用户名: 密码: 验证码:
Ti基Pb/Pb-WC-PANI复合阳极材料制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外湿法冶金行业用的阳极材料主要有铅银合金和钛基涂层阳极。铅基合金阳极是锌电积中使用最多的,但其重量大、强度低,易弯曲变形造成短路而使电能损失。钛基涂层阳极形状尺寸稳定,适于高电流密度(4.5~6.0kA/m2)和窄极间距(约5cm左右)的电积条件。但钛基贵金属及其氧化物涂层价格高昂;不含中间层的钛基电极中钛易钝化,导电性能降低;含中间层的钛基涂层电极,制造程序复杂;电沉积钛基二氧化铅的电化学活性提高,但其畸变大、易脆、机械加工困难、重量大、不易大型化、制备时间长,限制了其规模生产及使用。
     本文研制了一种Ti基新型惰性阳极,由钛基体、Pb底层及Pb-PANI-WC表面活性层组成。底层改善了表面层与钛基间的结合性能;表面层是铅和活性颗粒组成的复合镀层,反应过程中能降低析氧电位。且钛价格适中,导电性良好,质量轻,是阀型金属。该种电极材料在有色金属电积中有广阔应用前景。
     本文采用直流或脉冲电沉积法,在Ti基上制备铅基复合镀层;研究了镀液组成、固体颗粒及工艺条件对镀层性能的影响,从不同镀液中电沉积制备了Ti/Pb/Pb-PANI-WC复合镀层。采用阳极极化曲线、Tafel.EIS.循环伏安等手段在硫酸锌-硫酸溶液中测定了动力学参数,并以阳极析氧电位作为考核指标,优化了镀液组成和工艺条件。
     从酒石酸钾钠体系中直流电沉积制备了Pb-PANI和Pb-WC两种复合镀层的最佳制备工艺为:氧化铅100g/L,酒石酸钾钠170g/L,氢氧化钾55g/L,明胶1.5g/L,温度为室温,电镀时间90min,电流密度4A/dm2。Pb-PANI复合镀层镀液中PANI为15g/L, Pb-WC复合镀层WC为40g/L。
     从碱性(酒石酸钾钠-乙二胺四乙酸二钠体系)和酸性(氟硼酸体系)两种体系中直流电沉积制备Pb-PANI-WC复合镀层。优化得到碱性体系中最佳工艺条件为:电流密度1.5A/dm2,温度35℃,聚苯胺浓度15g/L,WC浓度为40g/L。酸性体系中的最佳工艺条件:电流密度是5A/dm2,温度35℃,聚苯胺浓度10g/L,WC浓度为40g/L。
     采用脉冲电沉积从碱性(酒石酸钾钠体系)和酸性(氟硼酸体系)两种体系中制备了Pb-WC-PANI复合镀层。优化得到碱性体系中最佳工艺条件为:氧化铅1OOg/L,酒石酸钾钠150g/L,氢氧化钾55g/L,明胶1.5g/L,聚苯胺浓度10g/L,碳化钨30g/L,周期1.5ms,脉冲导通时间0.3ms,平均电流密度3A/dm2,温度为室温。酸性体系中的最佳工艺条件:PANI:30g/L, WC:30g/L,脉冲导通时间:0.5ms,脉冲周期:1.5ms,平均电流密度:2A·dm-2,温度:25℃。
     利用SEM、XRD、EDS等现代测试手段对镀层的表面形貌、结构物相、成分进行了分析表征。用快速寿命实验方法考察了复合镀层在硫酸-硫酸锌溶液中1A/cm2下的预期使用寿命,并比较了镀层的电化学性能。
     脉冲电沉积获得的两种Pb-WC-PANI复合镀层表面明显比直流复合镀层结晶致密,没有明显晶界。XRD研究显示,复合镀层中出现了明显的Pb和WC的衍射峰,没有观察到PANI的衍射峰,且脉冲Pb-WC-PANI复合镀层的衍射峰强度弱于直流复合镀层。通过红外光谱分析,观察到复合镀层中有PANI的特征峰。EDS研究显示,直流复合镀层中WC含量明显低于脉冲复合镀层,酸性复合镀层中的颗粒含量明显低于碱性复合镀层。所有镀层中碱性脉冲Pb-WC-PANI复合镀层中WC含量最高,达到24.7%(wt%)。
     电化学性能比较,Ti基Pb-PANI复合镀层优于Pb-WC,同时优于纯铅镀层。说明PANI和WC的掺杂均有利于析氧催化活性的提高。两种体系中,脉冲电沉积Pb-WC-PANI复合镀层催化活性均优于直流复合镀层。比较两种体系中的脉冲复合镀层,得到,碱性条件下制备的复合镀层性能优于酸性复合镀层。
     比较了酸性、碱性脉冲复合镀层与Ti基贵金属涂层和两种铅银合金电化学性能,复合镀层析氧电位高于钛基贵金属涂层而低于铅银合金,耐蚀性均优于铅银合金阳极而比钛基贵金属阳极差,碱性镀液中所得复合镀层Ecorr=-0.323V, Icorr=7.10×10-6A/cm2。酸性脉冲复合镀层具有最大的伏安电荷(q*=0.4219C·cm-2),碱性复合镀层伏安电荷(q*=0.1907C·cm-2)大于铅银合金(含银0.6%的q*=0.0158C·cm-2)而低于钛基贵金属涂层(q*=0.2779C·cm-2)。阻抗谱显示Ti基贵金属涂层的电催化活性最好,两种脉冲复合镀层次之,其析氧催化活性均优于铅银合金阳极。复合镀层的强化寿命低于贵金属涂层电极和铅银合金电极。与铅银合金比较,复合镀层电流效率较高,而槽电压较低,作为阳极材料比铅银合金阳极更节能。
     新型Pb-WC-PANI复合镀层的重量不足铅银合金的20%,加之其催化活性优于铅银合金,槽电压低于铅银合金,因此是理想的阳极材料。
     论文得到了云南省教育厅青年科学基金(2011Y37324)、昆明理工大学分析测试基金等项目的联合资助。
At present, lead-silver alloy and titanium based coating have been widely used as insoluble anodes in the hydrometallurgy industry at home and abroad. Although Lead-based alloy is the most commonly used anode material in zinc electrowinning, it is of heavy weight, low strength and is prone to warping, which can easily trigger short-circuit and then electric power may loss. Titanium based coating has stable shape and size, and can be applied in conditions such as high current density (4.5~6.0kA/m2) and narrow pole pitch (about5cm). However, the costs of the precious metal and its oxide are high. In addition, the titanium-based electrodes without the intermediate layer are passivated easily and have poor conductive properties. The manufacturing procedures of titanium-based electrodes with the intermediate layer are complicated. The lead dioxide be prepared by electrodeposition have good electrochemical activity, but its heavy weight, fragility and easy distortion result in its poor machinability, which finally limit its large-scale production and application.
