用户名: 密码: 验证码:
极化SAR图像的分割和分类算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SAR图像中包含多种地物目标信息,图像中各类目标的准确分类,对SAR图像中地物目标信息的理解具有重要意义。特别是极化SAR,由于极化散射矩阵包含有丰富的地物信息,因此,极化SAR图像的分割和分类一直是雷达遥感应用领域的热门研究方向之一。
     但是,由于自然场景的复杂性,在目前的极化SAR图像处理研究中,仍然存在着数据统计先验知识不足、特征量不能全面描述目标物理属性等问题,影响了极化SAR信息处理方法的普遍推广,如何提高分类和分割精度、鲁棒性能是当前极化SAR图像分类研究中的一个重点。
     近年来,基于偏微分方程的图像分析与处理成为人们研究的焦点,本文在研究当前极化SAR图像处理中图像分割和分类领域的发展情况的基础上,重点开展以偏微分方程为基础的SAR图像分割和分类研究,主要工作和贡献如下:
     1)深入分析了SAR图像的区域与边界特征,建立了参数活动轮廓模型和几何活动轮廓模型,利用特征信息定义了合理的能量泛函模型,提出了基于边界和区域信息的活动轮廓模型的图像分割水平集算法,不仅能够自然地处理边界拓扑变化,而且同时能检测图像中多个物体边缘,提高了分割性能。
     2)建立了一种用于图像分类的变分模型,该模型结合正则化过程,可以较好地保持图像边缘信息,同时可以用于图像恢复。基于变分法的极化SAR图像分类方法不仅能够实现SAR图像的正确分类,克服SAR图像中相干斑噪声的影响,并且算法快速,易于实现。
     3)提出了一种基于偏微分方程的多区域SAR图像分割方法,充分结合图像边缘梯度信息和多区域的统计特征信息,既克服了仅仅依靠边界梯度进行分割的缺陷,又能充分利用边界梯度信息,该方法没有引入任何附加参数,同时可以估计区域数目,使用分级分裂最小化能量函数,从而获得更理想的分割效果。
     4)建立了适合于极化SAR的偏微分方程模型,利用曲线演化和水平集方法研究极化SAR图像的分割问题,并结合图像的极化信息,将极化信息作为边界演化的判定条件之一,控制边界的运动和停止,实现极化SAR图像的分割,同时有效解决水平集方法分类问题中过渡分割问题。
     5)利用真实SAR数据和极化SAR数据,开展了算法仿真和试验研究,实现了SAR图像的分割和分类,实现了上述分割和分类算法的验证。
     通过开展基于偏微分方程的SAR图像处理和分析,为SAR图像理解和目标识别问题提供了一个新的解决途径,也能够对基于偏微分方程的图像处理方法研究起到推动作用。
Synthetic aperture radar (SAR) instruments have been widely used in the past years for remote sensing applications such as agriculture, geology and military surveillance. Precise segmentation and classification of different types of targets in SAR images is a crucial step for SAR image understanding and interpretation. Particularly, segmentation and classification of polarimetric SAR (PolSAR) image is a hot topic in SAR applications since its polarimetric scattering matrix consists of more ground target information.
     Due to the complexity of land feature, however, there are still many problems such as lack of statistical prior knowledge and insufficient description of physical property of target by the present eigenvalues. The problems are blocking the application of PolSAR processing methodology and how to improve the accuracy and robustness of segmentation or classification algorithms is generally acknowledged as a difficult problem.
     Recently, more and more study has been concentrating on the partial differential equations (PDE) based image processing approaches and their applications. Based on the analysis of the existing SAR image segmentation and classification methods, this dissertation proposes to study the SAR image segmentation and classification by using curve evolution theory and level set method which are both under the framework of PDE. The primary contents and the academic contributions are as follows:
     1) Following the detailed analysis of the region as well as boundary properties presented in SAR images, both parametric and geometric active contour models are presented. A more appropriate energy functional is derived by sufficiently using the image information. A level set SAR image segmentation method with joint region-boundary information is presented in this dissertation. The level set based approach has better segmentation performance and it has the ability to deal with the topology variation of active contours and to partition the multiple regions simultaneously.
     2) A variational model for SAR image classification is presented. The model conserves the edge information and is suitable for image restoration since it integrates with regularization. The variational classification method which is easy to implement and has little time cost classifies the ground objects in PolSAR images with high accuracy and restrains the influence of the speckle noise.
