用户名: 密码: 验证码:
矩形通道内流动与强化传热的实验与数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热装置是工业传热过程中必不可少的设备,应用在动力、化工、冶金、食品、轻工等一切工业部门。随着技术的进步,以及节约资源和能源的紧迫性,一些新型的换热设备被开发并应用在污水处理,余热利用等领域。因此开发新型换热设备,提高换热器的热量传递性能和能源的利用率意义重大。本文基于这样的背景下,对矩形通道内的流动与强化传热进行了实验和数值研究,主要通过流场内的湍动能,速度,流线,压力等参数的变化对通道内的流动微细结构进行分析,同时分析了通道内的温度场分布和局部努塞尔数的变化。除此之外,对通道的整体传热和阻力特性进行了分析,运用场协同理论和综合性能评价标准,总结了矩形通道内强化传热的机理,对比了不同表面结构在不同结构参数下的综合性能因子变化,总结了流场中出现的各种涡流对强化传热的影响。本文对传统的强化传热表面结构进行了改良,从而达到增大综合性能因子,提高换热效率的目的。
     本文从以下几方面进行了实验和数值模拟。横向肋通道广泛应用于高效换热器、核反应器和传质设备。本文提出通道内加装导流片把流体引导向肋间流动,增加了壁面附近流体的扰动,从而提高通道内的换热效果。加装导流片后通道的整体努塞尔数提高了14.8%~22.7%。虽然这种强化传热的方式阻力较大,但是导流片加工安装方便,以较低的成本对原有设备进行改造。此外,研究四种形状不同的导流片对传热和阻力影响,发现斜板导流片的传热效果最好。考察了导流片在上下游位置对传热的影响,发现导流片的位置在两肋片中部的传热效果最好。
     提出了一种间断斜壁肋片与凹槽的交错排列方式,并与平行肋排列的矩形通道的传热与阻力特性进行实验和数值研究。研究表明,交错肋槽结构的综合性能因子比平行肋结构提高了10%~13.6%。另外研究了交错肋槽结构的倾斜角及肋间距等几何参数对传热的影响。结果表明,突肋的倾斜角α为45°时通道的综合性能因子最好。
     梯形静态混合器可在通道内产生纵向涡,纵向涡能以较少的压降强化通道内的换热。在此基础上,提出了下端开口的梯形扰流片,并对流动方式及开口位置进行了实验研究及数值模拟。结果表明,对于完整扰流片逆流的努塞尔数比顺流的大,综合性能因子对比结果表明,低雷诺数下逆流的比顺流的大,高雷诺数下顺流的比逆流的好。而对于不同开口位置而言,完全开口的扰流片在顺流的方式及高雷诺数下,综合性能最好;外侧开口的扰流片在逆流的方式及低雷诺数下,综合性能最好。因此,开口的扰流片能提高矩形通道内传热效率。
     球凸和球凹通道是一种比较新型的表面强化传热结构并引起人们的兴趣。本文提出了一种内嵌圆球或椭球球凹或者球突的结构并进行了数值模拟的研究。结果表明,与普通球突通道相比,综合性能因子提高了近10%。通道内的涡流碰撞,流动分离以及马蹄涡对强化传热有着重要的贡献。对于内嵌球突的球凹结构而言,其综合性能因子比普通球凹提高了13.8%~15.4%。从流场分析结果发现,与普通球凹通道相比,内嵌球突的球凹结构能有效地降低通道内的阻力。这是由于凹槽内的回流涡受到球突的分离和抑制作用,从而使球凹的阻力减少。可见,突肋结构与凹槽结构在本文提出的结合方式下,能够提高矩形通道的传热效率。
Heat exchanger is a vital device used in the industrial heat transfer process. Itsapplication includes power engineering, chemical engineering, food engineering etc. With thetechnological development and the urgency of resource and energy saving, some novel heatexchangers were developed and used in the sewage treatment. Thus, it is greatly significantthat new heat exchangers are developed to increase the heat transfer rate and energyutilization. Under these circumstances, this paper presents some novel surface structures toenhance heat transfer in rectangular channel by experimental and numerical methods with themicroscopic analysis of turbulent kinetic energy, velocity profiles, streamlines and pressure.Meanwhile, temperature and local Nusselt number distribution are also analyzed bysimulation. Additionally, overall Nusselt number and friction factor are compared andanalyzed by field synergy principle and overall thermal enhancement factor. The mechanismof heat transfer enhancement in rectangular channel with different geometrical protrusionsand cavity surfaces and the effect of vertical flow on heat transfer enhancement weresummarized. The aim of this paper is to modify the traditional surface structures with thepurpose of overall performance maximization.
