用户名: 密码: 验证码:
Ni-P复合镀层制备及其摩擦力学特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ni-P合金镀层具有镀液稳定、操作简单、耐磨耐蚀性能优良以及性价比高等特点,在电子、机械、化学化工等工业领域中获得了广泛应用。但是,随着现代科学技术的快速发展,单一镀层材料难以满足复杂恶劣工况条件下对材料性能的要求,多元多功能Ni-P复合镀层材料正日益引起人们的重视。本文研究工作以纳米三氧化二铝和六方氮化硼为分散相,采用脉冲电沉积方式制备Ni-P复合镀层,利用SEM、XRD以及EDS等手段分析镀层的结构,同时采用Tafel线性外推法、电化学交流阻抗以及摩擦磨损实验等手段对镀层的耐蚀及摩擦学性能进行评价。为了探索复合镀层的失效机理,本文对Ni-P/纳米Al_2O_3复合镀层划痕过程进行了有限元模拟,分析了涂层中应力分布规律,获得了涂层可能产生裂纹的位置和模式。
     采用脉冲电沉积方法制备Ni-P复合镀层的适宜工艺条件为:pH值4.0,脉冲频率1500Hz,占空比0.2,电流密度5A/dm2,镀液温度50℃,镍磷镀液中分散相Al_2O_3或BN(h)悬浮量为20g/L,表面活性剂为聚乙烯醇。
     Ni-P复合镀层热处理前为非晶态结构,经200℃热处理后镀层内析出少量的Ni_5P_4和Ni_(12)P_5等亚稳相,镀层结构仍为非晶态,300℃热处理80分钟后镀层内开始析出少量稳定的Ni_3P相,镀层为非晶态与晶态混合组织,400℃热处理80分钟后,镀层中Ni_(12)P_5等亚稳相消失,主要为Ni_3P相,镀层已完全晶化。与Ni-P合金镀层对比,Al2O3、BN(h)固体颗粒阻滞了镀层中第二相的析出速度,使晶化时间延长。当热处理温度不变时,随着热处理时间的延长,Ni-P复合镀层的显微硬度先增大后减小,出现一个硬度峰值;提高镀层的热处理温度,达到硬度峰值所需要的热处理时间缩短。
     载荷为30N,转动速度为100r/min时,Ni-P/纳米Al_2O_3和Ni-P/BN(h)复合镀层与淬火45钢对摩时的摩擦因数分别为0.2、0.08,2种复合镀层的耐磨性能比Ni-P合金镀层显著提高,Ni-P复合镀层具有优异的摩擦学性能。在低载荷和低转速条件下,复合镀层的磨损机理为轻微磨粒磨损,在高载荷和高转速条件下,表现为疲劳磨损与磨粒磨损的混合磨损机理。
     2种Ni-P复合镀层在3.5%NaCl和10%H_2SO_4腐蚀介质中的耐蚀性能均优于Ni-P合金镀层;热处理后复合镀层在3.5%NaCl溶液中的耐蚀性能发生了改变,300℃热处理后的复合镀层耐蚀性能最好,而400℃热处理后的耐蚀性能降低,出现了轻微的点蚀;随着浸泡时间的延长,Ni-P/BN(h)复合镀层的耐蚀性先升高后降低。铝液与Ni-P/纳米Al_2O_3复合镀层的湿润性较差。铝液在Ni-P/纳米Al203复合镀层表而只发生界面反应,产生较薄的金属化合物AlP或Al_3Ni层,不利于铝液在复合镀层上的铺展。因此,Ni-P/纳米Al203复合镀层表现出良好的耐铝侵蚀性能。
     划痕过程可以分为划针尖端压入涂层表面、划针在涂层表面上滑动和划针升高等三个阶段。前两个阶段由于划针尖端对涂层表面的作用,在涂层表面形成划痕,在涂层中产生局部高应力;划针升高后在涂层中留下了较大的残余应力。应力分析表明当划针尖端压入涂层后,由于基底的塑性变形,在划针尖端周边的接触边缘区域会产生堆积变形,在堆积的顶点,径向应力和第一主应力具有最大拉应力;在接触中心之下,涂层/基底界面上的对应点,径向应力、第一和第二主应力会出现最大拉应力:划针尖端压入涂层后在涂层表面滑动时,划针尖端的前面,涂层会产生最大的堆积,在堆积区域的顶点,沿滑动方向的正应力和第一主应力出现了最大拉应力;划针尖端压入涂层深度越大,基底塑性变形越大,堆积就会越高,在堆积区沿着滑动方向的正应力和第一主应力就会越大;对于涂层为弹性变形,基底为弹塑性变形的涂层结构,划痕过程产生的残余应力主要集中在划痕结束时划针尖端之下的涂层/基底界面区域,以及划针尖端前面的堆积区,残余应力的最大值主要存在于涂层表面和基底/涂层界面的涂层中,这些最大残余应力均是拉应力。根据应力的分布规律,在划痕过程中涂层产生裂纹主要会出现在划针尖端前面堆积区的表面和划针与涂层接触区之下的涂层/基底界面上,这些区域内最大应力都是拉应力,相应地会产生第一型裂纹。由于在划痕后,在涂层中存在较大的残余应力,即使划痕结束后,在涂层中仍然有可能引起新裂纹和原有裂纹扩展。
Due to its simple process, good performance and economy, Ni-P alloy coating has been widely used in industries, such as mechanical, electronics and chemical engineering, etc. However, with the development of the science and technology, the alloy coating cannot meet the complicated environment. Thus, multifunctional Ni-P composite coating materials have been paid more and more attention to. The hexagonal boron nitride [BN(h)] particles have excellent lubrication performance, high thermal stability and corrosion resistance, so preparation Ni-P/BN(h) composite coating by adding BN(h) particles to Ni-P base plating solution, can further improve the corrosion resistant wear-resisting performance of Ni-P alloy coating, and have much significance.
     Ni-P/BN(h) composite coating was prepared by electroplating, evaluated by the organization structure of the coating, microhardness and deposition rate of the coating, to study the process of Ni-P/BN(h) composite coating. Results show that the best technology for pulse frequency was1500Hz, occupies empties compared was0.2, pH was4.0, electroplating temperature was50℃, current density was5A/dm2, the content of BN(h) particle in plating solution was20g/L, and surface active agent was poval.