     3) A multi-region SAR image segmentation approach based on partial differential equation is proposed. The method sufficiently exploits the edge information and avoids the drawback when the segmentation merely depends on image gradient since it well integrates the gradient information and the statistical property of different regions. It needs no additional parameters and can estimate the region numbers. Hierarchical splits energy functional is used to get better segmentation results.
     4) A PDE model adapted for PolSAR segmentation is presented. The segmentation of PolSAR is implemented by using curve evolution and level set method. The polarimetric information is included in the model and it is employed as a criterion of curve evolution to control the movement of active boundary The criterion guarantees the correct segmentation and avoids the over segmentation problem commonly occurs in level set method.
     5) Detailed experiments are designed and different types of data, such as synthetic images, real SAR images and PolSAR images, are used to verify the performance of the segmentation and classification approaches.
     In general, study on the PDE based SAR image processing method provides a new way for SAR image interpretation and target recognition and in turn is a notable promotion for the development of image processing methodology under PDE framework.
引文
[1]张澄波.综合孔径雷达原理、系统分析与应用.北京:科学出版社,1989
    [2]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用.国防工业出版社,北京,1999
    [3]B.Alexander,A.Kostinski,W.M.Boerner.On Foundations of Radar Polarimetry.IEEE Trans.On Antennas and Propagation,AP-34(12):1395-1403
    [4]郭华东.雷达对地观测理论与应用.北京:科学出版社,2000
    [5]L.Tsang,J.A.Kong,R.Shin.Theory of Microwave Remote Sensing.New York:Wiley Interscience,1985.1-2
    [6]E.Rignot,R.Chellappa.Segmentation of Polarimetric Synthetic Aperture Radar Data.IEEE Transactions on Image Processing,1992,1(3):281-299
    [7]R.Touzi,S.Goze,T.Letoan et al.Polarimetric Discriminators for SAR Images.IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):973-980
    [8]E.Krogager.A New Decomposition of the Radar Target Scattering Matrix.Electronic Letters,1990,26(18):1525-1527
    [9]J.Van Zyl,H.A.Zebker,and C.Elachi,“Imageing Radar Polarization Signitures:Theory and Observation”,Radio Science,Vol.22,No.24,pp.529-534,July-Aug.,1987
    [10]S.R.Cloude,E.Pottier,“A review of target decomposition theorems in radar polarimetry”,IEEE Trans.On GRS,Vol.34,No.2,1996,pp.498-518
    [11]C.Oliver,S.Quegan.Understanding Synthetic Aperture Radar Images.Artech House,London,1998
    [12]A.Lopes,E.Nezry,R.Touzi.Structure detection and statistical adaptive speckle filters in SAR images.Int.J.Remote Sensing,1993,14(9):1735-1758
    [13]J.Xiao,J.Li,A.Moody.A detail-preserving and flexible adaptive filter for speckle suppression in SAR imagery.Int.J.Remote Sensing,2003,24(12):2451-2465
    [14]D.T.Kuan,Alexander A.Sawchuk,Timothy C.Strand,Pierre Chavel,Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise,IEEE Trans.on Pattern Analysis and Machine Intelligence,1985,7(2):pp 165-177
    [15]J.S.Lee,M.R.Grunes,R.Kwok,.Classification of Multi-look Polarimetric SAR Imagery Based on Complex Wishart Distribution.Int.J.Remote Sensing,1994,15(11):2299-2311
    [16] J. S. Lee, M. R. Grunes, T. L. Ainsworth, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5):2249-2258
    [17] A. Lopes, R. Touzi, E. Nezry. Adaptive Speckle Filters and Scene Heterogeneity, IEEE Transaction on Aerospace and Electronic Systems, 1990,28(6):992-1000
    [18] V. V. Zaitsev, Analysis of the Speckle Suppression Algorithms Based on the MAP Approach. EUSAR'96, Konigswinter,Germany,1996,pp159-162
    [19] J. M. Durand, J. Bernard, J. R. Perbos, SAR Data Filtering for Classification, IEEE Trans, on Geoscience and Remote Sensing,1987,25(5):pp629-637
    [20] H. Krim, I. C. Schick, Minimax Description Length for Signal Denoising and Optimized Representation, IEEE Trans. on Information Theory, 1999,45(3):pp898-908