     Transversal ribs are widely used in heat exchanger, reactor and mass transfer equipment.This paper presents a deflector which transports the fluid in the mainstream to the near-wallregion between two ribs, inducing the flow disturbance in this region and increasing the heattransfer rate. Compared with the ribbed channel, the overall Nusselt number is enhanced by14.8%~22.7%. In spite of higher flow resistance, the old devices are modified with low costand installation convenience. Moreover, four kinds of deflector and the locations of deflectorare investigated, finding that inclined flat deflector indicates superior heat transfer rate toother cases.
     Discrete inclined ribs and grooves with crossed arrangement and parallel arrangementare presented to study the fluid flow and heat transfer by experiment and simulations,showing that overall performance of discrete inclined ribs and groove with crossedarrangement is about10%~13.6%higher than that of parallel arrangement. The effects of inclined angle and rib pitch on the heat transfer are also investigated, finding that the best ofinclined angle is45°.
     A pair of longitudinal vortices is formed by trapezoidal static mixer, enhancing the heattransfer with less pressure loss. A trapezoidal vortex generator with clearance is presented toincrease overall thermal enhancement factor. Flow mode and the location of clearance areconsidered as parameters which influence heat transfer and flow resistance. The results showthat the Nusselt number with case of full size tab and flow forward is higher than thetraditional trapezoidal vortex generator. At lower Reynolds number, the case of backwardflow is better than that of forward flow. At higher Reynolds number, the case is reverse.Therefore, the tab with clearance can increase heat transfer efficiency.
     Spheric protrusion or dimple is a novel surface structure of heat transfer enhancementwhich attracts much interest all over the world. This paper presents a hemispheric protrusionwith imprinted dimple or dimple with imprinted protrusion and the studies on heat transferand flow characteristics are conducted by numerical method. The results show that the overallthermal enhancement factor of novel structure can be enhanced by10%compared to generalprotrusion due to the unique flow characteristic such as flow separation, vortex impingementand horseshoe vortices. The analysis of flow pattern shows that drag reduction of dimpledchannel with imprinted protrusion is attributed to the separation and suppression ofre-circulating vortices in the cavity, leading to the reduction of pressure drop betweenupstream region and downstream region. In conclusion, the combination of protrusion andcavity in the present way can increase the heat transfer efficiency.
引文
[1]李洪嫔.中国能源的形势和政策浅析[J].资源与产业,2006,6:25-27.
    [2]柴生高.浅谈我国的能源现状及能源对策[J].中国外资,2011,11:194-195.
    [3]康文星,田徵,何介南.我国能源利用现状的初步分析[J].中南林业科技大学学报2010,(30)12:127-132.
    [4]王庆一.我国与世界能源数据[J].煤炭经济研究,2004,27(4):73-79.
    [5]宣能啸.我国能效问题分析[J].节能,2004,10:3-7.
    [6]方书起,祝春进,吴勇,牛青川,赵银峰.强化传热技术与新型高效换热器研究进展[J].化工机械,2004,31(4):249-253
    [7]钱颂文.换热器设计手册[M].北京:化学工业出版社,2001.
    [8] Bergles A.E. The implications and challenges of enhanced heat transfer for the chemicalprocess industries. Trans. IChemE,2001,79(A4):437-444.
    [9]古锋,秦延忠,张惠民,候涛.热交换设备传热强化技术的新进展[J].煤矿现代化,2006,6:75-76
    [10]朱冬生.插入物强化管壳式换热器管内高粘度流体的传热[J].石油炼制与化工,1998,29(7):39-41
    [11]黄军,王令,王秋旺,黄彦平.纵向涡发生器传热强化的研究进展[J].动力工程,2007,2(2):211-214
    [12]朱冬生,钱颂文.强化传热技术及其设计应用[J].化工装备技术,2000,21(6):1-5.
    [13]宋斌,廖亮,刘振华.减阻流体添加碳纳米管后的流动换热特性[J].上海交通大学学报,2010,44(10):1333-1335
    [14]林宗虎.强化传热技术[M].北京:化学工业出版社,2007
    [15]Bergles A.E. ExHFT for fourth generation heat transfer technology[J]. Exp. ThermalFluid Sci.,2002,26(2-4):335-344.