     The effect of technology for heating processing on organization structure and microhardness of Ni-P/BN(h) composite coating was studied. Results show that as-deposited Ni-P/BN(h) composite coating was amorphous structure; a small amount of Ni5P4and Ni12P5etc. metastable phases were precipitated from coating, and the coating was still amorphous structure after200℃heat treatment; but after300℃heat treatment in80minutes, the precipitated phases were a lot of unsteady phases and a small amount of Ni3P stable state phase, the composite coating was amorphous structure and crystalline state mix organize; after heat treatment of400℃in80minutes, the composite coating was crystallized to great degree. Compared to Ni-P alloy coating, BN(h) particles could lead to reduce the precipitated speed of the second phase and extend crystallization time. At given heat treatment temperature, the microhardness of Ni-P/BN(h) composite coatings increase at the beginning, then decrease with the extension of heat treatment time, which have a maximum microhardness; The time of reaching the maximum microhardness of composite coating was short, as the heat treatment temperature rises.
     Friction factor of Ni-P/BN(h) composite coating reduced with the suspension quantity of BN(h) increased; when suspension quantity of BN(h) was20g/L, the friction factor was minimum, about0.08, wear loss was just as a quarter of Ni-P alloy plating, Ni-P/BN(h) composite coating showed excellent tribological properties. The friction factor of composite coating increased with loads and rotation speed increased, the wear mechanism of composite coating was slight particle attrition when load and rotation speed were low. However, the wear mechanism of composite coating was fatigue wear and particle attrition synergy when load and rotation speed were high.
     The corrosion resistance performance of Ni-P/BN(h) composite coating was researched by SEM, tafel polarization curves and electrochemical impedance spectroscopy. The experimental results show that the corrosion resistant performance of Ni-P/BN(h) was superior to Ni-P alloy plating when immersed in3.5%NaCl and10%H2SO4solution for240h. This research concluded that corrosion resistance performance of Ni-P/BN(h) composite coating after heat treatment in3.5%NaCl solution were changed, the best corrosion resistance performance was at300℃heat treatment; and after400℃heat treatment of corrosion resistant performance was reduced, a little corrosion would appear, and the polarization resistance was least; And, the corrosion resistance of Ni-P/BN (h) composite coating were first increased, then decreased as for the extension of immersed time.
