用户名: 密码: 验证码:
金属有机骨架膜的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属有机骨架(MOFs)化合物结合无机和有机孔材料的优点,是由无机金属和有机配体构筑而成的晶体化合物,由于金属离子和配体的多样性可以设计多种结构拓扑的MOFs材料,具有良好的稳定性、有序度、高的表面积、可修饰性等特点,也正是MOFs材料独特的结构性能使其应用在制备优越特性的膜中。在过去的十多年里,MOF膜材料广泛应用于气体分离、催化、光学、传感器等诸多领域。
     金属有机骨架化合物具有均匀孔径、对特定气体具有高的吸附能力等特点,使得MOF膜对特定气体具有优异的选择渗透性,而引起其在气体分离中的应用。
     Cu3(BTC)2金属有机骨架化合物是由铜离子与1,3,5-均苯三酸形成的‘paddle-wheel’三维结构孔材料,孔径大小约0.9nm。我们用晶种二次生长方法,在预先用壳聚糖修饰的α-Al2O3中空陶瓷纤维(HCFs)管状载体上成功制备了Cu3(BTC)2MOF膜材料。选择一种新的、具有高机械强度和高比表面积的中空陶瓷纤维作为载体,简单的方法制备了大小适中的300nm Cu3(BTC)2晶种,既适合用浸渍-提拉法在HCFs上涂晶种,又不会堵塞HCFs载体。用具有多氨基和羟基的壳聚糖来增强载体与膜间的作用力。所合成的Cu3(BTC)2膜对双组分混合气体H2/N2,H2/CO2和H2/CH4进行气体分离测试,对氢气具有高的选择渗透性,分离指数分别为8.66,13.56和6.19,氢气的渗透量在3.23×10-8mol·m-2·s-1·Pa-1–4.1×10-8mol·m-2·s-1·Pa-1范围。此外,研究了温度、压力、测试时间对Cu3(BTC)2膜的影响,在温度达到313K时,一个标准大气压下,Cu3(BTC)2膜对H2具有最高的选择性。Cu3(BTC)2膜对氢气具有较高的渗透选择能力同时具有很好的稳定性。
     [Al4(OH)2(OCH3)4(H2N-BDC)3]·xH2O(CAU-1)是由铝离子和氨基对苯二甲酸配体形成的三维结构MOFs材料,具有扭曲八面体和扭曲四面体两种类型笼子,可进出气体的窗口都是0.38nm三角形窗口。通过在载体表面预涂大小均一的500nm晶种进行二次生长,利用“双铝源”方法成功制备了α-Al2O3中空陶瓷纤维(HCFs)支持的连续、高质量,厚度约4μm的CAU-1膜。能量散射X射线光谱(EDS)证明HCFs载体具有双重作用,既做载体,又提供部分铝源参加CAU-1膜的合成。通过对双组分混合气体H2/N2,H2/CO2和H2/CH4进行气体分离测试,分析得出CAU-1膜对氢气具有高的渗透选择性,分离指数分别为10.33,12.34和10.42。结合气体自身的扩散能力和动力学直径,CAU-1对四种气体的吸附能力和窗口大小分析,分离机理属于分子筛分。不同温度,压力、测试时间下的气体分离测试表明CAU-1膜具有高的稳定性和可重复性。
     MOFs有机配体通常带有N,P或S等元素,一些元素在酸性溶液中对金属具有一定的防腐蚀作用,因此MOFs另一新的应用正处于起步阶段。而我们探索发现了一种在碱性条件下,同样具有好的抗腐蚀保护作用的MOF膜材料。
     分子筛咪唑基骨架化合物(ZIF-8)是由锌离子与2-甲基咪唑配体形成的三维结构MOFs材料,具有强的疏水性和稳定性,在沸水,沸碱液中都具有好的稳定性。我们用一种绿色溶剂氯化胆碱和尿素组成的低共熔物,在锌片载体表面预涂晶种进行二次生长,“双锌源”辅助法成功制备了具有抗腐蚀保护性能的ZIF-8膜。用氯化胆碱和尿素低共熔物作溶剂,由于没有蒸汽压,可以在敞开的容器中进行膜的合成反应,为工业化大规模生产提供可能。再者,低共熔物具有双重作用,一是堵塞ZIF-8孔道,阻碍腐蚀性媒介从孔道进入腐蚀载体;二是季铵盐-氯化胆碱本身具有抗腐蚀作用。ZIF-8膜和空白锌片载体分别在3.5wt%NaCl腐蚀液中进行极化曲线测试,ZIF-8膜获得低的腐蚀电流密度和向正移的腐蚀电位,这表明无论在动力学上,还是在热力学上,ZIF-8膜对锌片都具有好的抗腐蚀保护性能。此外,分别在25℃和45℃高浓度3M KOH溶液中进行析氢测试,空白锌片载体的析氢速率约是ZIF-8膜的4倍,进一步说明ZIF-8膜具有良好的抗腐蚀保护能力。
Metal-organic frameworks (MOFs) take the advantages of both organic andinorganic porous materials, built by metal ions and organic linker often causingfascinating structural topologies. MOFs porous materials also have the charactersof well stability and ordered structures, high suface areas and tailored properties,which make MOFs porous materials distinguish for the synthesis of excellentmembranes. In the last decade, MOF membranes are widely used in various fields,such as gas separation, catalyst, optical device, sensor and so on.