    [16]Schubauer, G.B., Spangenberg W.G., Forced Mixing in Boundary Layers, J. Fluid Mech.,1960,8:10-31.
    [17]Johnson T. R., and Joubert P. N., The Influence of VortexGenerators on Drag and HeatTransfer from a Circular Cylinder Normal to an Airstream, J. Heat Transfer,1969,91:91-99.
    [18]高猛,周国兵.纵向涡流发生器强化传热数值研究进展[J].现代电力,2010,27(5):76-78
    [19]齐承英,周国兵,曹惠玲.新型涡流发生器强化换热实验研究[J].工程热物理学报,2002,23(增刊):173-176.
    [20]叶秋玲,周国兵,程金明等.涡流发生器强化换热和压降特性的实验设计[J].现代电力,2010,27(2):48-52.
    [21]齐承英,闵春华.纵向涡发生器强化传热研究进展与展望[J].河北工业大学学报,2008,37(5):1-5
    [22]Valencia A. Heat transfer enhancement due to self-sustained oscillation transversevortices in channels with periodically mounted rectangular bars[J]. Int. J. Heat MassTransfer,1999,42(11):2053-2062.
    [23]过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122.
    [24]Fiebig M. Embedded vortices in internal flow: heattransfer and pressure lossenhancement[J]. Int. J. Heat and Fluid Flow,1995,16(5):376-388.
    [25]Kline S.J., Reynolds W.C., Schraub F.A., et al. The structure of turbulent boundary layer[J]. J. Fluid Mech,1967,37:741-773.
    [26]Schoppa W., Hussain F. Coherent structure dynamics in near-wall turbulence [J]. FluidDynamics Research,2000,26:119-139.
    [27]钱颂文,朱冬生,李庆领,等.管式换热器强化传热技术[M].北京:化学工业出版社,2002.
    [28]Yukitsugu Shoji, Kyozo Sato, Oliver D.R. Heat Transfer Enhancement in Round TubeUsing Wire Coil: Influence of Length and Segmentation [J]. Heat Transfer—AsianResearch,2003,32(2):99~106
    [29]Solano J.P., García A., Vicente P.G., Viedma A. Flow field and heat transfer investigationin tubes of heat exchangers with motionless scrapers[J]. Applied Thermal Engineering,2011,31:2013-2024
    [30]S. Eiamsa-ard, P. Promvonge. Thermal characteristics in round tube fitted with serratedtwisted tape[J]. Applied Thermal Engineering,2010,30:1673-1682
    [31]S. Eiamsa-ard, Sarawut Rattanawong, P. Promvonge, Turbulent convection in round tubeequipped with propeller type swirl generators[J]. Int. Commun. Heat Mass Transfer,2009,36(4):357-364
    [32]S. Eiamsa-ard. Study on thermal and fluid flow characteristics in turbulent channel flowswith multiple twisted tape vortex generators[J]. Int. Commun. Heat and Mass Transfer,2010,31:644–651
    [33]S. Eiamsa-ard, P. Promvonge. Thermal characterization of turbulent tube flows overdiamond-shaped elements in tandem[J]. Int. J. Therm. Sci.,2010,49:1051-1062
    [34]S. Eiamsa-ard, C. Thianpong, P. Eiamsa-ard. Turbulent heat transfer enhancement bycounter/co-swirling flow in a tube fitted with twin twisted tapes[J]. Exp. Therm. FluidSci.,2010,34:53–62
    [35]Chiu Y.W., Jang J.Y.,3D numerical and experimental analysis for thermal–hydrauliccharacteristics of air flow inside a circular tube with different tube inserts[J]. AppliedThermal Engineering,2009,29:250–258
    [36]Guo J.F., Xu M.T., Lin C., Numerical investigations of circular tube fitted with helicalscrew-tape inserts from the viewpoint of field synergy principle[J]. Chem. Eng.Processing,2010,49:410–417
    [37]Smith Eiamsa-ard, Pongjet Promvonge, Influence of Double-sided Delta-wing TapeInsert with Alternate-axes on Flow and Heat Transfer Characteristics in a Heat ExchangerTube[J]. Chinese Journal of Chemical Engineering,2011,19(3):410~423
    [38]Shyy Woei Chang, Tsun Lirng Yang, Jin Shuen Liou. Heat transfer and pressure drop intube with broken twisted tape insert[J]. Exp. Therm. Fluid Sci.,2007,32(2):489-501
    [39]Tijing L.D., Pak B.C., Baek B.J., Lee D.H., A study on heat transfer enhancement usingstraight and twisted internal fin inserts[J]. Int. Commun. Heat Mass Transfer,2006,33(6):719-726.