     In order to explore the mechanism of coating failure, the work had simulated scratching process on coating surface of TiN hard material deposited on strain hardening steel substrate with finite element method; next, it analyzed stress field in coating; finally, it predicted positions and modes that crack might initiate. Scratch process may be divided into three phases, i.e. a stylus tip indenting coating surface, the stylus tip slipping on coating surface and the stylus tip rising over coating surface. During former two phases, the stylus tip has coating surface formed a groove due to its acting on coating surface, and induces local stress concentration. There are residual stresses in coating after the stylus tip rises over the coating surface. Stress analyses have showed that after the stylus tip indents the coating surface, pile-up deformation appears near the edge of contact zone due to the plastic deformation of substrate, and radial stress and first principal stress reach the maximum tensile stresses at the vertex of pile-up deformation; likewise, radial stress and first and second principal stresses reach the maximum tensile stresses at the corresponding point of the substrate/coating interface underneath the contact center. When the stylus tip slips continuously on the coating surface after it indents the coating surface, the coating surface takes place the highest pile-up deformation front the stylus tip. At the vertex of pile-up deformation, the normal stresses along slipping direction and first principal stress have the maximum tensile stress. The deeper the stylus tip indents the coating surface, the heavier the substrate generates plastic deformation, the higher the coating surface take place the pile-up deformation, the larger the stresses are induced. For the coating system in which the coating material is deformed by elastic deformation and the substrate material is deformed by elastic and plastic deformation, biggish residual stresses induced during scratch process mainly occur on the coating surface and in the coating of the substrate/coating interface, and those residual stresses all are tensile.
     Based on the analysis of stress distributing rules in the scratch process, the crack initiating in the coating may mainly occur on the surface of the pile-up zone front stylus tip and on the coating/substrate interface underneath the contact region between stylus tip and coating. In the zones, the maximum stresses induced by scratching are tensile; accordingly, the cracks induced by the maximum stresses are mode. Moreover, because there are biggish residual stresses in coating after scratching, they may still induce fresh crack generation and original crack propagation.
引文
[1]郭鹤桐,张三元.复合电镀技术[M].北京:化学工业出版社,2007,4-6.
    [2]S.T.Aruna,V.K.William Grips,K.S.Rajam. Ni-based electrodeposited compo-site coating exhibiting improved microhardness.corrosion and wear resist-ance properties. Journal of Alloys and Compounds,2009,468:546-552
    [3]罗建东,阮锋,刘慧平(Ni-P)-SiC复合电刷镀[J].电镀与精饰,2007,29(1):19-21.
    [4]张恒,沈献民Ni-P/SiC耐磨性化学复合镀工艺参数优化[J].郑州大学学报,2004,36(3):54-58.
    [5]刘铁虎Ni-P-Cr2O3化学复合镀层耐磨性的研究[J].润滑与密封,2002,(6):45-46.
    [6]彭成章,朱玲玲.电沉积Ni-P/纳米Al2O3复合镀层的摩擦磨损与耐铝液侵蚀性能[J].中国有色金属学报,2010,20(6):1177-1182.
    [7]张欢,郭忠诚,蒋琪英,胡文远,唐敬友,樊北旭.稀土Ni-W-P-SiC脉冲复合镀层的耐蚀性研究[J].材料热处理学报,2007,28(3):116-120.
    [8]张卫国,穆高林,姚素薇.Ni-P/纳米Al2O3复合镀层的制备及其耐磨性能[J].有色金属,2008,60(2):25-28.
    [9]周琦,邵忠宝,贺春林,邵忠财,才庆魁,高维娜.表面活性剂对镍-磷-纳米氧化铝复合镀的影响[J].中国腐蚀与防护学报,2007,27(1):27-30.
    [10]黄仲佳,熊党生Ni-PS-MoS2复合镀层的制备及摩擦磨损性能[J].郑州大学学报,2008,29(4):42-46.