     MOFs possess uniform pore size and adsorption ability of gases, whichmake MOF membranes have outstanding perm-selectivity with specific gases andhave attracted the application in gas separation.
     Cu3(BTC)2metal-organic frameworks with three-dimensional ‘paddle-wheel’structure is constructed by copper ion and1,3,5-benzene acid and with the poresize of0.9nm. We have successfully fabricated Cu3(BTC)2membranes using asecondary growth method on pre-seeded α-Al2O3hollow ceramic fibers (HCFs)which are already modified with chitosan. A new support named HCFs with highmechanical strength and specific surface area are introduced. The300nmCu3(BTC)2seeds have been prepared in a simple approach, which are suitable forseeding without blocking the pore of HCFs support. Chitosan is used to strengthenthe binding force between HCFs support and the seeds on account of its fertileamino and hydroxyl groups. The performance of as-synthesized Cu3(BTC)2membranes are investigated by binary gas separation of H2/N2,H2/CO2andH2/CH4. The Cu3(BTC)2membranes show high H2perm-selectivity with theseparation factors are8.66,13.56and6.19separately and the permeance of H2isin the range of3.23×10-8mol·m-2·s-1·Pa-1to4.1×10-8mol·m-2·s-1·Pa-1. Besides,thermal, pressure and testing time effect are studied on H2separation. When thetemperature arrived at313K with a pressure of1atm, the selectivity ofCu3(BTC)2towards H2reaches the highest value. Cu3(BTC)2membrane alsomaintain well stability of perm-selectivity over long time gas separation.
     [Al4(OH)2(OCH3)4(H2N-BDC)3]·xH2O(CAU-1)is formed by aluminiumion and2-amino-1,4-benzenedicarboxylic acid (2-NH2-H2BDC) with a three- dimensional framework. There are two cages in the structure of CAU-1, which aredistorted octahedron and distorted tetrahedron with accessible window size of0.38nm. Continuous and high quality CAU-1membranes with a thinkness of4μmhave been successfully prepared by ‘dual-Al-source’ approach on pre-seeded α-Al2O3hollow ceramic fibers (HCFs). Energy-dispersive X-ray spectroscopy showsthe roles of HCFs support are dual, both as a support and suppling part of Al metalfor the synthesis of CAU-1. The performance of CAU-1membrane is examinedby the separation of two binary mixtures H2/N2, H2/CO2and H2/CH4, and theseparation factors are10.33,12.34and10.42, respectively. Taking advantages ofthe diffusion abilities and the kinetic diameters of the gas, the adsorption abilitiestowards four gases and the window size of CAU-1crystal, the mechanism ofCAU-1for gas separation is molecular sieving. The CAU-1membranes alsopossess high stability and reproducibility at different temperatures, pressures andwith long time testing.
     N, P or S element generally exists in the organic linker of MOFs, which hascorrosion resistance in acid liquor. Thus, MOFs with another new application is intheir infancy. We explored a new MOF membrane material with well anti-corrosion protection ability even in the alkaline.
     Super-hydrophobic and stable zeolitic imidazolate framework-8(ZIF-8) iscomposed of Zn ion and2-methylimidazole organic as a linker with three-dimensional structure. Even in the boil water and boil alkaline, ZIF-8crystals stillobtain good stability. Green eutectic mixture formed with choline chloride andurea is used as solvent,‘dual-Zn-source’ method is employed to prepare ZIF-8membrane with anti-corrosion performance on pre-seeded Zn slice. Owing to novapour pressure exists in choline chloride and urea eutectic mixture, themembrane could be made in an open vessel, which is benefit the industrialproduction. What’s more, the eutectic mixture have two roles, firstly, ZIF-8channel is blocked by eutectic mixture to hamper the corrosive medium destroythe Zn support by accessing into the channel of ZIF-8. Scondly, choline chlorideas a quaternary ammonium salt has the ability of corrosion protection. Theperformance of ZIF-8membrane and Zn substrate is studied by polarizationtesting in3.5wt%NaCl solution. The corrosion current density of ZIF-8 membrane decreased and the corrosion potential shifted to the positive direction,indicating that both in dynamics and thermodynamics ZIF-8membrane owns goodati-corrosion performance. Furthermore, H2evolution testing is investigated in3M KOH at25℃and45℃, respectively. The H2evolution rate of blank Znsubstrate is nearly4fold compared with ZIF-8membrane, it is implied once moreZIF-8membrane has the ability of corrosion protection.
引文
[1] FEREY G. Hybrid porous solids: past, present, future [J]. Chem SocRev,2008,37(1):191-214.
    [2] BORNS J D. Theory Appl Transp Porous Media,2006,20:407.
    [3] LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption andseparation in metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1477-1504.
    [4] MCENANEY B, ALAIN E, YIN Y F, et al. Porous carbons for gasstorage and separation-characterisation and performance [J]. NATO Sci Ser,Ser E,2001,374:295-318.
    [5] MORRIS R E, WHEATLEY P S. Gas storage in nanoporous materials[J]. Angew Chem Int Edit,2008,47(27):4966-4981.
    [6] WANG Z, CHEN G, DING K L. Self-supported catalysts [J]. ChemRev,2009,109(2):322-359.
    [7] IUPAC mannual of symbols and terminology appendix2, Pt.1[J].Colloid and Surface Chemistry, Pure and Applied Chemistry,1972,3:1577-1638.
    [8] DAVIS M E. Ordered porous materials for emerging applications [J].Nature,2002,417(6891):813-821.
    [9] MANOCHA S M. Porous carbons [J]. Sadhana-Acad P Eng S,2003,28:335-348.
    [10] MEIER W M, OLSON D H. Atlas of zeolite structure types-preface [J].Zeolites,1992,12:1-195.
    [11] TOWNSEND R, COKER E. Introduction to zeolite science and practice[J]. Stud Surf Sci Catal,2001,137:467-524.
    [12] HOSKINS B F R R. Design and construction of a new class ofscaffolding-like materials comprising infinite polymeric frameworks of3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanidestructures and the synthesis and structure of the diamond-related frameworks
    [N(Ch3)4][CuIZnII(Cn)4] and CuI[4,40,400,4000-tetracyanotetraphenyl-methane]BF4.xC6H5NO2[J]. J Am Chem Soc,1990,112(4):1546-1554.
    [13] KITAGAWA S, KITAURA R, NORO S. Functional porouscoordination polymers [J]. Angew Chem Int Edit,2004,43(18):2334-2375.
    [14] O'KEEFFE M, EDDAOUDI M, LI H L, et al. Frameworks for extendedsolids: geometrical design principles [J]. J Solid State Chem,2000,152(1):3-20.
    [15] STONE F G A, GRAHAM, W. A. G. Inorganic polymers [J]. AcademicPress,1962.
    [16] LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of anexceptionally stable and highly porous metal-organic framework [J]. Nature,1999,402(6759):276-279.
    [17] CHUI S S Y, LO S M F, CHARMANT J P H, et al. A chemicallyfunctionalizable nanoporous material [Cu-3(TMA)(2)(H2O)(3)](n)[J].Science,1999,283(5405):1148-1150.
    [18] PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermalstability of zeolitic imidazolate frameworks [J]. P Natl Acad Sci USA,2006,103(27):10186-10191.
    [19] DEVIC T, SERRE C, AUDEBRAND N, et al. MIL-103, a3-Dlanthanide-based metal organic framework with large one-dimensional tunnelsand a high surface area [J]. Journal of the American Chemical Society,2005,127(37):12788-12789.
    [20] LEBEDEV O I, MILLANGE F, SERRE C, et al. First direct imaging ofgiant pores of the metal-organic framework MIL-101[J]. Chem Mater,2005,17(26):6525-6527.
    [21] LIVAGE C, GUILLOU N, CHAIGNEAU J, et al. A three-dimensionalmetal-organic framework with an unprecedented octahedral building unit [J].Angew Chem Int Edit,2005,44(40):6488-6491.
    [22] LOISEAU T, SERRE C, HUGUENARD C, et al. A rationale for thelarge breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chem-Eur J,2004,10(6):1373-1382.
    [23] SERRE C, MILLANGE F, SURBLE S, et al. A route to the synthesis oftrivalent transition-metal porous carboxylates with trimeric secondary buildingunits [J]. Angew Chem Int Edit,2004,43(46):6286-6289.
    [24] MILLANGE F, GUILLOU N, WALTON R I, et al. Effect of the natureof the metal on the breathing steps in MOFs with dynamic frameworks [J].Chem Commun,2008,(39):4732-4734.
    [25] MILLANGE F, SERRE C, FEREY G. Synthesis, structuredetermination and properties of MIL-53as and MIL-53ht: the first Cr-IIIhybrid inorganic-organic microporous solids: Cr-III(OH)center dot{O2C-C6H4-CO2}center dot{HO2C-C6H4-CO2H}(x)[J]. Chem Commun,2002,(8):822-823.
    [26] SERRE C, MILLANGE F, THOUVENOT C, et al. Very large breathingeffect in the first nanoporous chromium(III)-based solids: MIL-53or Cr-III(OH)center dot{O2C-C6H4-CO2}center dot{HO2C-C6H4-CO2H}(x) centerdot H2Oy[J]. Journal of the American Chemical Society,2002,124(45):13519-13526.
    [27] FEREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromiumterephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.
    [28] DUREN T, SNURR R Q. Assessment of isoreticular metal-organicframeworks for adsorption separations: A molecular simulation study ofmethane/n-butane mixtures [J]. J Phys Chem B,2004,108(40):15703-15708.
    [29] SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capturein metal-organic frameworks [J]. Chem Rev,2012,112(2):724-781.
    [30] SUH M P, PARK H J, PRASAD T K, et al. Hydrogen storage in metal-organic frameworks [J]. