]. Energy,1992,17(12):1153-1164
    [88] Costa. M., Buddhi. D., Oliva. A. Numerical simulation of a lLatent heat thermal energystorage system with enhanced heat conduction[J]. Energy Conversion and Management,1998,39(3-4):319-330
    [89]姬长发.肋片的几何参数对圆形内肋片管蓄冰特性影响[J].辽宁工程技术大学学报,2005,24(2):267-269
    [90] Zhang Y. W., Faghri A. Heat transfer enhancement in latent heat thermal energy storagesystem by using an external radial finned tube[J]. Journal of Enhanced Heat Transfer,1996,3(2):119-127
    [91]欧阳梅.针翅管式相变蓄热换热性能的数值模拟[D].重庆:重庆大学硕士学位论文,2009
    [92] Casano G., Piva S. Experimental and numerical investigation of the steady periodicsolid-liquid phase-change heat transfer[J]. International Journal of Heat and MassTransfer,2002,45(20):4181-4190
    [93] Zhang Z. Q., Bejan A. Melting in an enclosure heated at constant rate[J]. InternationalJournal of Heat and Mass Transfer,1989,32(6):1063-1076
    [94] Wang Y., Amiri A., Vafai K. An experimental investigation of the melting process in arectangular enclosure[J]. International Journal of Heat and Mass Transfer,1999,42(19):3659-3672
    [95] Ho C. J., Viskanta R. Inward solid-liquid phase-change heat transfer in a rectangularcavity with conducting vertical walls[J]. International Journal of Heat Mass Transfer,1984,27(7):1055-1065
    [96] Okada M. Analysis of heat transfer during melting from a vertical wall[J]. InternationalJournal of Heat and Mass Transfer,1984,27(11):2057-2066
    [97] Inaba H., Dai C., Horibe A. Natural convection heat transfer of microemulsionphase-change-material slurry in rectangular cavities heated from below and cooled fromabove[J]. International Journal of Heat Mass Transfer,2003,46(23):4427-4438
    [98]王永川,李建新,陈光明.相变储热预热式热泵热水器节能特性分析[J].太阳能学报,2009,30(1):51-54
    [99]朱冬生,钱颂文,马小明,等.换热器技术及进展[M].北京:中国石化出版社,2008
    [100] Long J. Y., Zhu D. S. Numerical and experimental study on heat pump water heaterwith PCM for thermal storage[J]. Energy and Buildings,2008,40(4):666-672
    [101]叶宏,程丹鹏,葛新石.相变贮热管管内强化传热的数值研究[J].太阳能学报,2007,28(4):427-435
    [102]叶宏,赵晓,程丹鹏,等.管壳式相变换热器贮热换热效果的数值研究[J].太阳能学报,2008,29(12):1499-1503
    [103]刘超,剧霏,雷俊禧,等.新型相变式储能热泵热水器的研制开发[J].广东化工,2006,33(157):3-76
    [104]张海峰,王勤,陈光明,等.相变储热型热泵热水器的设计及实验研究[J].制冷学报,2005,26(3):22-25
    [105]黄挺,姜益强.空气源热泵除霜用相变蓄热器蓄放热特性影响因素的模拟研究[J].制冷与空调,2009,23(5):11-15
    [106]胡文举,姜益强,姚杨,等.基于除霜的相变蓄热器对空气源热泵性能的影响[J].天津大学学报,2009,42(10):908-912
    [107] Agyenim F., Hewitt N. The development of a finned phase change material (PCM)storage system to take advantage of off-peak electricity tariff for improvement in cost ofheat pump operation[J]. Energy and Buildings,2010,42(9):1552-1560
    [108]刘岩,巫江虹.复叠式相变蓄热热泵热水器的研究[J].茂名学院学报,2007,17(3):35-38
    [109]朱钰娟,巫江虹,王惜慧,等.一种蓄热型空气源复叠式热泵热水器系统[J].制冷,2008,27(3):13-16
    [110]张海峰,王勤,陈光明,等.相变储热型热泵热水器的设计及试验研究[J].制冷学报,2005,26(3):22-25
    [111]张仁元.相变材料和相变储能技术[M].北京:科学出版社,2009
    [112] Clapeyron B. P. E., Lamé M. M. Mémoire sur la solidification par refroidissement d’unglobe liquide[J]. Ann Chim Phys,1831,47:250-256
    [113] Brillouin M. Sur quelques problèmes non résolus de la Physique Mathématiqueclassique Propagation de la fusion[J]. Ann l’inst Henri Poincaré,1930,1(3):285-308
    [114] Stefan J. Uber einige probleme der theorie der warmeleitung. Sber Akad Wiss Wien1889,98:473-84
    [115] Evans G. W. A note on the existence of a solution to a problem of Stefan[J]. Q ApplMath,1951,9:185-193
    [116] Douglas J. A uniqueness theorem for the solution of a Stefan problem[C]. Proceedingsof the American Mathematical Society,1957,8(2):402-408
    [117] Crank J. Free and moving boundary problems[M]. Oxford: Clarendon Press,1984.
    [118] Hill J. M. One-dimensional Stefan problems: an introduction[R]. Harlow: LongmanScientific Technical,1987
    [119] Cao Y., Faghri A. A numerical analysis of phase change problems including naturalconvection[J]. Journal of Heat Transfer,1990,112(3):812-815
    [120] Ma Z. H., Zhang Y. W. Solid velocity correction schemes for a temperaturetransforming model for convection phase change[J]. International Journal of NumericalMethods for Heat&Fluid Flow,2006,16(2):204-25
    [121] Swaminathan C. R., Voller V. R. On the enthalpy method[J]. International Journal ofNumerical Methods for Heat&Fluid Flow,1993,3(3):233-244
    [122] Voller V. R., Cross M., Markatos N. C. An enthalpy method for convection/diffusionphase change[J]. International Journal Numerical Methods in Engineering,1987,24(1):271-84
    [123] Alexiades V., Solomon A. D. Mathematical modeling of melting and freezingprocesses[M]. USA: Hemisphere Publishing Corporation,1993
    [124] Nedjar B. An enthalpy-based finite element method for nonlinear heat problemsinvolving phase change[J]. Computers&Structures,2002,80(1):9-21
    [125] Hunter L. W., Kuttler J. R. The enthalpy method for heat conduction problems withmoving boundaries[J]. Journal of Heat Transfer,1989,111(2):239-242
    [126] Amdjadi M., Fabre B., Meynadier C. Re′solution unidimensionnelle d’un proble`mede Stefan par une me′thode a`pas de temps variable[J]. Application a`une bille dechliarolithe. Rev Ge′n Therm Fr,1990,339:129-134
    [127] Voller V. R. Fast implicit finite-difference method for the analysis of phase changeproblems[J]. Numerical Heat Transfer, Part B-Fundamentals,1990,17(2):155-169
    [128] Trp A. An experimental and numerical investigation of heat transfer during technicalgrade paraffin melting and solidification in a shell-and-tube latent thermal energy storageunit[J]. Solar Energy,2005,79(6):648-660
    [129] Giangi M., Stella F., Kowalewski T. A. Phase change problems with free convection:fixed grid numerical simulation[J]. Computing Visualization in Science,1999,2(2-3):123-130
    [130] Nochetto R. H., Paolini M., Verdi C. An adaptive finite element method for two phaseStefan problems in two space dimensions, Part II: implementation and numericalexperiments[J]. SIAM Journal on Scientific and Satistical Computing,1991,12(5):1207-1244
    [131] Provatas N., Goldenfeld N., Dantzig J. Efficient computation of dendriticmicrostructures using adaptive mesh refinement[J]. Physical Review Letters,1997,80(15):3308-3311
    [132] Provatas N., Goldenfeld N., Dantzig J. Adaptive mesh refinement computation ofsolidification microstructures using dynamic data structures[J]. Journal of ComputationPhysics,1999,148(1):265-290
    [133] Ainsworth M., Oden J. T. A posteriori error estimation in finite element analysis, pureand applied mathematics[M]. Wiley-Interscience,2000
    [134] Mackenzie J. A., Robertson M. L. The numerical solution of one-dimensional phasechange problems using an adaptive moving mesh method[J]. Journal of ComputationPhysics,2000,161(2):537-557
    [135] Mackenzie J. A., Robertson M. L. A moving mesh method for the solution of theone-dimensional phase-field equations[J]. Journal of Computation Physics,2002,181(2):526-544
    [136] Mackenzie J. A., Mekwi W. R. On the use of moving mesh methods to solve PDEs. In:Tang T, Xu J, editors. Adaptive computations: theory and algorithms[M]. Beijing:Science Press,2007
    [137] Tan Z. J., Lim K. M., Khoo B. C. An adaptive mesh redistribution method for theincompressible mixture flows using phase-field model[J]. Journal of ComputationPhysics,2007,225(1):1137-1158
