用户名: 密码: 验证码:
极化SAR图像分类方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SAR)图像分类是SAR图像处理中的重要内容,也是SAR图像解译的关键技术之一,它是将解译系统中的前端部分单独提取出来作为具体应用的一个典型实例。快速、准确的SAR图像分类是实现各种实际应用的前提。国外(如美国、加拿大、德国、日本等)在SAR图像分类方面处于领先水平,我国的SAR信息处理技术基本上还停留在SAR图像解译的初级阶段,在SAR图像分类算法研究上落后于国外。但不管是国内还是国外,SAR图像分类的准确率、精细度以及分类算法的效率和稳定性都需要改善,SAR图像分类方法的研究仍然是一个热点和难点。本文则重点开展了极化SAR(PolSAR)图像分类方法的研究工作。
     极化SAR是用来测量目标散射信号极化特征的新型成像雷达,它具有能够获得多通道极化图像的优越性,有利于确定和理解散射机理,提高目标检测、辨别和分类能力,有利于抑制杂波,提高抗干扰能力。极化SAR的出现,扩大了SAR系统的应用范围,在采集地表或地面覆盖物的物理和电磁结构信息的应用中起着越来越重要的作用。
     全极化SAR数据不仅提供了各个极化通道的幅度和相位信息,还提供了各个极化通道间的相对信息。因此,极化SAR图像包含了更加丰富的地物信息。利用这些信息,可以带来更好的SAR图像处理效果。而现有极化SAR图像分类方法对极化信息发掘还不够,充分发掘和利用这些极化信息,可以更好的确定和理解目标散射机理,从而带来更好的SAR图像分类结果。另外,数据处理手段不断发展,近些年来出现了一些新的数据处理技术,如独立分量分析(ICA),将这些技术用于极化SAR图像分类,也可能会改善SAR图像分类效果。
     本文在充分利用极化信息,引入独立分量分析技术的同时,还利用子孔径分析这一新的SAR图像处理技术来对目标极化散射行为进行统计分析,并把分析结果用于分类,改善了分类效果。
     本文的主要工作和贡献如下:
     (1)介绍了雷达极化的基本理论,包括极化表示以及极化SAR成像中的散射坐标系和极化散射描述。并对Jones矢量复标量表示下的一些极化问题作了推导。
     (2)对现有的一些极化SAR图像分类方法进行了研究和实验,如Pauli分解、Krogager分解、H/α分类、H/A/α分类、Wishart分类、以及模糊c均值分类等。对给出垂直水平线极化基下散射功率矩阵的条件下进行Krogager分解的问题作了推导。
     (3)对独立分量分析的基本理论、模型、约束条件和优化算法进行了介绍。
     (4)研究了基于独立分量分析的极化SAR图像分类方法,提出了结合ICA相干斑抑制的极化SAR图像分类和直接基于ICA的SAR图像分类。在结合ICA相干斑抑制的极化SAR图像分类中,提出了在Pauli分解后的颜色通道上进行相干斑抑制的方法,克服了在原极化通道上进行相干斑抑制造成的相对相位丢失问题,改善了分类效果。在直接基于ICA的极化SAR图像分类中,使用ICA同时分离各个有用独立分量和相干斑噪声,使相干斑抑制与图像分类成为一个统一的过程,并提高了分类准确度。
     (5)研究了极化SAR图像子孔径分析。首先研究了基于子孔径分析的非平稳目标检测,提出用不同的方法检测两类非平稳目标;接着将非平稳检测结果与H/α分类结合起来,提出了平稳性-H/α分类方法,增加了分类精细度;然后研究了基于子孔径数据进行非监督Wishart分类的方法,提出了子孔径-H/α/Wishart分类方法,改善了非监督Wishart分类的效果。
     (6)对全文进行了总结,对有待进一步研究的问题作了展望。
SAR image classification is an essential integral part of SAR image processing and also a key technique for SAR image interpretation. Fast and accurate SAR image classification is a critical pre-processing step in various practical applications. Nowadays countries like USA, Canada, Germany and Japan are playing the leading role in SAR image classification, while China, owing to its late start, is still in the elementary phase of development in this field. But for all of them, leading or following, the performance of the SAR image classification need be improved and the efficiency and robustness of the classification algorithms be enhanced. By now, the field of SAR image classification methods is still a hotspot for intensive and original research.. This dissertation is devoted to the exploration and development of new methods of classification based on Polarimetric SAR (PolSAR) images.