    [40]Yakut K., Sahin B., The effects of vortex characteristics on performance of coiled wireturbulators used for heat transfer augmentation[J]. Applied Thermal Engineering,2004,24(16):2427-2438
    [41]Ray S., Date A.W. Friction and heat transfer characteristics of flow through square ductwith twisted tape insert[J]. Int. J. Heat Mass Transfer,2003,46(5):889-902
    [42]Huang G.H., Cui NY., Lu Y.S. An investigation on augmentation of single phase heattransfer in tube by means of insert[J]. J. Chem. Ind. Eng.,1983,1:23-35
    [43]Aiwu Fan, Junjie Deng, Jian Guo, Wei Liu, A numerical study on thermo-hydrauliccharacteristics of turbulent flow in a circular tube fitted with conical strip inserts[J].Applied Thermal Engineering,2011,31:2819~2828
    [44]Webb R.L., Eckert E.R.G. Heat transfer and friction in tubes with repeated-ribroughness[J]. Int. J. Heat Mass Transfer,1971,14:601-617.
    [45]Lorenz S., Mukomilow D., Leiner W. Distribution of the heat transfer coefficient in achannel with periodic transverse grooves[J]. Exp. Therm. Fluid Sci.,1995,11(3):234-242
    [46]Okamoto S., Seo S., Nakaso K. Turbulent shear flow and heat transfer over the repeatedtwo-dimensional square ribs on ground plane[J]. J. Fluids Eng.,1993,115(4):631-637
    [47]Liou T.M., Chang W.C. Liao C.C., LDV measurements in lateral model aneurysms ofvarious sizes[J]. Experiments in Fluids,2005,23(4):317-324.
    [48]Martinuzzi R.J., AbuOmar M. Study of the flow around surface-mounted pyramids[J].Experiments in Fluids,2007,34(3):379-389.
    [49]Liou T.M., Hwang J.J., Chen S.H.. Simulation and Measurement of Enhanced TurbulentHeat Transfer in a Channel with Periodic Ribs on One Principal Wall[J]. Int. J. HeatMass Transf.,1993,36(2):507–517.
    [50]Hwang J.J., Liou T.M., Heat transfer in a rectangular channel with perforated turbulencepromoters using holographic interferometry measurement[J], Int. J. Heat Mass Transfer,1995,38:3197-3207.
    [51]Jaurker A.R., Saini J.S., Gandhi B.K., Heat transfer and friction characteristics ofrectangular solar air heater duct using rib-grooved artificial roughness[J]. Solar Energy,2006,80:895-907.
    [52]Bilen K., Cetin M., Gul H., Balta T., The investigation of groove geometry effect on heattransfer for internally grooved tubes[J]. Appl. Therm. Eng.,2009,29:753-761.
    [53]Eiamsa-ard S., Promvonge P., Thermal characteristics of turbulent rib-grooved channelflows[J]. Int. Commun. Heat Mass Transfer,2009,36:705-711.
    [54]Kaewkohkiat Y., Kongkaitpaiboon V., Eiamsa-ard S., Pimsarn M., Heat TransferEnhancement in a Channel with Rib-Groove Turbulators[C]. AIP ConferenceProceedings2010,1207:311-16.
    [55]Eiamsa-ard S., Promvonge P., Numerical study on heat transfer of turbulent channel flowover periodic grooves[J]. Int. Commun. Heat Mass Transfer,2008,35(7):844-852
    [56]Aharwal K.R., Gandhi B.K., Saini J.S., Experimental investigation on heat-transferenhancement due to a gap in an inclined continuous rib arrangement in a rectangular ductof solar air heater[J]. Renewable Energy,2008,33(4):585-596
    [57]Li X.W., Yan H., Meng J.A., Li Z.X., Visualization of longitudinal vortex flow in anenhanced heat transfer tube[J]. Exp. Therm. Fluid Sci.,2007,31(6):601-608.
    [58]Tatsumi K., Iwai H., Inaoka K., Numerical simulation for heat and fluid characteristics ofsquare duct with discrete rib turbulators[J]. Int. J. Heat Mass Transfer,2002,45:4353-4359.