    [138] Bi Y. H., Guo T. W., Zhang L., et al. Entropy generation minimization for charging anddischarging processes in a gas-hydrate cool storage system[J]. Applied Energy,2010,87(4):1149-1157
    [139] Watanabe T., Kanzawa A. Second law optimization of a latent heat storage system withPCMs having different melting points[J]. Heat Recovery Systems&CHP,1995,15(7):641-653
    [140] Patankar S. V. Numerical heat transfer and fluid flow[M]. New York: McGraw-HillBook Company,1980
    [141] Bonacina C., Comini G., Fasano A. Numerical solution of phase-change problems[J].International Journal of Heat and Mass Transfer,1973,16(10):1825-1832
    [142]陶文铨.数值传热学[M].西安:西安交通大学出版社(第二版),2001
    [143] Gau C., Viskanta R. Melting and solidification of a pure metal on a vertical wall[J].Journal of Heat Transfer,1986,108(1):174-181
    [144] Lacroix M. Predictions of natural convection-dominated phase change problems by thevorticity-velocity formulation of the Navier-Stokes equations[J]. Numerical HeatTransfer, Part B-Fundamentals,1992,22(1):79-93
    [145] Aydin O., Yesiloz G. Natural convection in a quadrantal cavity heated and cooled onadjacent walls[J]. Journal of Heat Transfer,2011,133(5):052501(1-7)
    [146] Ghosh K., Mukhopadhyay A., Sen S., et al. A sphericosymmetric VOF approach forinvestigating immiscible two-phase systems with one liquid phase[J]. Numerical HeatTransfer, Part A-Applications,2006,50(10):949-974
    [147] Voller V. R., Prakash C. A fixed grid numerical modelling methodology forconvection-diffusion mushy region phase-change problems[J]. International Journal ofHeat Mass Transfer,1987,30(8):1709-1719
    [148] Brent A. D., Voller V. R., Reid K. J. Enthalpy-porosity technique for modelingconvection-diffusion phase change: application to the melting of a pure metal[J].Numerical Heat Transfer, Part A-Applications,1988,13(3):297-318
    [149] Fan L. W., Khodadadi J. M. Thermal conductivity enhancement of phase changematerials for thermal energy storage: A review[J]. Renewable and Sustainable EnergyReviews,2011,15(1):24-46
    [150] Ho C. J., Chu C. H. Numerical simulation of heat penetration through a verticalrectangular phase change material/air composite cell[J]. International Journal of Heat andMass Transfer,1996,39(9):1785-1795
    [151] Liu Z. L., Ma C. F. Numerical analysis of melting with constant heat flux heating in athermal energy storage system[J]. Energy Conversion and Management,2002,43(18):2521-2538
    [152] Akhilesh R., Narasimhan A., Balaji C. Method to improve geometry for heat transferenhancement in PCM composite heat sinks[J]. International Journal of Heat and MassTransfer,2005,48(13):2759-2770
    [153]吴淑英.纳米复合蓄热材料强化相变传热实验与数值模拟研究[D].广州:华南理工大学,2010
    [154] Humphries W. R., Griggs E. I. A design handbook for phase change thermal control andenergy storage devices[R]. Technical Report,1977,1074NASA Scientific and TechnicalInformation Office
    [155] Reid R. C., Prausnitz J. M., Poling B. E. The properties of gases and liquids[M]. NewYork: McGraw-Hill Book Company,1987
    [156] Hirt C. W., Nichols B. D. Volume of fluid (VOF) method for the dynamics of freeboundaries[J]. Journal of Computational Physics,1981,39(1):201-225
    [157] Ranade V. V. Computational flow modeling for chemical reactor engineering[M]. USA:vol.5, Academic Press, St. Louis, MO,2002
    [158] FLUENT6User’s Guide. USA: FLUENT Inc, New Hampshire,2003
    [159] Lacroix M. Numerical simulation of a shell-and-tube latent heat thermal energy storageunit[J]. Solar Energy,1993,50(4):357-367
    [160] Ghoneim A. A. Comparison of theoretical models of phase-change and sensible heatstorage for air and water-based solar heating systems[J]. Solar Energy,1989,42(3):209-220