     A new type of Ti-based inert anode made up of three layers is presented in this paper. Its bottom layer is made of titanium plate and is covered with lead undercoating. The surface Pb-PANI-WC layer is composite coating layer composed of lead and active particle. Generally the bottom layer can enhance the combination between the surface layer with the titanium substrates. When the chemical reaction on the surface layer happens, oxygen evolution potential correspondingly reduces. Meanwhile, Titanium, a kind of valve metal, is a good conductor of light weight. Ti/Pb-PANI-WC electrode prepared by electrodeposition can be used widely in the non-ferrous metal electrowinning filed.
     In this paper, lead based composite coatings are prepared by direct current or pulse electrodeposition on Ti substrate preparation. The effects of electrolyte compositions, solid particles concentration and process conditions on the properties of coating are investigated. The Ti/Pb/Pb-PANI-WC composite coatings are prepared respectively from different plating solution. The electrocatalytic properties of composite materials are studied by means of linear sweep voltammetry, Tafel plot, and A.C.Impedance and Cyclic voltammetry in ZnSO4-H2SO4solution. At the same time, the electrocatalytic activity of the composite materials in the oxygen evolution reaction is studied with aim of assessing the effect of electrolyte compositions and process conditions and gaining the better electrolyte compositions and process conditions.
     The Pb-PANI and Pb-WC composite coatings are prepared in sodium potassium tartrate electrolyte system by DC deposition. The better electrolyte compositions and process conditions can be obtained as follows:lead oxide100g/L, sodium potassium tartrate170g/L, potassium hydroxide55g/L, gelatin1.5g/L,T is room temperature, electroplating time90min and current density4A/dm2.。In the plating solutions of Pb-PANI composite coatings, PANI is15g/1, and WC is40g/L in those of Pb-WC composite coatings.
     The Pb-WC-PANI composite coatings are prepared in alkaline electrolyte system (including sodium potassium tartrate and disodium edetate) and acidic electrolyte system (fluoboric acid) respectively by DC electrodeposition. The better electrolyte compositions and process conditions can be obtained as follows:current density1.5A/dm2, temperature35℃, PANI15g/L, WC40g/L in alkaline electrolyte system. current density5A/dm2, temperature, PANI10g/L, WC40g/L in acidic electrolyte system.
     The Pb-WC-PANI composite coatings are prepared in alkaline electrolyte system (sodium potassium tartrate) and acidic electrolyte system (fluoboric acid) respectively by pulse electrodeposition. The better electrolyte compositions and process conditions can be obtained in alkaline electrolyte system as follows:lead oxide100g/L, sodium potassium tartrate150g/L, potassium hydroxide55g/L, gelatin1.5g/L, PANI10g/L, WC30g/L, pulse cycle1.5ms,pulse on-time0.3ms, pulse average current density3A/dm2, room temperature. The better electrolyte compositions and process conditions can be obtained in acidic electrolyte system as follows:PANI30g/L, WC30g/L, pulse cycle1.5ms,pulse on-time0.5ms, pulse average current density2A/dm2, temperature25℃.
     The surface appearance, phase structure and composition are characterized by means of SEM, XRD, EDS and other modern testing methods. The anticipated service lives of composite materials are measured by using accelerated life test in ZnSO4-H2SO4solution at a current density of1A/cm2. The electrochemical performances of composite materials are also compared.