    [21] I. R. Joughin, D. P. Winebrenner, and D. B. Percival, "Probability density function for multi-look polarimetric signatures", IEEE Trans. Geosci. Remote Sensing, Vol. GE-32, NO. 3, pp.562-574, May 1994
    [22] F. T. Ulaby, F. Kouyate, B. Brisco. "Texture information in SAR images", IEEE Trans. Geosci. Remote Sensing, Vol. GE-24, pp.235-245, March 1986
    [23] A. Lopes, H. Laur, and E. Nezry, "Statistics distribution and texture in multi-look and complex SAR images", in Proc. IGARSS'90 Symp., pp.2427-2430,1990
    [24] G. Lemoine, F. D. Grandi, A. J. Sieber. Polarimetric Contrast Classification of Agricultural Fields Using MAESTROI AIRSAR Data. Int. J. Remote Sensing, 1994, 15(14): 2851-2869
    [25] E. Rignot, and R. Kwok, "Characterization of spatial statistics distributed targets in SAR data", Int. J. Remote Sensing, Vol. 14, No. 2,1993
    [26] J. S. Lee, D. L. Schuler, R. H. Lang, and K. J. Ranson, "K-distribution for multi-look processed polarimetric SAR imagery", in Proc. IGARSS'94 Symp., pp.2173-2175, 1994
    [27] R. C. Gonzalez, R. E. Woods. 数字图像处理.北京:电子工业出版社, 2003
    [28] L. M. Novak, M. C. Burl. "Optimal speckle reduction in polarimetric SAR imagery", IEEE Trans. AES, Vol. AES-26, No.2,pp.293-305, Mar. 1990
    [29] L. M. Novak, M. C. Burl, W. W. Iving. "Optimal polarimetric processing for enhanced target detection", IEEE Trans. AES, Vol. AES-29,No. 1,pp.234-243, Jan. 1993
    [30] J. S. Lee, M. R. Grunes, S. A. Mango, "Speckle reduction in multi-frequency and multi-polrization SAR imagery", IEEE Trans. Geosci. And Remote Sensing, Vol. GE-29, No. 1, pp.535-544, July 1991
    [31] A. Lopes, S. Goze, E. Nezry, "Polarimetric speckle filter for SAR data", in Proc. IGARSS'92, pp.80-82,1992
    [32] J. S. Lee, "Speckle analysis and smoothing of synthetic aperture radar", Computer Graphics and Image Processing, Vol. 17, pp.24-32,1981
    [33] J. S. Lee, "Speckle suppressing and analysis for SAR images", Optical Engineering, Vol. 25, No. 5,pp.636-643,1986
    [34] L. M. Novak, M. B. Schtin, M J. Cardullo. Studies of target detection algorithms that use polarimetric radar data, IEEE Trans. on Aerop. Electron. Syst., AES-26(2), 150-165,1989
    [35] S. Goze, and A. Lopes, "A MMSE speckle filter for full resolution", J. Elect. Wave & App., Vol. 7, No. 5, pp.631-768, May 1993
    [36] P. Dewaele, P. Wambacq, A. O. Sterlinck. "Comparison of some speckle reduction techniques for SAR images", in Proc. IGARSS'90 Symp., pp.2417-2422,1990
    [37] J. S. Lee, "Refined filtering of image noise using local statistics", Computer Graphics and Image Processing, Vol. 15, pp.380-389, 1981
    [38] J. S. Lee, I. Jurkevich, P. Dewaele. "Speckle filtering of synthetic aperture radar images: a review", Remote Sensing Review, Vol. 8, p.313-340,1994
    [39] R. A. Weisenseel, W. C. Karl, D. A. Castanon. MRF-based algorithms foe segmentation of SAR images. IEEE Proceedings of Image Processing, 1998, 3: 770-774
    [40] J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrika, 1977, 64(3): 616-618
    [41] M. R. Luettgen, W. C. Karl, A. S. Willsky. Multiscale representations of Markov random fields. IEEE Transactions on Signal Processing, 1993,41(12): 3377-3396
    [42] E. Mingolla. A Neural Network for Enhancing Boundaries and Surfaces in Synthetic Aperture Radar Images. Neural Networks, 1999,12: 499-511
    [43] S. Osher, J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacbion formulation. Journal of Computational Physics, 1988,79(1): 97-101
    [44] O. Amadieu, E. Debreuve, M. Barlaud. Inward and outward Curve Evolution Using Level Set method. In international conference on image processing, Kobe, Japan, 1999
    [45] J. Sethian. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge: Cambridge University Press, 1999
    [46] H. Maitre,孙洪译,合成孔径雷达图像处理.北京:电子工业出版社,2005
    [47] R. Malladi, J. Sethian, B. C. Vemuri. Shape modeling with front propagation: A level set approach. IEEE Transactions on Patter Analysis and Machine Intelligence, 1995,17(2): 158-175