    [161] Darzi A. R., Farhadi M., Sedighi K. Numerical study of melting inside concentric andeccentric horizontal annulus[J]. Applied Mathematical Modeling,doi:10.1016/j.apm.2011.11.033
    [162] Henze H. R., Humphrey J. A. C. Enhanced heat conduction in phase-change thermalenergy storage devices[J]. International Journal of Heat and Mass Transfer,1981,24(3):459-474
    [163] Jones B. J., Sun D. W., Krishnan S., et al. Experimental and numerical study of meltingin a cylinder[J]. International Journal of Heat and Mass Transfer,2006,49(15-16):2724-2738
    [164] Frenkel M. TRC Thermodynamic Tables-Hydrocarbons[M]. Washington: USGovernment Printing Office,2003
    [165] Tan F. L. Constrained and unconstrained melting inside a sphere[J]. InternationalCommunications in Heat and Mass Transfer,2008,35(4):466-475
    [166] Valencia, L., Pallares, J., Cuesta, I., et al. Rayleigh-benard convection of water in aperfectly conducting cubical cavity: Effects of temperature-dependent physicalproperties in laminar and turbulent regimes[J]. Numerical Heat Transfer, PartA-Applications,2005,47(4):333-352
    [167] Barba A., Spiga M. Discharge mode for encapsulated PCMs in storage tanks[J]. SolarEnergy,2003,74(2):141-148
    [168] Ismail K. A. R., Henriquez J. R., Silva T. M. D. A parametric study on ice formationinside a spherical capsule[J]. International Journal of Thermal Sciences,2003,42(9):881-887
    [169] Buddhi D., Sharma S. D., Sharma A. Thermal performance evaluation of a latent heatstorage unit for late evening cooking in a solar cooker having three reflectors[J]. EnergyConversion and Management,2003,44(6):809-817
    [170] Akgun M., Aydin O., Kaygusuz K. Thermal energy storage performance of paraffin in anovel tube-in-shell system[J]. Applied Thermal Engineering,2008,28(5-6):405-413
    [171] Stefan J., Sber, Akad. Wiss. Wien.1879,79:161; Stefan J., Sber. Akad. Wiss. Wien.1890,98:965
    [172] Vitorino N., Abrantes J. C. C., Frade J. R., Numerical solutions for mixed controlledsolidification of phase change materials[J]. International Journal of Heat and MassTransfer,2010,53(23-24):5335-5342
    [173] Sharma A., Tyagi V. V., Chem C. R., et al. Review on thermal energy storage with phasechange materials and applications[J]. Renewable and Sustainable Energy Reviews,2009,13(2):318-345
    [174] Verma P., Varun, Singal S. K. Review of mathematical modeling on latent heat thermalenergy storage systems using phase-change material[J]. Renewable and SustainableEnergy Reviews,2008,12(4):999-1031
    [175] Adebiyi G. A. A second-law study on packed bed energy storage systems utilizingphase-change materials[J]. Journal of Solar Energy Engineering,1991,113(3):146-156
    [176] Jegadheeswaran S., Pohekar S. D. Exergy analysis of particle dispersed latent heatthermal storage system for solar water heaters[J]. Journal of Renewable and SustainableEnergy,2010,2(2):023105(18pages)
    [177] Demirel Y., Ozturk H. H. Thermoeconomics of seasonal latent heat storage system[J].International Journal Energy Research,2006,30(12):1001-1012
    [178] Gong Z. X., Mujumdar A. S. Thermodynamic optimization of the thermal process inenergy storage using multiple phase change materials[J]. Applied Thermal Engineering,1996,17:1067-1083
    [179] Mueller A.C., Chiou J. P. Review of various types of flow maldistribution in heatexchangers[J]. Heat Transfer Engineering,1988,9(2):36-50
    [180] Moffat R. J. Using uncertainty analysis in the planning of an experiment[J]. Journal ofFluids Engineering,1985,107(2):173-178
    [181]王补宣,葛新石.太阳能利用中储热研究的新进展[J].自然杂志,1981,4(1):16-19
    [182] Solomon A. D. Melt time and heat flux for a simple PCM body[J]. Solar Energy,1979,22(3):251-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700