     The surface of Pb-WC-PANI composite coating prepared by pulse electro-deposition is more compact than that of Pb-WC-PANI composite coating prepared by DC electrodeposition and it doesn't have obvious grain boundary. XRD of composite coating shows that there is obvious diffraction peak of Pb and WC, but diffraction peak of PANI hasn't been observed, and the intensity of diffraction peak Pb-WC-PANI pulse composite coating is weaker than that of direct current composite coating. The infrared spectrum analysis shows that there are characteristic peaks of PANI in the composite coating. Composition analysis shows that the WC content in direct current composite coating is much lower than that in the pulse composite coating, and the WC content in composite coating prepared in acidic electrolyte is much lower than that in the composite coating prepared in alkaline electrolyte. Among all of the composite coatings, the WC content in Pb-WC-PANI pulse composite coating prepared in alkaline electrolyte is the highest, up to24.7%(wt%).
     As for the electrochemical performance, the electrochemical performance of the Pb-PANI composite coating is superior to that of Pb-WC composite coating and the pure lead coating, which proves that with other substances added in PANI and WC, their oxygen catalytic activity can be improved. In these two kinds of system, the catalytic activity of pulse electrodeposition Pb-WC-PANI composite coating is better than that of direct current composite coating. With the pulse composite coating of these two kinds of system being compared, the property of the composite coating prepared in alkaline electrolyte is better than that of the acid composite coating.
     With the electrochemical performance of the acidic and alkaline pulse composite coatings and that of Ti-based precious metal coating and two kinds of of lead silver alloy being compared, the oxygen evolution potential of the acidic and alkaline pulse composite coatings is higher than that of the Ti-based precious metal coating but lower than that of the lead silver alloy. The corrosion resistance of the acidic and alkaline pulse composite coatings is superior to that of lead silver alloy anodes but worse than that of Ti-based precious metal coating. The voltammetric charge of the acidic pulse composite coating(q*=0.4219C·cm-2) is the largest. The voltammetric charge of the alkaline pulse composite coating (q*=0.1907C·cm-2) is larger than that of the lead silver alloy but lower than that of Ti-based precious metal coating (q*=0.2779C·cm-2). The impedance spectrum shows that the catalytic activity of Ti-based precious metal coating is the best, followed by the two kinds of pulse composite coating, whose oxygen catalytic activity are superior to that of the lead silver alloy anodes. The anticipated service lives of the composite coating is shorter than that of the precious metal coating electrode and lead silver alloy electrode. Compared with the lead silver alloy, the current of composite coating is of higher-efficiency, but the cell voltage is the opposite. Consequently, using the composite coating as the anode material is much more efficient than using lead silver alloy anodes.
     The new type of Pb-WC-PANI composite coating is lighter than lead silver alloy, even less than the20%of it. Combined with its better catalytic activity and lower slot voltage, it may be an ideal anode material.
     The projects are supported by Scientific Research Fund of Yunnan Provincial Education Department (2011Y37324), Analysis Measurement Research Fund of Kunming University of Science and Technology.
引文
1. Klaus Hein,Thomas Schierle.Oxygen overvoltage at insoluble anodes in the system Pb-Ag-Ca.Erzmetal,1991,44(9):447-451.
    2.陈康宁.金属阳极.上海:华东师范大学出版社,1989.
    3. W. Zhang,G. Houlachi. Electrochemical studies of the performance of different Pb-Ag anodes during and after zinc electrowinning. Hydrometallurgy,2010,104(2):129-135.
    4. M. Petrova, Z. Noncheva, Ts. Dobrev, St. Rashkov, N. Kounchev, D. Petrov, St. Vlaev, V. Mihnev, S. Zarev, L. Georgieva, D. Buttinelli Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc I. Behaviour of Pb-Ag, Pb-Ca and Pb-Ag-Ca alloys.Hydrometallurgy,1996,3,40(3):293-318.
    5. W. Zhang, G. Houlachi. Electrochemical studies of the performance of different Pb-Ag anodes during and after zinc electrowinning. Hydrometallurgy,2010,9,104(2):129-135.
    6. A. Hrussanova, L. Mirkova, Dobrev, S. Vasilev Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co3O4, Pb-Ca-Sn, and Pb-Sb anodes for copper electrowinning:Part Ⅰ.Hydrometallurgy,2004,3,72(3-4):205-213.
    7.1. Ivanov, Y. Stefanov, Z. Noncheva, M. Petrova, T. Dobrev, L. Mirkova, R. Vermeersch and J.P. Demaerel, Insoluble anodes used in hydrometallurgy. Part Ⅰ. Corrosion resistance of lead and lead alloy anodes., Hydrometallurgy 2000,52(2):109-124.
    8. Y. Stefanov and T. Dobrev, Potentiodynamic and electronmicroscopy investigations of lead-cobalt alloy coated lead composite anodes for zinc electrowinning, Transactions of the Institute of Metal Finishing 2005,83(6):296-299.
    9.李松瑞.铅及铅合金.中南工业大学出版社,1996.
    10.刘良绅,柳松,等.Pb-Ag-Ca三元合金机械性能的研究.矿冶工程,1995,15(4):61-64.
    11.Dr.Adolfvon Ropenack.达特伦电锌厂的改建.有色冶炼,1988,17(3):19-20.
    12. Nmetsu Y U,Nozaka H.and Toazawa K.,素材学会杂志,1989,105(3):249-254
    13. Klaus Hein, Thomas Schierle.Oxygen overvoltage at insoluble anodes in the system Pb-Ag-Ca.Erzmetal,1991,44(9):447-451.