    [48] J. Sethian. Curvature and evolution of fronts. Communications in Mathematical Physica. 1985, 101:487-499
    [49] J. Sethian. An analysis of flame propagation. University of California, Ph. D. Thesis. 1982
    [50] C. Li, C. Xu, C. Gui. Level Set evolution without re-initialization: a new variational formulation. Proc IEEE Pattern Recognition and Machine Intelligence, 2006, 28(10)
    [51] V. Caselles, R. Kimmel, G. Sapiro. Geodesic active contour. International Journal of Computer Vision, 1997, 22(1): 61-79
    [52] M. Bertalmio, G. Sapiro, Randall G. Region tracking on level set methods. IEEE Trans on Medical Imaging, 1999, 18(5): 448-451
    [53] R. Malladi, J. Sethian, B. Vemuri. Shape modeling with front propagation: a level set approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995,17(2):158-175
    [54] F. Galland, N. Bertaux, P. Refregier. Minimum description length synthetic aperture radar image segmentation. IEEE Trans. Image Processing, 2003,12(9): 995-1006
    [55] I. B. Ayed, C. Vazquez, A. Mitiche, Z. Belhadj. SAR image segmentation with active contours and level sets. IEEE International Conference on Image Processing, 2004: 2717-2720
    [56] I. B. Ayed, A. Mitiche, Z. Belhadj. Multi-region level-set partitioning of synthetic aperture radar images. IEEE Trans. Pattern Analysis and Machine Intelligence, 2005, 27(5): 793-800
    [57] I. B. Ayed, A. Mitiche, Z. Belhadj. Polarimetric Image Segmentation via Maximum-Likelihood Approximation and Efficient Multiphase Level-Sets. IEEE Trans. Pattern Analysis and Machine Intelligence, 2006, 28(9): 1493-1500
    [58] N. Paragios, V. Mellina, O. Ramesh, et al. Gradient vector flow fast Geodesic Active Contour. In Proc, ICCV,2001: 67-73
    [59] B. Sunneng, C. Kenney. Image segmentation using curve evolution and flow fields. Proc IEEE international conference on image processing (ICIP), 2002: 105-108
    [60] K. Siddiqi, Y. B. Lauziere, A. Tannenbaum. Area and length minimizing flows for shape segmentation. IEEE Transactions on Image Processing, 1998, 7(3): 433-443
    [61] B. B. Kimia,.A. I. Tannenbaum. Shapes, shocks, and deformations Ⅰ: the components of two-dimensional shape and the reaction-diffusion space. Int. J. Computer Vision, 1995, 15(3), 189-224
    [62] C. Xu, J. L. Prince. Snakes, shapes, and gradient vector flow .IEEE Transactions on Image Processing, 1998, 7( 3 ):359-369
    [63] N. Paragios, R. Deriche. Geodesic active contours and level sets for the detection and tracking of moving Objects. IEEE Trans. On PAMI, 2000, 22(3):266-280
    [64] A. R. Masouri, B. Sirivong, J. Konard. Multiple motion segmentation with level sets, Image Processing, 2003, 12(2): 201-220
    [65] N. Paragios, R. Deriche. Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding, 2005, 3: 259-282
    [66] C. Samon, L. Blanc-Feraud, G. Aubert, et al. Level set model for image classification. International Journal of Computer Vision, 2000,40(3): 187-197
    [67] D. L. Chop, Computing Minimal Surfaces via Level Set Curvature Flow. Computational Physics, 1993.106(1): 77-91
    [68] J. A. Sethian. A Fast Marching Level set Method for Monotonically Advancing Fronts. Proc. National Academy of Science, 1996,93: 1591-1595
    [69] J. Gomes, O. Faugeras. Reconciling Distance Functions and Level Sets. Journal of Visional Communication and Image Representation, 2000,11: 209-233
    [70] S. Zhu, A. Yuille, Region Competition Unifying Snakes, Region growing and Energy /Bayes /MDL for multi-band Image Segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1996,18(9): 884-900
    [71] M. Kass, A. Witkin, D. Terzopoulos. Snakes: active contour models, International Journal of Computer Vision, 1987, 1(4), 321-331
    [72] J. Kim, J. W. Fisher, A. Yezzi, et al. A Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution. IEEE Trans on Image processing, 2005, 14(10): 1486-1502
    [73] M. Rosenblatt. Remarks on some nonparametric estimates of a density function. Annala of Mathematical Statistics, 1956,27: 832-837