    [11]张秋道,张丽娟,宋来洲,许光辉.化学复合镀Ni-P-PTFE镀层性能的研究[J].哈尔滨工业大学学报,1999,31(1):127-129.
    [12]Leon O A, Staia M H, Hintermann H E. Deposition of Ni-P-BN(h) composite autocatalytic coatings[J]. Surface and Coatings Technology,1998,108-109:461-465.
    [13]姚素薇,姚颖悟,张卫国,等Ni-W/ZrO2纳米复合镀层耐高温氧化性能分析[J].天津大学学报,2007,40(3):308-311.
    [14]薛玉君,刘红彬,兰明明,等.超声条件下脉冲电沉积Ni-CeO2纳米复合镀层的高温抗氧化性[J].中国有色金属学报,2010,20(8):1599-1604.
    [15]卜路霞,石军,朱华玲,等Ni-SiO2纳米微粒复合镀层的电沉积及其耐蚀性研究[J].电镀与精饰,2011,33(6):13-19.
    [16]] Wang C Y, Zhou Y, Zhu Y R, et al. Synthesis and characterization of Ni-P-TiO2 ultrafine composite particles[J]. Materials Science and Engineering,2000,B77(1):135-137.
    [17]马明硕,常立民,徐利.脉冲电沉彩Ni-SiC复合镀层的组织形貌与性能研究[J].吉林化工学院学报,2010,27(1):85-87.
    [18]薛玉君,司东宏,刘红彬,等.电沉积方式对Ni-CeO2纳米复合镀层摩擦摩损性能的影响[J].中国有色金属学报,2011,21(9):2157-2162.
    [19]马明硕,常立民,徐利.脉冲电沉积纳米镍-碳化硅复合镀层的性能[J].电镀与涂饰,2012,31(2):14-16.
    [20]Guglielmi N. Kinetics of the Deposition of inert Particles from Electrolytic Baths[J]. Journal of The Electrochemical Society,1972,119(8):1009.
    [21]Celis J P, Roos J R. A Mathemtical Model for the Electrolytic Codeposition of Particles with Metallic Matrix[J]. Journal of The Electrochemical Society,1987,134(6):1402-1408.
    [22]Fransaer J, Celis J P, Roos J R. A Mathemtical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix[J]. J Electrochemical Society,1992,139(2):413.
    [23]J L Valds.Electrodeposition of Colloidal Particles. J.Electrochem.Soc.1987,134(4):223C-225C.
    [24]Hwang B J, Hwang C S. Mechanism of Codeposition of Silicon Carbide with Electrolytic Cobalt[J]. J Electrochem Soc,1993,140(4):979-984.
    [25]范云鹰,张英杰,杨显万。Zn-Fe-SiO2复合镀层的耐蚀性。腐蚀科学与防护技术,2004,16(4):245-247.
    [26]郜华萍,杨勇。电沉积RE-Ni-W-P-SiC复合镀层的耐蚀性研究。云南冶金,2001,30(2):46-49.
    [27]Abdel S H, Shoeib M A, Hady H, Abdel Salam O F. Corrosion behavior of electroless Ni-P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution [J]. Surface & Coatings Technology,2007,202:162-171.
    [28]Nabeen K. Shrestha, Masabumi Masuko, et al. Composite plating of Ni/SiC using azo-cationic surfactants and wear resistance of coatings[J]. wear,2003,254:555-564.
    [29]许小锋Ni-P/MoS2自润滑化学复合镀层的制备及性能研究[J].润滑与密封,2010,35(11):90-93.
    [30]付传起,王宙,何旭Ni-P-PTFE复合镀层工艺及摩擦学行为研究[J].润滑与密封,2011,36(5):44-47.
    [31]Haijun Zhao, Lei Liu, Wenbin Hu, Friction and wear behavior of Ni-graphite composites prepared by electroforming[J]. Materials & Design,2007,28:1374-1378.
    [32]PENG C Z, ZHU L L, CHEN Y M. Effect of heat treatment on microstructure and corrosion resistance of Ni-P/BN(h) composite coatings[C]. Advanced Materials Research, 2011,293-246:3362-3366.