    14.王恒章.四元合金阳极板在湿法炼锌中的应用.有色冶炼,2001,30(6):18-20.
    15.陈红伟,宝国锋,张琦.低银铅钙带孔阳极的工业应用.云南冶金,1999,28(5):37-39.
    16.徐金法.电积锌阳极材质的发展.有色金属(冶炼部分),1995,26(1):39-41.
    17.康厚林Pb-Ag-Sr-Ca四元合金阳极在电解锌中的应用.仃色矿冶,1995,(5):25-30.
    18.张淑兰.锌电积铅基四元合金阳极的研究与应用.有色冶炼,1997,26(3):21-23.
    19. Lupi, C., Pilone, D.. New lead alloy anodes and organic depolariser utilization in zinc electrowinning. Hydrometallurgy,1997,44(3):347-358.
    20.张招贤.钛电极工学.北京:冶金工业出版社,2000.
    21.韦国林,张利,顾海军,等.电沉积Pb02电极的析氧行为.电池,1998,28(4):160-163.
    22. Ch.COMNINELLIS, E.PLATTNER.The preparation and behaviour of Ti/Au/PbO2 anodes. J. Appl. Electrochem.,1982,12:399-404.
    23.李乃军,梁英教,刘晓霞.锌电积烧结钛阳极的研究.有色金属(冶炼部分),1989,20(5):16-18,24.
    24.刘晓霞,梁英教,李乃军.钛基RuO2-PAN活性阳极的研制.东北工学院学报,1990,11(4):421-425.
    25.梁镇海,王森,孙彦平等.Ti/MnOx型阳极的中间层研究.贵州科学,1994,12(4):33-36.
    26.梁镇海,孙彦平.钛基二氧化锰电催化剂的制备及性能研究.燃料化学学报,2001,29:18-21.
    27.汪文兵,龙晋明,郭忠诚.钛基涂层不溶性阳极的开发与研究进展.电镀与涂饰.2006,25(7):46-48.
    28. Beer H B.The invention and industrial development of metal anodes.J Electrochem Soc,1980,127(8):303-307.
    29. V.V. Panic, V.M. Jovanovic, S.I. Terzic, et al. The properties of electroactive ruthenium oxide coatings supported by titanium-based ternary carbides. Surface & Coatings Technology,2007,202(2):319-324.
    30. Jari Aromaa, Olof Forsen. Evaluation of the electrochemical activity of a Ti-RuO2-TiO2 permanent anode. Electrochimica Acta,2006,51(27):6104-6110.
    31.胡吉明.Ti基IrO2+Ta2O5涂层阳极析氧电催化与失效机制研究:[博士学位论文].北京:北京科技大学,2000.
    32. Krysa J, Kule L,etal. Effect of coating thickness and surface treatment of titaninum on the properties of IrO2·Ta2O5 anodes. Journal of Applied Electrochemistry, 1996,26:999-1005.
    33. Krysa J,Maixner J,etal.Effect of coating thickness on the properties of IrO2·Ta2O5 anodes. Journal of Applied Electrochemistry,1998,28:369-372.
    34.张招贤,唐仁衡,张建华.IrO2·Ta2O5涂层钛阳极的研究和应用.广东有色金属学报,2002,12(2):102-106.
    35.张招贤,伍超群IrO2·Ta2O5涂层钛阳极失效前后形貌的研究.广东有色金属学报,2003,13(1):37-40.
    36. Hu J M, Meng H M, Zhang J Q, etal. Degradation mechanism of long service life Ti/IrO2-Ta2O5 oxide anodes in sulphuric acid. Corrosion Science,2003,44(8):1655-1668.
    37.胡吉明,张鉴清,孟惠民等.Ti基IrO2+Ta2O5阳极在硫酸溶液中的电解失效行为.物理化学学报,2002,18(1):14-20.
    38.陶自春,罗启富,潘建跃.铱系涂层钛阳极的研究进展.材料科学与工程学报,2003,21(1):138-142.
    39.陶自春,潘建跃,罗启宣.铂中间层的制备及对铱钽涂层钛阳极性能的影响.材料科学与工程学报,2004,22(2):240-244.
    40.潘建跃,陶自春,罗启富,孙风梅.含铂钛合金中间层的铱钽涂层钛阳极的研究.材料保护,2003,36(11):46-48.
    41. S. Nijjer, J.Thonstad, GM.Haarberg. Cyclic and linear voltammetry on Ti/IrO2-Ta2O5-MnOx electrodes in sulfuric acid containing Mn2+ ions. Electrochimica Acta,2001,46: 3503-3508.
    42. B.S. Li, Lin An and F.X. Gan, Preparation and electro-catalytic properties of Ti/IrO2-Ta2O5 anodes for oxygen evolution, Transactions of the Nonferrous Metallurgy Society of China 2006,16 (5):1193-1199.
    43. Zhi-Guo Ye, Hui-Min Meng, Dong-Bai Sun. New degradation mechanism of Ti/IrO2+MnO2 anode for oxygen evolution in 0.5M H2SO4 solution. Electrochimica Acta, 2008,53(18):5639-5643.