     Polarimetric synthetic aperture radar is a new type of imagery radar which is used to measure the polarization feature of the scattering signal from the targets. It has the advantage of getting SAR images of multiple polarization channels and it is helpful in understanding and defining scattering mechanism, and improving radar performance in target detection, discrimination and classification. Furthermore, it is also superior in clutter suppression and anti-jamming to those which do not acquire polarimetric information. PolSAR expands the application area of the SAR system and becomes more and more important in applications to collecting information of physical and electromagnetic architecture of superstratum on the ground.
     Full polarization SAR data give not only the amplitude and phase information of each polarization channel, but also the relative phase information between each two channels. So, PolSAR data provide more target information on the ground than ordinary SARs do. With the additional polarimetric information, better SAR image processing results can be obtained. The existing PolSAR image classification methods have not dug the polarimetric information in depth. In fact, Extracting and utilizing the polarimetric information adequately would enable us to define and interpret scattering mechanisms better, and then better classification results can be obtained. Furthermore, data processing techniques are in fast progress and some new ones such as independent component analysis (ICA) are emerging continuously in recent years. The classification results may be improved further if these techniques are integrated into the applications of SAR image classification.
     In addition to utilizing the polarimetric information adequately and introducing ICA into PolSAR image classification, this dissertation applies subaperture analysis, which is a new SAR image processing technique, to statistical analysis of polarimetric scattering. Making use of the analysis results in PolSAR image classification, the classification effects are improved.
     The main work and contributions accomplished in this dissertation are as follows:
     (1) The fundamental theory of electromagnetic wave polarimetry in radar, including the polarization representation of EM wave, the scattering coordinate system in polarimetric SAR imaging and the polarimetric scattering description, is presented. And some polarization problems under Jones vector's complex scalar representation are derived.
     (2) The existing classification algorithms for PolSAR images, such as Pauli decomposition, Krogager docomposition, H/αclassification, H/A/αclassification, Wishart classification and fuzzy c -means classification are analytically and experimentally studied. The Krogager decomposition under scattering power matrix in HV linear polarization basis is derived.
     (3) The basic theory, model, constraints and optimized algorithms of ICA are introduced.
     (4) ICA based PolSAR image classification methods are studied in this dissertation. The classification method associated with ICA based speckle reduction and the classification method directly using ICA are presented. In classification associated with ICA based speckle reduction, the speckle suppression process is carried out on the color channels after decomposition rather than the polarization channels. This solves the problem of relative phase missing and improves the classification results. In classification based on ICA, the desirable independent components and the speckle are separated simultaneously, so speckle reduction and classification become a unified process. And by using this method, the classification accuracy is enhanced.
     (5) The subaperture analysis of PolSAR images is studied. Firstly the nonstationary target detection based on subaperture analysis is investigated and two different methods are proposed to detect different kinds of nonstationary targets. Secondly the nonstationary target detection results are combined with H/αclassification and the stationarity- H/αclassification method is presented. With this method, the classification fineness is enhanced. Then the unsupervised Wishart classification algorithm based on subaperture data is studied and the subaperture-H/α/Wishart classification method is proposed. This method improves the classification effects of unsupervised Wishart classification.
     (6) Finally, several conclusions of the dissertation are drawn and the research subjects in the future are proposed.