    [33]薛玉君,刘红彬,兰明明,等.超声条件下脉冲电沉积Ni-CeO2纳米复合镀层的高温抗氧化性[J].中国有色金属学报,2010,20(8):1599-1604.
    [34]金亚旭,田玉明,闫时建.镍-磷-钛酸钾晶须化学复合镀层的高温抗氧化性能[J].电镀与涂饰,2010,29(2):27-32.
    [35]王法斌,李云,吴玉程,等。电沉积镍基和铜基纳米复合镀层耐蚀性的研究。电镀与环保,2009,29(1):9-12
    [36]王健,孙建春,丁培道,彭晓东。纳米复合镀工艺的研究现状。表面技术,2004,33(3):1-4
    [37]申晨,薛玉君,库祥臣,等。超声波对Ni-ZrO2纳米复合镀层微观结构和显微硬度的影响。机械工程材料,2010,34(7):80-83
    [38]常立民,刘伟,段小月。超声波对电沉积Ni/Al2O3复合镀层耐蚀性的影响。材料保护,2010,22(6):527-530
    [39]夏法锋,吴蒙华,贾振元,等。超声波对Ni-TiN纳米复合镀层的影响。功能材料,2008,39(4):690-692
    [40]王庆富等.脉冲参数对氨基磺酸盐镀镍择优取向的影响.材料保护,2003,36(11):18-20
    [41]Sidney Oswaldo Pagotto Jr,Celia Marina de Alvarenga Freire,Margarita Ballester.Zn-Ni Alloy Desposits Obtained by Continuous and Pulsed Electrodeposition Processes.Surf.Coat.Technol.1999,122(1):10-13
    [42]S.K.Ghosh;A.K.Grover;G.K.Dey,etal.Nanocrystalline Ni-Cu Alloy Plating by Pulse Electrolysis.Surf.Coat.Techol.2000,126(1):48-63
    [43]A.Marlot,P.Kern,D.Landolt.Pulse Plating of Ni-Mo Alloy from Ni-rich Electrolytes.Electrochimica.Acta.2002,48(1):29-36
    [44]P.Gytfou, M.Stroumbouli, E.A.Pavlatou, et al.Tribological Study of Ni Matrix Composite Coatings Containing Nano and Micro SiC Particles.Electrochimica.Acta.ZOOS,2001,50 (23):4544-4550
    [45]王军丽,徐瑞东,龙晋明,等。脉冲电沉积E-Ni-W-B-PTEF-Al2O3复合镀层性能的研究.材料保护,2006,38(3):18-20
    [46]石淑云,马文英,常立民,等。电沉积方式对Ni-nano Al2O3复合镀层组织结构和耐蚀性能的影响[J].应用化学,2008,25(12):1499-1501
    [47]张欢、郭忠诚、朱晓云(Ni-E-P)-SiC复合镀层的脉冲电沉积及其耐腐蚀性.电镀与精饰.2004,26(2):4-7
    [48]张欢、郭忠诚.脉冲电沉积RE-Ni-W-P-SiC复合镀层的硬度研究.机械工程材料2004,28(11):25-27
    [49]张欢、郭忠诚、韩夏云.脉冲电沉积RE-Ni-W-P-SiC复合镀层工艺.机械工程材料.2004,28(7):29-34
    [50]李金辉,王瑞祥,刘锦茂。工艺参数对RE-Ni-Fe-P-PTFE复合镀层中PTFE含量的影响。电镀与涂饰,2007,26(9):5-7
    [51]彭其春,李源源,朱诚意,周飞。结晶器表面电沉积RE-Ni-W-P-B4C镀层性能的研究。材料保护,2008,41(1):4143
    [52]Bellemare S C, Dao M, Suresh S.A new method for evaluating the plastic properties of materials through instrumented frictional sliding tests. Acta Materialia,2010,58(19): 6385-6392.
    [53]Hazra S, Bandyopadhyay P P. Scratch induced failure of plasma sprayed alumina based coatings. Materials and Design,2012,35(3),243-250.
    [54]Narasimman P, Pushpavanam M, Periasamy V M. Wear and scratch resistance characteristics of electrodeposited nickel-nano and micro SiC composites. Wear,2012, 292-293(6),197-206.