    44.张帆,李海涛.二氧化铱与非晶态钽氧化物涂层电极材料研究.广州有色金属学报.2000,10(1):41-46.
    45.纪红,周德瑞,周育红.钛基Ru-La-Ti涂层阳极的电催化性能.材料保护.2003,36(7):22-24.
    46. J P Carr, N A Hampson. The lead dioxide electrode. Chemical reviews,1972,72(6): 679-703.
    47.王晶,赵芳.钛基二氧化铅电极的制备及其应用.化学工程师,2009,(5):45-47.
    48. Fukasawa, Akira. Production of commercial large lead dioxide electrode application of a new type lead dioxide electrode to electrolytic refining. J Mining and Metallurgical Institute of Japan,1984,1157(100):599-602.
    49.乔庆东,李琪.钛基二氧化铅电极的制备及其应用.应用化学,2000,17(5):555-557.
    50. Fred.D.Gibson Jr.Inert lead dioxide anode.U.S.Pat2945791,1960,19(7).
    51.Gilroy D. Stevens R. The electrodeposition of lead dioxide on titanium. J.Appl.Electrochem,1980, (10):511-525.
    52. Munichandraian N. Insoluble anode of a-lead dioxide coated on titanium for electrosynthesis of sodium perchlorate. J.Appl.Electrochem,1988,(18):314-316.
    53. Narasimham K C. Udapa H V K. Preparation and applications of Graphite lead dioxide(SGLD) anode. J.Electrochem.Soc,1976,123(9):1294-1298.
    54.盘茂森,钛基上电沉积PbO2惰性阳极材料的应用基础研究[D].昆明:昆明理工大学,2004.
    55.黄永昌,叶慧娟,章燕豪.锡锑中间层在钛基二氧化铅电极中作用机理探讨[J].上海交通大学学报,1992,4:25-33.
    56.梁镇海,孙彦平.Ti/SnO2+Sb2O3+MnO2/PbO2阳极的性能研究.无机材料学报,2001,16(1):183-187.57.梁镇海,张福元,孙彦平.耐酸非贵金属Ti/MO2阳极SnO2+Sb2O4中间层研究[J]. 稀有金属材料与工程,2006,35(10):1605-1609.
    58.梁镇海,王保成,孙彦平等.Ti/SnO2+Sb2O3/PbO2电极的电催化性.材料科学与工程,1996,14(1):62-63,12.
    59.王静毅,胡熙恩.脉冲电镀制备钛基二氧化铅电极.过程工程学报,2003,3(6):540-543.
    60.李耀刚,许文林,孙彦平.Ti/SnO2+Sb2O3+MnO2/PbO2阳极的制备及其性能[J].化工冶金,1997,18(1):13-17.
    61.李耀刚,孙彦平,许文林.硫酸介质中Ti/SnO2/PbO2析氧阳极的研究[J].电化学,1998,4(4):439-443.
    62.王雅琼,童宏扬,许文林.硫酸溶液中Ti/SnO2+SbO3/PbO2阳极在电解过程中的结构变化及失活行为[J].化工学报,2004,55(9):1560-1563.
    63.黄文沂,南峰,陈尧天.改性二氧化铅阳极的研究[J].无机盐工业,1993,(5):16-18.
    64.蔡天晓,鞠鹤,武宏让.β-PbO2电极的改性制备及其性能[J].表面技术,2002,31(5):22-23.
    65.张招贤.二氧化锰涂层钛阳极的研制.广东有色金属学报,1991,1(2):119-123.
    66.曾曙,王新民.湿法冶金中钛基二氧化锰阳极的研究.广东有色金属学报,1996,6(1):27-32.
    67.陈振方,蒋汉瀛.有色金属电积新型阳极及其行为的研究.有色金属(冶炼部分),1989,20(3):16-19.
    68.I. H.Yeo, D.C.Johnson. Effect of groups IIIA and V A metal oxides in electrodeposited β-PbO2 dioxide electrodes in acidic media. Journal of Electrochemical Society,1987,134: 1973-1977
    69. I.H.Yeo, S.Kim, R.Jacobson, et al. Comparison of structural data with electrocatalytic phenomena for bismuth-doped lead dioxide. Journal of Electrochemical Society,1989,136: 1395-1401.
    70. B.S.Nielsen, J.L.Davis, P.A.Thiel. Surface properties of PbO2 and Bi-modified PbO2 electrodes. Journal of Electrochemical Society,1990,137:1017-1022.
    71.刘丽丽,温青,李旭辉,等.掺杂钛基二氧化铅电极的制备及催化性能的研究.应 用科技,2006,33(3):53-55.
    72. A.B Velichenko, R Amadelli, G.L Zucchini, D.V Girenko, F.I Danilov.Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts.Electrochimica Acta,2000,45(25-26):4341-4350.
    73.韦国林,张利.PbO2电极制备及其析氧性能考察.上海大学学报(自然科学版),1997,S1,308-311.
    74. Fred D, Gilbson Jr. Inert lead dioxide anode.US Patent 294579J.
    75.蔡天晓,鞠鹤,武宏让等.β-PbO2电极中加入纳米级Ti02的性能研究.稀有金属材料与工程,2003,32,(7):558-560.