    [59]W.M. Song, J.A. Meng, Z.X. Li, Numerical study of air-side performance of a finned flattube heat exchanger with crossed discrete double inclined ribs[J]. Appl. Therm. Eng.,2010,30:1797-1804.
    [60]A. Layek, J.S. Saini, S.C. Solanki, Heat transfer and friction characteristics for artificiallyroughened ducts with compound turbulators[J]. Int. J. Heat Mass Transfer,2007,50(24):4845-4854
    [61]Xiufang Gao, Bengt Sundén, PIV measurement of the flow field in rectangular ductswith60°parallel, crossed and V-shaped ribs[J]. Exp. Therm. Fluid Sci.,2004,28(6):639-653
    [62]Fiebig M. Vortex generator for compact heat exchanger [J].Journal of Enhanced HeatTransfer,1995,2:43-61
    [63]M. Fiebig, A. Valencia, N.K. Mitra, Local heat transfer and flow losses in fin-and-tubeheat exchangers with vortex generators: A comparison of round and flat tubes[J]. Exp.Therm. Fluid Sci.,1994,8(1):35-45
    [64]M. Fiebig, Embedded vortices in internal flow: heat transfer and pressure lossenhancement[J]. Int. J. Heat Fluid Flow,1995,16(5):376-388
    [65]S. Tiggelbeck, N. Mitra, M. Fiebig, Flow structure and heat transfer in a channel withmultiple longitudinal vortex generators[J]. Exp. Therm. Fluid Sci.,1992,5(4):425-436
    [66]G. Biswas M. Fiebig, N.K. Mitra, Heat transfer enhancement in fin-tube heat exchangersby winglet type vortex generators[J]. Int. J. Heat Mass Transfer,1994,37(2):283-291
    [67]G. Biswas, K. Torii, D. Fujii, K. Nishino, Numerical and experimental determination offlow structure and heat transfer effects of longitudinal vortices in a channel flow[J]. Int. J.Heat Mass Transfer,1996,39(16):3441-3451
    [68]宋宪耕,宋东辉,王肇杰,等.矩形通道湍流附面层内嵌入纵向涡偶强化换热机理的实验研究[J].宇航学报,1996,17(2):70-75
    [69]Chen Y., Fiebig M., Mitra N.K.Heat transfer enhancement of finned oval tubes withstaggered punched longitudinal vortex generators[J]. Int. J. Heat Mass Transfer,2000,43:417-435
    [70]孟继安,李志信,过增元.不连续双斜向内肋强化换热管性能[J].化工学报,2005,56(6):996-998
    [71]Guobing Zhou, Qiuling Ye, Experimental investigations of thermal and flowcharacteristics of curved trapezoidal winglet type vortex generators[J]. Applied ThermalEngineering,2012,37:241-248
    [72]M. Henze, J. von Wolfersdorf, Influence of approach flow conditions on heat transferbehind vortex generators[J]. Int. J. Heat Mass Transfer,2011,54(1):279-287
    [73]I. Kotcioglu, S. Caliskan, A. Cansiz, S. Baskaya, Second law analysis and heat transferin a cross-flow heat exchanger with a new winglet-type vortex generator [J]. Energy,2010,35:3686-3695
    [74]Liou T.M., Chen C.C., Tsai T.W., Heat transfer and fluid flow in a square with12different shaped vortex generators[J]. Journal of Heat Transfer,2000,122:327-335.
    [75]周国兵,张于峰,齐承英,等.几种翼型涡流发生器强化换热及流阻性能的实验研究[J].天津大学学报,2003,36(6):735-738.
    [76]Kenan Y., Sahin B., Celik C., et al. Effects of tapes with double-sided delta-winglets onheat and vortex characteristics [J]. Applied Energy,2005,23:77-95.
    [77]Valencia A. Turbulent flow and heat transfer in a channel with a square bar detachedfrom the wall[J]. Numerical Heat Transfer Part A,2000,37:289-306
    [78]Mehta R.D., Bradshaw P., Longitudinal vortices imbedded in turbulent boundary layers.Part2. Vortex pair with "common flow" upwards [J]. J. Fluid Mech,1988,188:529-546
    [79]Lee S.H., Ryou H.S., Choi Y.K., Heat transfer in a three-dimensional turbulent boundarylayer with longitudinal vortices[J]. Int. J. Heat Mass Transfer,1999,42:1521-1534.