引文
[1]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999
    [2]皮亦鸣,杨建宇.合成孔径雷达成像原理.成都:电子科技大学出版社,2007
    [3]Rumsey V H.Techniques for handling elliptically polarized waves with special reference to antennas:part Ⅰ-transmission between elliptically polarized antennas.Proc.IRE,1951,39:535-540
    [4]Deschamps G A.Part Ⅱ-Geometrical representation of the polarization of a plane magnetic wave.Proc.IRE,1951,39:540-544
    [5]Kales M L.Part Ⅲ-elliptically polarized antennas.Proc.IRE,1951,39:544-549
    [6]Bohnert J J.Part Ⅳ-measurement of elliptically polarized antennas.Proc.IRE,1951,39:549-552
    [7]Copeland J R.Radar target classification by polarization properties.Proc.IRE,1960,48:1290-1296
    [8]Frost V S,Stiles J A,Shanmugan K S,et al.A model for radar images and its application to adaptive digital filtering ofmultiplicative nose.IEEE Trans.Pattern Anal.And Machine Intell.,1982,4(2):157-165
    [9]Kong J A,Swartz A A.Identification of terrain cover using the optimum polarimetric classifer.Journal of Electromagnetic Waves and Applications,1987,2(2):171-194
    [10]Giuli D,Fossi M,Gheradelli M.A technique for adaptive polarization filtering in radars.Proceedings of IEEE International Radar Conference,Arlington,VA,USA,1985:213-219
    [11]Giuli D.Polarization diversity in radars.Proc.IEEE,1986,74(2):245-269
    [12]焦李成,王爽,侯彪.SAR图像理解与解译研究进展.电子学报,2005,33(12):2423-2434
    [13]Sinclair G Transmission and reception of elliptically polarized waves.Proc.IRE,1950,38:148-151
    [14]Kennaugh E M.Polarization properties of radar reflections.Antenna Lab.,OhioState Univ.,Columbus,OH,ZRADC Cont.,No.AF28(009)-90,Project Rept.1952,389-12(AD2494).
    [15]Graves C D.Radar polarization power scattering matrix.Proc.IRE,1956,44(2):248-252
    [16]Huynen J R.Measurement of the target scattering matrix.Proc.IEEE,1965,53(8):936-946
    [17]Huynen J R.Phenomenological theory of radar targets.Ph.D.dissertation.Delft,The Netherlands:Technical Univ.,1970
    [18] Xi A Q, Boerner W M. The characteristic radar target polarization state theory for the coherent monostatic and reciprocal case using the generalized polarization transformation ratio formulation. AEU, 1990,44(4):273-281
    [19] Davidovitz M, Boerner W M. Extension of Kennaugh's optimal polarization concept to the asymmetric matrix case. IEEE Trans. Antennas and Propagation, 1986,34(4):569-574
    [20] Van Zyl J J. On the importance of polarization in radar scattering problems. Ph.D. thesis.Pasadena:California Institute of Technology, 1986
    [21] Kuttikkad S, Chllappa R. Building wide-area 2D site models from single and multipass single polarization SAR data. Proceedings of the SPIE on Algorithms for Synthetic Aperture Radar Imagery, Orlando, FL, 1996,3: 34-44
    [22] Hara Y, Atkins R G, Yueh S H, et al. Application of neural networks to radar image classification. IEEE Trans. on Geoscience and Remote Sensing, 1994, 32(1): 100-109
    [23] Belhadj Z, Saad A, El Assad S, et al. Comparative study of some algorithms for terrain classification using SAR images. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ,1994,5:165-168
    [24] Quelle H C, Delignon Y, Marzouki A. Unsupervised Bayesian segmentation of SAR images using the Pearson system distributions. International Geoscience and Remote Sensing Symposium(IGARSS), 1993,3:1538-1540
    
    [25] Cloude S R. Group theory and polarization algebra. Optic, 1986, 75(1):26-36
    [26] Krogager E. A new decomposition of the radar target scattering matrix. Electron. Lett, 1990,26(18):1525-1526
    [27] Cameron W L, Leung L K. Feature motivated polarization scattering matrix decomposition.Proceedings of IEEE International Radar Conference,Arlington,VA,1990:549-557
    [28] Freeman A, Durden S. A three-component scattering model to describe polarimetric SAR data.Proceedings of the SPIE on radar polarimetry, San Diego, USA, 1992,1748: 213-224
    [29] Freeman A, Durden S. A three-component scattering model for polarimetric SAR data. IEEE Trans. on Geoscience and Remote Sensing, 1998,36(3): 963-973
    [30] Cloude S R. Uniqueness of target decomposition theorems in radar polarimetry. Proceedings of the NATO Advanced Research Workshop on Direct and Inverse Methods in Radar Polarimetry, edited by Boerner W M, et al. New York: Kluwer Academic, 1988:267-296
    [31] Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. on Geoscience and Remote Sensing, 1996, 34(2):498-518
    [32] Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. on Geoscience and Remote Sensing, 1997,35(1):68-78
    [33] Pottier E. Unsupervised classification scheme and topography derivation from POLSAR data based on the H/A/α polarimetric decomposition. Proceedings of 4th International Workshop on Radar Polarimetry (JIPR '98), IRESTE, University of Nantes, France, 1998:535-548
    [34] Lee J S, Hoppel K W, Mango S A, et al. Intensity and phase statistics of multi-look polarimetric and interferometric SAR imagery. IEEE Trans. on Geoscience and Remote Sensing, 1994,32(5): 1017-1028
    [35] Lee J S, Grimes M R, Kwok R. Classification of multi-look polarimetric SAR imagery based on the complex Wishart distribution. International Journal of Remote Sensing, 1994,15(11):2299-2311
    [36] Lee J S, Grunes M R, Ainsworth T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart distribution. IEEE Trans. on Geoscience and Remote Sensing, 1999,37(5) :2249-2259
    [37] Ferro-Famil L, Reigber A, Pottier E. Sub-aperture polarimetric SAR data analysis.Proceedings of EUSAR, Cologne, Germany, 2002: 725-728
    [38] Ferro-Famil L, Reigber A, Pottier, E. Scene characterization using sub-aperture polarimetric interferometric SAR data. Proceedings of IGARSS, Toulouse, France, 2003,2:702-704
    [39] Ferro-Famil L, Reigber A, Pottier, E, et al. Scene characterization using subaperture polarimetric SAR data. IEEE Trans. Geosci. Remote Sensing, 2003,41(10): 2264-2276
    [40] D'Hondt O, Lopez-Martinez C, Ferro-Famil L, et al. Spatially nonstationary anisotropic texture analysis in SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(12):3905-3918
    [41] Ferro-Famil L, Leducq, P, Reigber, A, et al. Extraction of information from the time-frequency POL-inSAR response of anisotropic scatterers. Proceedings of IGARSS, Seoul, Korea, 2005,7:4856-4859
    [42] Ferro-Famil L, Reigber A. Complex scene analysis from time-frequency statistics of POLSAR data. Proceedings of IGARSS, Barcelona, Spain, 2007: 5182-5185
    [43] Duquenoy M, Ovarlez J-P, Ferro-Famil L, et al. Characterization of scatterers by their anisotropic and dispersive behavior. Proceedings of IGARSS, Barcelona, Spain, 2007:5186-5189
    [44]Kelly J,Ainsworth T L,Lee J S.Subaperture analysis of polarimetric SAR imagery.Proceedings of IGARSS,Barcelona,Spain,2007:5190-5193
    [45]Karvonen J.Non-negative matrix factorization with sparseness constraints for sea ice SAR feature extraction.Proceedings of EUSAR,Friedrichshafen,Germany,2008:395-398
    [46]Shimoni M,Heremans R,Perneel C,et al.Land-cover classification using fused PolSAR and PolInSAR features.Proceedings of EUSAR,Friedrichshafen,Germany,2008:411-414
    [47]庄钊文,肖顺平,王雪松.雷达极化信息处理与应用.长沙:国防工业出版社,1999
    [48]张翠,郦苏丹,王正志.基于MRF场的SAR图像分割方法.遥感技术与应用,2001,1:66-68
    [49]Guoqing Liu,Shunji Huang,Toorre A,et al.Statistical analysis of multi-look poalrimetric SAR data and terrain classification with adaptive distributions.The European Symp.on Satellite Remote Sensing Ⅱ,(SPIE Paper No.2584-21),Paris,France,1995
    [50]刘国庆,熊红,黄顺吉,等.多视极化合成孔径雷达图像的分类和极化通道优化.电子科学学刊,1998,20(1):56-61
    [51]王运锋,王建国,赵志钦,等.数学形态学在SAR图像目标识别中的应用.系统工程与电子技术,2001,23(3):23-27
    [52]王海江,皮亦鸣,陈红艳.结合ICA相干斑抑制的全极化SAR图像分类.电子学报,34(12):2185-2189
    [53]Haijiang Wang,Yiming Pi,Guoqing Liu,et al.Application of ICA for the enhancement and classification of polarimetric SAR images.International Journal of Remote Sensing,2008,29(6),1649-1663
    [54]范立生,高明星,杨健,等.极化SAn遥感中森林特征的提取.电波科学学报,2005,20(5):554-556
    [55]王之禹,朱敏惠,白有天.基于散射模型的极化SAR数据分解.电子与信息学报,2001,23(10):954-961
    [56]刘秀清,杨汝良.基于全极化SAR非监督分类的迭代分类方法.电子学报,2004,32(12):1982-1986
    [57]Fiori S.Overview of independent component analysis technique with an application to synthetic aperture radar (SAR) imagery processing.Neural Networks,2003,16:453-467
    [58]Chen C H,Wang X.A novel theory of SAR image restoration and enhancement with ICA.International Geoscience and Remote Sensing Symposium(IGARSS),2004,6:3911-3914
    [59]谢处方,饶克谨.电磁场与电磁波.北京:高等教育出版社,2006
    [60]Collet E.Polarized light:fundamentals and apllications.New York:Marcel Dekker Inc.,1993
    [61]王伟,李国华.斯托克斯空间用邦加球表示光偏振态的再研究.应用光学,2002,23(3):23-25
    [62]Deschamps G A,Mast P E.Poincar(?) sphere representation of partly polarized fields.IEEE Trans.On Antennas and Propagation,1973,21(4):474-478
    [63]Boerner W M,Yah,W L,Xi A Q,et al.On the basic principles of radar polarimetry:the target characteristic polarization state theory of huynen's polarization fork concept,and its extension to the partly polarized cases.Proceedings of the IEEE,1991,79(10):1538-1550
    [64]Agrawal A P,Boerner W M.Redevelopment of Kennaugh's target characteristic polarisation state theory using the polarisation ratio formalism for the coherent case.IEEE Trans.on Geoscience and Remote Sensing,1989,27(1):2-14
    [65]Cloude S R,Papathanassiou K P.Polarimetric SAR interferometry.IEEE Trans.on Geoscience and Remote Sensing,1998,36(5):1551-1565
    [66]Saff E B,Snider A D.Fundamentals of complex analysis with applications to engineering and science.Beijing:Machine Press,3rd edition,2004
    [67]Jones R C.A new calculus for the treatment of optical systems Ⅰ.description and discussion.Journal of the Optical Society of America,1941,31:488-493
    [68]Ulaby F T,Elachi C.Radar polarimetry for geoscience applicarions.Norwood:Artech House,1990
    [69]Hellmann M.SAR polarimetry tutorial[EB/OL].http://epsilon.nought.de/,2001-10/2005-11-6
    [70]Cloude S R.Symmetry,zero correlations and target decomposition theorems.Proceedings of 3rd International Workshop on Radar Polarimetry (JIPR '95),IRESTE,University of Nantes,1995:58-68
    [71]Alt.M.Exploring hyperspace - a non-mathematical explanation of multivariate analysis.London:McGraw-Hill,1990
    [72]谢燕.极化合成孔径雷达图像分类:硕士学位论文.成都:电子科技大学,2006
    [73]Zadeh LA.Fuzzy sets.Information and Control,1965,8:338-353
    [74]Kong S G.,Kosko B.Adaptive fuzzy systems for backing up a truck and trailer.IEEE Trans.on Neural Networks,1992,3(2):211-223
    [75]Yamakawa T.A fuzzy inference engine in nonlinear analog mode and its application to a fuzzy logic control.IEEE Trans.on Neural Networks,1993,4(3):496-522
    [76]Pal S K,Mitra S.Multilayer perceptron,fuzzy sets and classification.IEEE Trans on Neural Networks,1992,3(5):683-697
    [77]Blonda P,Bennardo A.Logical and neural techniques integration:a review.Soft Computing in Remote Sensing Data Analysis,edited by Binaghi E,Brivio P A and Rampini A.Singapore:World Scientific,1996:19-25
    [78]Tso B,Mather P.Classification methods for remotely sensed data.New York:Taylor and Francis Inc,2001:69-169
    [79]Bezdek J C,Ehrlich R,Full W.FCM:The fuzzy c-means clustering algorithm.Computers and Geosciences,1984,10:191-203
    [80]H(?)rault J,Ans B.Circuits neuronaux (?) synapses modifiables:decodage de messages composites par apprentissage non supervise.C.-R.de l'Acad(?)mie des Sciences,1984,299(Ⅲ-13):525-528
    [81]H(?)rault J,Jutten C,Ans B.Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromim(?)tique en apprentissage non supervise.Actes du X(?)me colloque GRETSI,Nice,France,1985:1017-1022
    [82]Ans B,H(?)rault J,Jutten C.Adaptive neural architectures:detection of primitives.Proceedings of COGNITIVA'85,Paris,France,1985:593-597
    [83]Bell A J,Sejnowski T J.An information-maximisation approach to blind separation and blind deconvolution.Neural computation,1995,7:1129-1159
    [84]Nandi A.Blind estimation using higher-order statistics.Netherlands:Kluwer,1999
    [85]Papoulis A.Probablity,random variables,and stochastic processes.New York:McGraw-Hill,3rd edition,1991
    [86]Girolami M.Self-organising neural networks-independent component analysis and blind source separation.Springer-Verlag,1999
    [87]Nikisa C,Petropulu A.Higher-order spectral analysis-a nonlinear signal processing framework.Upper Saddle River,NJ,USA:Prentice Hall,1993
    [88]Rosenblatt M.Stationary sequences and random fields.Switzerland:Birkhauser,1985
    [89]李立萍,张明友.信息论导引.成都:电子科技大学出版社,2005
    [90]Hyvarinen A,Karhunen J,Oja E.Independent component analysis.New York:John Wiley,2001
    [91]Pearson K.On lines and planes of closest fit to systems of points in space.Philosophical Magazine,1901,2:559-572
    [92]Ding P L,Kang X L,Zhang L M.Personal recognition using ICA.Proceedings of ICONIP2001,2001:1179-1184
    [93]Turk M.A pentland face recognition using eigenfaces.Proceedings of IEEE Conf.on CVPR,1991:586-591
    [94]Comon P.Independent component analysis-a new concept?.Signal Processing,1994,36:287-314
    [95]Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis.Neural Processing letters,1999,10:1-5
    [96]Hyvarinen A,Oja E.Independent component analysis :algorithms and applications.Neural Networks,2000,13(45) :411-430
    [97]Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis.Neural Computation,1997,9 (7) :1483-1492
    [98]Jones M C,Sibson R.What is projection pursuit?.Journal of the Royal Statical Society,1987,150 (11):1-36
    [99]Lee,T W,Girolami M,Sejnowski T J.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Ganssian sources.Neural Computation,1999,11(2):417-441
    [100]朱雪龙.应用信息论基础.北京:清华大学出版社,2002
    [101]Amari S,Cardoso J F.Blind source separation- semiparametric statistical approach.IEEE Trans.on Signal Processing,1997,45(11):2692-2700
    [102]Amari S,Cichocki A,Yang H H.A new learning algorithm for blind signal separation.Advances in Neural Information Processing Systems,1996,8:757-763
    [103]郭华东.雷达对地观测理论与应用.北京:科学出版社,2000
    [104]Maitre H.合成孔径雷达图像处理,孙洪等译.北京:电子工业出版社,2005
    [105]Lee J S,Jurkevich I.Speckle filtering of synthetic aperture radar images:a review.Remote Sensing Reviews,1994,8:313-340
    [106]Chen C H,Zhang X.Independent component analysis for remote sensing study.Proceedings of the SPIE EUROPTO Conference on Image and Signal Processing for Remote Sensing,Florence,Italy,1999:150-158
    [107]田金凤,皮亦鸣.用一种新的独立分量分析算法实现极化SAR图像相干斑抑制.雷达科学与技术,2005,3(1):31-35
    [108]陈红艳,付毓生,张睿,等.基于ICA—SCS算法的极化SAR图像相干斑抑制.电子与信息学报,2007,29(4):819-821
    [109]Pi Yi-ming,Yang Xiaobo,Liu Guoqing.Polarimetric speckle reduction using multi-texture maximum likelihood method.IEE Electronic Letter,2003,39(18):1348-1349
    [110] Barlow H B. What is the computational goal of the neocortex?. Large-Scale Neuronal Theories of the Brain, edited by Koch C and Davis J L. Cambridge, MA: MIT Press, 1994:1-22
    [111] Olshausen B A, Field D J. Natural image statistics and efficient coding. Network:Computation in Neural Systems, 1996, 7(2):333-339
    [112] Hyvarinen A. noisy independent component analysis,maximum likelihood estimation and competitive learning. Proceedings of IEEE International Conference on Neural Networks-Conference, 1998,3:2282-2287
    [113] Lee J S, Grunes M R, de Grandi G Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. on geosciences and remote sensing, 1999, 37(5):2363-2373
    [114] Flake L R, Ahalt S C, Krishnamurthy A K. Detecting anisotropic scattering with hidden Markov models. Proc. Inst. Elect. Eng.—Radar, Sonar Navigat., 1997,144(2): 81-86
    [115] Runkle P, Nguyen L H, McClellan J H, et al. Multi-aspect target detection for SAR imagery using hidden Markov models. IEEE Trans. on Geoscience and Remote Sensing, 2001, 39(1):46-55
    [116] Souyris J C, Henry C, Adragna F. On the use of complex SAR image spectral analysis for target detection: assessment of polarimetry. IEEE Trans. on Geoscience and Remote Sensing,2003,41(12):2725-2734
    [117] Ainsworth T L, Jansen R W, Lee J S, et al. Sub-aperture analysis of high resolution polarimetric SAR data. Proceedings of IGARSS, Hamburg, Germany, 1999: 41-43
    [118] Goodman N R. Statistical analysis based on a certain multi-variate complex Gaussian distribution (an introduction). Ann. Math. Statist., 1963,34: 152-177
    [119] Conradsen K, Nielsen A A, Schou J, et al. Change detection in polarimetric SAR data and the complex wishart distribution. Proceedings of IGARSS, Sydney, Australia, 2001:2628-2630
    [120] Muirhead R J. Aspects of multivariate statistical theory. New York: Wiley, 1982
    [121] Yueh H A, Shin R T, Kong J A. Scattering from randomly perturbed periodic and quasiperiodic surfaces. Progress in Electromagnetic Research. Amsterdam, The Netherlands:Elsevier, 1988, 1:297-358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700