    [74] L. D. Cohen. On active contour models and balloons. CVGIP: Image Understanding, 1991, 53(2): 211-218
    [75] C. Xu, J. L. Prince. Snakes shapes, and gradient vector flow. IEEE tans. Image Processing, 1998(7): 359-369
    [76] P. Brigger, J. Hoeg, M. Unser. B-spline snakes: A flexible tool parametric contour detection. IEEE Trans in Image processing, 2000, 9: 1484-1496
    [77] V., F. Catte, T. Coll, and F. Dibos. A geometric model for active contours. Numeric. Math, 1993,66: 1-31
    [78] L. D. Cohen. Finite-element methods for active contour models and balloons for2-D and 3-D images. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1131-1147
    [79] V. Casselles, R. Kimmel, G. Sapiro. Geodesic Active Contours. International Journal of Computer Vision, 1997, 22(1): 61-79
    [80] M. E. Leventon. Statistical shape influence in geodesic active contour. In: IEEE Transactions Conference on Computer Vision and Pattern Recognition. Hilton Head Islands, South California, USA, 2000,1: 1316-1323
    [81] L. D. Cohen, E. Bardinet, N. Ayache. Surface reconstruction using active contour models. In: Proceedings of SPIE Conference on Geometric Methods in Computer Vision, San Diego, CA, USA, 1993: 38-50
    [82] A. Chakraborty, H. Staib, J. Duncan. Deformable boundary finding medical images by integrating gradient and region information. IEEE Transactions on Medical Imaging, 1996, 15(6): 859-870
    [83] N. Paragios, R. Deriche. Geodesic active regions for supervised texture segmentation.In: IEEE International Conference on Compute Vision, Kerkyra, Greece, 1999,2: 926-932
    [84] H. Wang, Ghosh B. Geometric Active Deformable Models in shaping modeling. IEEE Trans on Image processing, 2000,9(2):302-308
    [85] E. Parzen. On the estimation of a probability density function and the mode. Annals of Mathematics Statistics, 1962,33: 1065-1067
    [86] F. T. Ulaby, C. Elachi. Radar Ploarimetry for Geoscience Applications. Artech House Inc. Boston, London, 1990: 281-295
    [87] S. Kichenassamy, A. Kumar, P. Oliver, et al. Gradient flows and geometric active contours. In Proc, ICCV 95, Cambridge, MA, June 1995:810-815
    [88] D. Mumford, J. Shah. Boundary Detection by Minimizing Functions. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 1985:22-26
    [89] D. Mumford, J. Shah. Optimal approximation by piecewise smooth functions and associated variational problems. Communication on Pure and Applied Mathematics, 1989,42(1): 577-685
    [90] T. F. Chan, L. Vese. Active contours without edges. IEEE Trans on Image Proc, 2001, 10: 266-277
    [91] A. Tsai., A. Yezzi, Willsky A. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation and magnification. IEEE Trans On Image Processing, 2001, 10(8): 1169-1186
    [92] A. Colchester, J. Zhao. Development and Preliminary Evaluation of Vislan, A Surgical Planning and Guidance System Using Intra-Operative Video Imaging. Medical Image Analysis, 1996, 191:73-90
    [93] W. Grimson, G. J. Ettinger. Utilizing Segmented MRI Data in Image Guided Surgery. IJPRAI, 1997,11(8): 1367-1397
    [94] S. Warfield, R. Kikinis. Adaptive Template Moderated Spatially Varying Statistical Classification. Medical Image Computing and Compute Assisted Intervention (MICCAI), 1998: 231-238
    [95] F. Safa, G. Flouzat. Speckle removal on radar imagery based on mathematical morphology. Signal Processing, 1989, 16:319-333
    [96] A. Guissard, M. Karnaugh. Matrices in Radar Polarimetry. IEEE Trans. On GRS, 1994, 32(3): 590-597
    [97] L. Brown, J. Conway, J. Macklin. Polarimetric Synthetic Aperture Radar: Fundamental Concepts and Analysis Tools. Gec Journal of Research, 1991, 9(1): 23-35
    [98] T. Crimmins. Geometric filter for speckle reduction. Applied Optics, 1985,24(10): 1438-1443
    [99] S. K. Chen. Classification of Multifrequency Polarimetric SAR Image. Using a Dynamic Learning Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 814-820

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700