    [80]Sohankar A. Heat transfer augmentation in a rectangular channel with a vee-shapedvortex generator[J]. Int. J Heat Fluid Flow,2007,28:306-317
    [81]Chunhua Min, Chengying Qi, Xiangfei Kong, Jiangfeng Dong. Experimental study ofrectangular channel with modified rectangular longitudinal vortex generators[J]. Int. J.Heat Mass Transfer,2010,53:3023–3029
    [82]M.S. Aris, I. Owen, C.J. Sutcliffe. The development of active vortex generators fromshape memory alloys for the convective cooling of heated surfaces[J]. Int. J. Heat MassTransfer,2011,54(16):3566-3574
    [83]M.S. Aris, R. McGlen, I. Owen, C.J. Sutcliffe. An experimental investigation into thedeployment of3-D, finned wing and shape memory alloy vortex generators in a forcedair convection heat pipe fin stack[J]. Applied Thermal Engineering,2011,31(15):2230-2240
    [84]P.M. Ligrani, G.I. Mahmood, J.L. Harrison, C.M. Clayton, D.L. Nelson, Flow structureand local Nusselt number variations in a channel with dimples and protrusions onopposite walls[J]. Int. J. Heat Mass Transfer,2001,44(23):4413-4425
    [85]Pedro G. Vicente, Alberto Garc a, Antonio Viedma. Experimental study of mixedconvection and pressure drop in helically dimpled tubes for laminar and transitionflow[J]. Int. J. Heat Mass Transfer,2002,45(26):5091-5105
    [86]Sang Dong Hwang, Hyun Goo Kwon, Hyung Hee Cho, Heat transfer withdimple/protrusion arrays in a rectangular duct with a low Reynolds number range[J]. Int.J. Heat Fluid Flow,2008,29(4):916-926
    [87]Mohammad A. Elyyan, Ali Rozati, Danesh K. Tafti, Investigation of dimpled fins forheat transfer enhancement in compact heat exchangers[J]. Int. J. Heat Mass Transfer,2008,51(12):2950-2966
    [88]Hyun Goo Kwon, Sang Dong Hwang, Hyung Hee Cho, Measurement of local heat/masstransfer coefficients on a dimple using naphthalene sublimation[J]. Int. J. Heat MassTransfer,2011,54(6):1071-1080
    [89]Artem Khalatov, Aaron Byerley, Robert Vincent, Flow Characteristics Within andDownstream of a Single Shallow Cylindrical and Spherical Dimple: Effect ofPre-Dimple Boundary Layer Thickness[C]. ASME Turbo Expo2005, Paper no.GT2005-68050,61-77
    [90]M.K. Chyu, V. Natarajan, Heat transfer on the base surface of three dimensionalprotruding elements[J]. Int. J. Heat Mass Transfer,1996,39(14):2925-2935
    [91]Hyun-Min Kim, Mi-Ae Moon, Kwang-Yong Kim, Multi-objective optimization of acooling channel with staggered elliptic dimples[J]. Energy,2011,36(5):3419-3428
    [92]J. Park, P.M. Ligrani, Numerical predictions of heat transfer and fluid flowcharacterisitics for seven different dimpled surface in a channel[J]. Numer. Heat Tt.A-Appl.,2005,47:209-232.
    [93]Jin Choi, Woo-Pyung Jeon, and Haecheon Choi, Mechanism of drag reduction bydimples on a sphere[J]. Physics of Fluids,2006,18,041702
    [94]P. M. Ligrani, J. L. Harrison, G. I. Mahmmod, M. L. Hill, Flow structure due to dimpledepressions on a channel surface[J]. Physics of Fluids,2005,13(11)3442~3449
    [95]S.A. Isaev, N.V. Kornev, A.I. Leontiev, E. Hassel, Influence of the Reynolds number andthe spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrowchannel[J]. Int. J. Heat Mass Transfer,2010,53(3):178-197
    [96]樊菊芳,何雅铃,陶文铨.球突翅片表面的数值模拟和特性分析[J].工程热物理学报,2006,29(11):80-83
    [97]蓝吉兵,谢永慧,张荻.微通道中球窝/球凸强化传热特性研究[J].西安交通大学学报,2011,45(7):90-94
    [98]李博,黄护林.球凸板对磁场中导电流体自由表面流动的传热强化[J].化工学报,2009,60(7):1610-1615
    [99]Huichun Liu, Jianhua Wang. Numerical investigation on synthetical performances offluid flow and heat transfer of semiattached rib-channels[J]. Int. J. Heat Mass Transfer,2011,54,(3):575-583
    [100]C. Herman, E. Kang. Heat transfer enhancement in a grooved channel with curvedvanes[J]. Int. J. Heat Mass Transfer,2002,45(16):3741-3757
    [101]Ortiz LL, Guerrero AH, Arana C R et al. Heat transfer enhancement in a horizontalchannel by the addition of curved deflectors[J]. International Journal of Heat and MassTransfer,2008,51(2):3972-3984.