    [55]Sharma N, Kumar N, Dash S, Das C R, Rao R V S, Tyagi A K, Raj B. Scratch resistance and tribological properties of DLC coatings under dry and lubrication conditions. Tribology International,2012,56(12),129-140.
    [56]Bellemare S C, Dao M, Suresh S. Effects of mechanical properties and surface friction on elasto-plastic sliding contact. Mechanics of Materials,2008,40(4-5),206-219.
    [57]Bellemare S, Dao M, Suresh S. The frictional sliding response of elasto-plastic materials in contact with a conical indenter. International Journal of Solids and Structures,2007,44(6), 1970-1989.
    [58]Fua W E, Chang C, Chen A, Huang K W, Chang Y Q. Material removal mechanism of Cu-CMP studied by nano-scratching under various environmental conditions. Wear,2012,278-279(3),87-93.
    [59]Barnesa D, Johnson S, Snell R, Best S. Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly(carbonate urethane) substrates. Journal of Themechanical Behavior of Biomedical Material,2012,6(2),128-138.
    [60]Holmberg K, Laukkanen A, Ronkainen H, Wallin K. Tribological analysis of fracture conditions in thin surface coatings by 3D FEM modelling and stress simulations. Tribology International,2005,38(11-12),1035-1049.
    [61]Holmberg K, Laukkanen A, Ronkainen H, Wallin K. Surface stresses in coated steel surfaces-influence of a bond layer on surface fracture. Tribology International,2009,42(1), 137-148.
    [62]Holmberg K, Laukkanen A, Ronkainen H, Wallin K, Varjus S, Koskinen J. Tribological contact analysis of a rigid ball sliding on a hard coated surface Part Ⅰ:Modelling stresses and strains. Surface & Coatings Technology,2006,200(12-13),3793-3809.
    [63]Holmberg K, Laukkanen A, Ronkainen H, Wallin K, Varjus S, Koskinen J. Tribological contact analysis of a rigid ball sliding on a hard coated surface Part Ⅱ:Material deformations, influence of coating thickness and Young's modulus. Surface & Coatings Technology,2006,200(12-13),3810-3823.
    [64]Laukkanen A, Holmberg K, Koskinen J, Ronkainen H, Wallin K, Varjus S. Tribological contact analysis of a rigid ball sliding on a hard coated surface, Part Ⅲ:Fracture toughness calculation and influence of residual stresses. Surface & Coatings Technology,2006, 200(12-13),3824-3844.
    [65]Holmberg K, Ronkainen H, Laukkanen A, Wallin K. Friction and wear of coated surfaces-scales, modelling and simulation of tribomechanisms. Surface & Coatings Technology,2007,202(4-7),1034-1049.
    [66]Holmberg K, Ronkainen H, Laukkanen A, Wallin K, Hogmark S, Jacobson S, Wiklund U, Souza R M, Stahle P. Residual stresses in TiN, DLC and MoS2 coated surfaces with regard to their tribological fracture behaviour. Wear 2009,267(12),2142-2156.
    [67]Rhimi M, Borgi S E, Lajnef N. A double receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate. Mechanics of Materials,2011, 43(12),787-798.
    [68]Argatov Ⅱ, Mishuris G S. Axisymmetric contact problem for a biphasic cartilage layer with allowance for tangential displacements on the contact surface. European Journal of Mechanics A/Solids,2010,29(),1051-1064.
    [69]Malits P. Contact with stick zone between an indenter and a thin incompressible layer. European Journal of Mechanics A/Solids.2011,30(6),884-892.
    [70]Aleksandrov V M. Asymptotic solution of the axisymmetic contact problem for an elastic layer of impressible material. Journal of Application of Mathematics and Mechanics.2003, 67(4),589-593.
    [71]高加强,刘磊,沈彬,朱建华,胡文彬,丁文江.纳米氧化铝粒子对化学镀镍-磷合金晶化行为的影响[J].中国有色金属学报,2004,14(1):64-68.)
    [72]徐瑞东,郭忠诚,朱晓云,等。高磷非晶态镍磷合金镀层的研究[J].电镀与环保,2002,22(3):18-20.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700