    76. Ai Shi-Yun,Li Luo-Ping,etal. Electrochemical deposition and properties of nanometer-structure Ce-doped lead dioxide film electrode. Chinese Journal of Chemistry,2005,23:71-75.
    77.冯玉杰.电化学技术在环境工程中的应用.北京:化学工业出版社,2002.
    78.张海波.稀土改性二氧化铅电极制备及电催化降解硝基苯的研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    79.李善评,胡振,孙一鸣等.新型钛基PbO:电极的制备及电催化性能研究.山东大学学报(工学版),2007,37(3):109-113.
    80. Renzo Bertoncello,Sandro Cattarin,Isabelle Frateur,etal. Preparation of anodes for oxygen evolution by electrodeposition of composite oxides of Pb and Ru on Ti. Journal of Electroanalytical Chemistry,2000,492:145-149.
    81.刘淑兰,于德龙,覃奇贤.PbO2-WC复合物阳极的研究.应用化学,1995,12(5):46-49.
    82.孙德堃.国内外锌冶炼技术的新进展[J].中国有色冶金,2004,6(3):1-4.
    83.李松瑞.铅及铅合金.中南工业出版社,1996;
    84.余逸男.添加剂对铁基PbO2电极制备影响的研究.东北大学学报,2001,27(1):66-69.
    85.曹建春,郭忠诚,潘君益,等.新型不锈钢基Pb02/PbO2-CeO2复合电极材料的研制[J].昆明理工大学学报,2004,29(5):38-41.
    86.叶匀分.采用高过电位阳极处理废水中酚的研究.上海化工,1999,(11):18-21.
    87. J.FENG、D.C.JOHNSON. Electrocatalysis of anodic oxygen-transfer reaction: alpha-lead dioxide electrodeposited on stainless steel substrates.J.Appl.electrochem,1990, (20):116-124.
    88.常志文,郭忠诚,潘君益,等.Al/Pb-WC-ZrO2-Ag和Al/Pb-WC-ZrO2-CeO2复合电极材料的性能研究[J].昆明理工大学学报,2007,32(3):13-17.
    89.黄惠,许金泉,郭忠诚.电沉积Al/Pb-WC-ZrO2系复合电极材料的研究[J].材料研究与应用.2008,2(2):115-118.
    90.黄惠,许金泉,郭忠诚.电沉积Al/Pb-WC-ZrO2系复合电极材料的研究[J].材料研究与应用.2008,2(2):115-118.
    91.曹梅.A1基SnO2+Sb2O3、SnO2+Sb2O3+MnO2涂层二氧化铅电极的制备及其应用[D].昆明理工大学硕士学位论文,2005.
    92. Jianfeng Zhou, Ruidong Xu, and Burning Chen.Study on Electrochemical Properties of Al/Pb-PANI-WC Inert Anodes Adv. Advanced Science Letters,2011,4 (3):1225-1229.
    93. CHEN Bu-ming, GUO Zhong-cheng, YANG Xian-wan. Morphological study of electrodepositing alpha-lead dioxide on aluminum substrate electrode[J]. Transactions of Nonferrous Metals Society of China,2010,20:97-103.
    94. CHEN Bu-ming, GUO Zhong-cheng, YANG Xian-wan. Effects the electrodepositing alpha-lead dioxide coating on the current density[J]. ACTA METALLURGICA SINICA,2009,22(5):373-382.
    95. Bu-ming Chen, Zhong-cheng Guo, Xian-wan Yang, Hui Huang. Investigations on the properties a-PbO2-matrix[J]. World Journal of Engineering,2008,909-910. 96. Zhong-cheng Guo, Bu-ming Chen, Xian-wan Yang, Hui Huang. Preparation of a β-PbO2-WC-TiO2 composite electrode with aluminum as substrate[J]. World Journal of Engineering,2008,221-224.
    97.陈阵,武剑,司云森,郭忠诚.铝基Pb-WC-CeO2脉冲复合镀层阳极材料的电催化性能.材料保护.2012,45(5):35.
    98.黄子良,竺培显,周生达,等.Al-Pb新型复合电极材料的制备及其性能研究[J].兵器材料科学与工程,2009,32(3):18-20.
    99.王峰,俞斌.一种新型PbO2电极的研制.应用化学,2002,19(2):193-195.
    100.石崇铁,朱荣昭.PbO:电极上S2O82-离子阳极形成过程的研究.应用化学,1978,
    101.徐品弟,柳厚田.掺杂的PbO2电极性能的研究.蓄电池,1994,(2):2-6.
    102.王桂清,刘敏娜.塑料基体上化学镀二氧化铅.电镀与环保,1995,15(3):20-21.
    103.王桂清,刘敏娜.聚丙烯塑料板基体二氧化铅电极的制备.材料保护,1995,28(3):18-19.
    104.周海晖,陈范才,赵常就.环氧板二氧化铅电极的制备及其性能测试.表面技术,2000,29(2):15-16.
    105.池廼书,阮秀英,张永祥,等.ABS塑料基二氧化铅电极的制造、性能及其应用.福建师范大学学报,1992,8(2):60-64.
    106.陈振方,蒋汉瀛.PbO2-ABS塑料电极的研制及其性能.材料保护,1992,25(1):6-7.