    [102]焦安军,厉彦忠,张瑞,陈纯正.板翅式换热器导流片结构参数对其导流性能的影响[J].化工学报,2003,154(2):154-157
    [103]Fluent6.3Users Guide. Lebanon, NH: Fluent Inc.,2006.
    [104]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [105]普朗特L,奥斯瓦提奇K,维格哈特K.流体力学概论[M].郭永怀,陆士嘉译.北京:科学出版社,1984.
    [106]史里希廷H.边界层理论(下册)[M].徐燕侯等译.北京:科学出版社,1991.
    [107]戴莱J.W.,哈里曼D.R.F.,流体动力学[M].郭子中等译.北京:人民教育出版社,1981
    [108]Wolfstein M. The velocity and temperature distribution of one-dimensional flow withturbulence augmentation and pressure gradient[J]. Int. J. Heat Mass Transfer,1969,12:301-318.
    [109]Z.Y. Guo, D.Y. Li, B.X Wang, A novel concept for convective heat transferenhancement[J]. Int. J. Heat Mass Transfer,1998,41:2221-2225
    [110]W.Q. Tao, Z.Y. Guo, B.X. Wang, Field synergy principle for enhancing convective heattransfer-its extension and numerical verifications[J]. Int. J. Heat Mass Transfer,2002,45:3849~3856
    [111]W.M. Kays, M.E. Crawford, Convective Heat and Mass Transfer[M]. McGraw-HillBook Company, New York,1980
    [112]Y.L. He, W.Q. Tao, F.Q. Song, W. Zhang, Three-dimensional numerical study of heattransfer characteristics of plain plate fin-and-tube heat exchangers from viewpoint offield synergy principle[J]. Int. J. Heat Fluid Flow,2005,26:459-473.
    [113]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004
    [114]Wei Peng, Pei-Xue Jiang, Yang-Ping Wang, Bing-Yuan Wei. Experimental andnumerical investigation of convection heat transfer in channels with different types ofribs[J]. Applied Thermal Engineering,2011,31(15):2702-2708
    [115]M. Henze, J. von Wolfersdorf. Influence of approach flow conditions on heat transferbehind vortex generators[J]. Int. J. Heat and Mass Transfer,2011,54(1):279-287
    [116]M. Fiebig, Vortices, generators and heat transfer[J]. Trans. IchemE,1998,76Part A:108–123
    [117]Ye Qiuling, Zhou Guobing, Cheng Jinming, Zhou Shaoxiang, Cheng Weiliang.Influence of different vortex generators on heat transfer enhancement and pressure dropcharacteristics in a rectangular channel[C]. Proceedings of the CSEE.2010,30(11):86-91
    [118]汪健生,汤俊洁,张金凤.半椭圆涡流发生器强化换热机理[J].机械工程学报,2006,42(5):160-164
    [119]汪健生,刘志毅,张金凤.斜截椭圆柱式涡流发生器强化传热的大涡模拟[J].机械工程学报,2007,43(10):55-61
    [120]汪健生,张金凤,刘志毅小尺度涡流发生器强化传热的数值模拟[J].化工学报,2007,58(7):1648-1652
    [121]H. Mohand Kaci, T. Lemenand, D. Della Valle, H. Peerhossaini, Effects of embeddedstreamwise vorticity on turbulent mixing[J]. Chem. Eng. Process,2009,48(1):1457–1474
    [122]Gretta W J, Smith C R. The flow structure and statistics of a passive mixing tab[J].Fluid Eng.,1993,115(3):255–263
    [123]Meng H, Yang W. Dynamics of hairpin vortices in the wake of a surface mountedmixing tab[C].13th US Congress of Appl. Mech. Gainesville, FL,1998
    [124]W. Yang, H. Meng, J. Sheng. Dynamics of hairpin vortices generated by a mixing tab ina channel flow[J]. Exp. Fluids,2001,30(5):705–722
    [125]H.M. Kaci, C. Habchi, T. Lemenand, D.D. Valle, et al. Flow structure and heat transferinduced by embedded vorticity[J]. Int. J. Heat and Mass Transfer,2010,53(17):3575-3584
    [126]C. Habchi, T. Lemenand, D. Valle, H. Peerhossaini. Turbulent mixing and residencetime distribution in novel multifunctional heat exchangers–reactors[J]. Chem. Eng.Process,2010,49(10):1066-1075
    [127]S. Dong, H. Meng. Flow past a trapezoidal tab[J]. J. Fluid Mech.,2004,510:219–242
    [128]Kaci H M, Lemenand T, Valle D D, Peerhossaini H. Effects of embedded streamwisevorticity on turbulent mixing[J]. Chem. Eng. Process,2009,48(10):1459-1476
    [129]V. Gnielinski. New equations for heat and mass transfer in turbulent pipe and channelflows[J]. International Chemical Engineering,1976,16(4):359-368.
    [130]B.S. Petukhov, L.G. Genin, S.A. Kovalev. Heat transfer in nuclear power equipment[M].Moscow: Energoatomizdat Press,1996:250-298
    [131]程宝华,李先瑞.板式换热器及换热装置技术应用手册[M].北京:中国建筑工业出版社,2005.
    [132]Kline S.J., McClintock F.A., Describing uncertainties in single-sample experiment[J].ASME Mech. Eng.,1953,75:3-8.
    [133]S. Kakac, R.K. Shah, W. Aung, Handbook of Single-Phase Convective HeatTransfer[M]. John Wiley and Sons, New York,1987.
    [134]Webb R L. Principles of Enhanced Heat Transfer[M]. John Wiley&Sons, New York,1994
    [135]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:347-376
    [136]Li X.W., Meng J.A., Guo Z.Y., Turbulent flow and heat transfer in discrete doubleinclined ribs tube[J]. Int. J. Heat Mass Transfer,52(3),962-970(2009).
    [137]V. SriHarsha, S.V. Prabhu, R.P. Vedula, Influence of rib height on the local heat transferdistribution and pressure drop in a square channel with90°continuous and60°V-brokenribs[J]. Applied Thermal Engineering,2009,29(12):2444-2445
    [138]陈炎嗣,郭景仪.冲压模具设计与制造技术[M].北京:北京出版社,1991
    [139]Shah R.K., London A.L., Laminar Flow Forced Convection in Ducts[M]. AcademicPress, Inc., New York (1978).
    [140]徐志明,王月明,张仲彬.板式换热器单边流动与对角流动数值模拟[J].热能动力工程,2011,06:
    [141]Meng J.A., Liang X.G., Li Z.X., Field synergy optimization and enhanced heat transferby multi-longitudinal vortexes flow in tube[J]. Int. J. Heat Mass Transfer,2005,48:3331-3337.
    [142]Gongnan Xie, Weihong Zhang, Bengt Sunden. Computational analysis of the influencesof guide ribs/vanes on enhanced heat transfer of a turbine blade tip-wall[J]. Int. J.Thermal Sciences,2012,51:184-194
    [143]S. Ekkad, H. Nasir, Dimple enhanced heat transfer in high aspect ratio channels[J]. J.Enhanc. Heat Transfer,2003,10:395–405.
    [144]Turnow, J., et al. Flow structures and heat transfer on dimples in a staggeredarrangement[J]. Int. J. Heat Fluid Flow (2012), doi:10.1016/j.ijheatfluidflow.2012.01.002
    [145]李晓伟,通道湍流换热强化的数值与实验研究[D].清华大学博士论文,2008
    [146]Sang Dong Hwang, Hyun Goo Kwon, Hyung Hee Cho, Heat transfer withdimple/protrusion arrays in a rectangular duct with a low Reynolds number range[J]. Int.J. Heat Fluid Flow,2008,29:916–926
    [147]Mohammad A. Elyyan, Ali Rozati, Danesh K. Tafti, Investigation of dimpled fins forheat transfer enhancement in compact heat exchangers[J]. Int. J. Heat Mass Transfer,2008,51(12):2950-2966
    [148]Moon HK, O’Connell T, Glezer B. Channel height effect on heat transfer and friction ina dimpled passage[J]. J Eng Gas Turbines Power2000;122:307-13.
    [149]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000
    [150]J.H. Doo, H.S. Yoon, M.Y. Ha, Study on improvement of compactness of a plate heatexchanger using a newly designed primary surface[J]. Int. J. Heat Mass Transfer,2010,53(26):5733-5746

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700