    107.郑一雄.石墨基二氧化铅阳极的制备和应用.华侨大学学报(自然科学版),1998,19(4):358-361.
    108.天津化工研究院一室.无机盐工业.1978,(2):12-15.
    109.周明华,戴启洲,雷乐成等.新型二氧化铅阳极电催化降解有机污染物的特性研究.物理化学学报,2004,20(8):871-876.
    110.赵祖珍.交替微波快速催化合成碳化钨及碳化钨基燃料电池催化剂的研究[D].中山大学硕士学位论文,2005.
    111.曾江华,袁定胜,刘应亮,等.碳化钨纳米晶合成及其电化学性能[J].催化学报,2008,29(7):607-610.
    112. H. Letheby. On the production of a blue substance by the electrolysis of sulphate of aniline. Journal of the Chemical Society.1862,15:161-1632.
    113. Desureville R,Jozefowicz M,Yu L T, Elechemical chains using protolytic organic semiconductors. Electro.Chim.Acta.,1968.13 (6):1451-1458.
    114. MacDiarmid A G.Chiang J C,Halpern M,et al.Aqueous polymerization of polyacetylene and polyaniline:Application to Rechargeable batteries.Polym. Prepn,1984,25(2):248-249.
    115. MACDIARMID A G;MU S L.Electroehemical characteristics of "Polyanline"cathodes and anodes in aqueous electrolytes. Molecular Crystals and Liquid Crystals.,1985,121 (5):187-190.
    116. MacDiarmid A G.Conducting Polymer:What does that Future Hold? Synth.met.,1987,21 (1):79-83
    117. A.Haimerl, A.Merz, J Electroanal. Chem., Interfacial Electrochem.,220(1)(1 987)55.
    118. T. Osaka,S. Ogano,K. Naoi, et al. Electrochemical polymerization of electroactive polyaniline in non-aqueous solution and its application in rechargeable lithium battery[J]. J Electrochem Soc,1989,136 (2):306-310.
    119. E. M.Genies, A.Boyle,M.Lapkowski, et al., "Polyaniline:A Historical Survey", Synthetic Metals,1990,36(2):139-182,
    120. S. W.Huang, K. G.Neoh, E.T.Kang, et al. J Mater. Chem.,8(8)(1998)1 743.
    121.罗维忠,吴婉群.聚苯胺和聚吡咯膜电极对Fe(Ⅱ)和Sb(Ⅲ)电催化作用.应用化学,1994,11(1):42
    122.董绍俊,宋发益.聚苯胺薄膜修饰电极对抗坏血酸的电催化氧化[J].物理化学学报,1992,8(1):82.
    123. A.M.Castro Luna, J.Apppl Electrochem,30(2000)1 137
    124. K.M.Kost, D.E.Bartak, B.Kazee,et al. Anal. Chem.,60(21)(1988)2 379.
    125. E.Buttner, R.Holze, J. Electroanal. Chem.,508(2001)1 50
    126. A.A.Mikhaylova, E.B.Molodkina, O.A.Khazova, et al. J Electroanal Chem (2001) 119.
    127. K.Rajendre Prasad, N.Munichandraiah. Electrooxidation of methanol on polyaniline without dispersed catalyst particles. J.Power Sources,2002,103:300-304.
    128.吴婉群,王月丰,范例,等.铂微粒修饰的聚苯胺薄膜电极对甲醛氧化的电催化作用应用化学,1995,12(1):68-72.
    129.李五湖,陈琳琳,钟起玲,等.应用化学,10(4)(1993)55.
    130.李念兵,张胜涛.电催化材料聚苯胺的研究进展.材料导报,2001,15(4):42-43,38.
    131.苏育志.聚有机二硫化物储能材料的电化学性能研究.化学通报,2001,64(2):95-101.
    132.汪晓芹,廖晓兰,等.聚苯胺及其复合材料研究现状.应用化学,2002,33(1):4-8.
    133. Yang LS, Shan Z Q, Hou P M, Chen W X and Liu L. J. Power Sourses,1993,44: 999-1004.
    134.王金库,陈军,等.透明导电聚苯胺复合膜的研究进展.材料科学与工程,2001,19(1):121-123.
    135. C.Barthet, M. Guglielmi, P. Baudry, A polyaniline+polyethylene oxide mixture as a composite polymer positive electrode in solid-state secondary batteries. Journal of Power Sources,1997,431 (2):145-152.
    136. Hiromori Tsutsumi, Miho Araki, Kenjiro Onimura, Electrochemical behavior of polyaniline composite doped with poly [p-styrenesulfonate-co-methoxyoligo (ethyleneglycol) acrylate] in aqueous electrolyte and its application to the lithium ion concentration battery. Synthetic Metals,1998,97 (1):53-56.
    137. Kwang Sun Ryu, Kwang Man Kim, Comparison of lithium//polyaniline secondary batteries with different dopants of HCl and lithium ionic salts. Journal of Power Sources 2000,88(2):197-201.
    138. Kwang Sun Ryu, Kwang Man Kim, Electrochemical and physical characterization of lithium ionic salt doped polyaniline as a polymer electrode of lithium secondary battery. Synthetic Metals,2000,110(3):213-217.
    139. H. Rehan,A new polymer/polymer rechargeable battery:polyaniline/LiClO4 (MeCN)/ poly-1-naphthol. Journal of Power Sources,2003,113(1):57-61.
    140.黄惠,周继禹,郭忠诚,电化学聚合导电聚苯胺膜的研究,电镀与精饰,2008,9:9-14.
    141.黄惠,许金泉,郭忠诚,导电聚苯胺的研究进展及前景,电镀与精饰,2008,11:9-13.
    142.黄惠,许金泉,郭忠诚,聚苯胺/碳化钨导电复合材料合成的研究,功能高分子学报,2009:22(1):35-39.
    143.黄惠,周继禹,许金泉,郭忠诚,有机/无机酸复合掺杂导电聚苯胺的合成及性能研究,高校化学工程学报,2009,23(6):984-989.
    144.黄惠,许金泉,刘小丽,郭忠诚,复合酸掺杂聚苯胺的性能研究,化学通报,2009,8:74-78.
    145. Hui Huang, Ji-yu Zhou, Jin-quan Xu, Zhong-cheng Guo, Chemical synthesis of polyaniline using 5-sulfosalicyclic acid as dopant agent into the reactional medium, Material Letters,2009.
    146.黄惠.导电聚苯胺基电积锌阳极制备的基础研究:[博士学位论文].云南:昆明理工大学,2010.
    147. H.Y. Peng, H.Y. Chen, W.S. Li, S.J. Hu, H. Li, J.M. Nan, Z.H. Xu. A study on the reversibility of Pb(Ⅱ)/PbO2 conversion for the application of flow liquid battery Journal of Power Sources,2007,168:105-109.
    148.王为,郭鹤桐.纳米复合镀技术.化学通报,2003,(3):178.
    149.向国朴.脉冲电镀发展概况.电镀与涂饰,2000,19(4):43.
    150.苗治广,郭忠诚.新型不锈钢基PbO,-WC-ZrO2复合电极材料的研制[J].电镀与涂饰,2007,26(4):15-17,20.
    151. Foster J.Trans.IMF.,1972,50(5):207.
    152. Snaith D W, Groves P D.Trans.IMF.,1978,56(1):9
    153.增子升.金属表面技术,1980,31(10):523.
    154.郭鹤桐,舒钰,唐致远.金属陶瓷复合材料的电沉积.电镀与环保,1982,(3):8-12.1982,2(4):3.
    155. Guglielmi N.J.Electrochem.Soc.,1972,119(8):1009-1012.
    156. Martin P W. Metal Finishing,1965,63(11):399.
    157. Brandes E.A, Goldthorpe D., Metallurgia,1967,75(11):195.
    158. Celis J. P, Roos J. R and.Buelens C J.Electrochem. Soc.,1987,134(6):1402.
    159. Valds J L, Cheh H Y.J.Electrochem. Soc.,1987,134(4):223-225.
    160.胡信国,孙福根.无机颗粒的共沉积机理.电镀与精饰[J],1989,11(2):7-10.
    161.常立民.脉冲电沉积(Ni-Co)/Al2O3复合镀层及其性能研究[D].[博士学位论文].哈尔滨:哈尔滨工业大学,2006.
    162.郭忠诚,曹梅.脉冲复合电沉积的理论与工艺[M].北京:冶金工业出版社,2009.
    163.杨凯华.脉冲电镀工艺参数对镀层性能影响的研究.探矿工程.1996,(3):28-31.
    164.安茂忠.电镀理论与技术.哈尔滨:哈尔滨工业大学出版社.
    165.张允诚,等.电镀手册[M].北京:国防工业出版社,1997,622-635.
    166.李狄.电化学原理[第三版].北京:北京航空航天大学出版社,2008.8.
    167.李文超.冶金与材料物理化学.北京:冶金工业出版社,2001,457-467.
    168.方景礼.多元络合物电镀.北京:国防工业出版社.1983.6.
    169.陈步明.新型节能阳极材料制备技术及电化学性能研究[D].[博士学位论文].昆明:昆明理工大学,2009.
    170.刘业翔,吴良蕙.锌电解节能惰性阳极的研究-隋性阳极上的析氧超电压.有色金属(冶炼部分).1984,30(4):28-31.
    171.肖发新,毛建伟,曹岛等.苄叉丙酮和明胶对酸性镀锡层的影响.电镀与环保.2011,31(5):6-8.
    172. Lidia benea, Pier Luigi Bonora, Alberto Borello. Et al. Composite Electrode-position to obtain Nanostructured[J]. Journal of The Electrochemical Society,2001,148(7):C461-C465.
    173. Eric Mahe et al. Surface modification of titanium substrates for the preparation of nobel metal coated anodes, Electrochimica Acta.2000.46:629-636.
    174.曹楚南.电化学阻抗谱导论.北京:科学出版社,2004.5
    175. Kamegaya Y et al. Electrochimica Acta.1995.40:889.
    176.Trasatti S.Electrocatalysis in the anodic evolution of oxygen and chlorine. Electro-chimica Acta,1984.29(11):1503-1512.
    177.王钧扬.锌电积的节电探讨.湖南冶金,2003,31(3):45-48.
    178.付运康.锌电积电流效率低的原因与对策.有色金属(冶炼部分),2002(5):21-23,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700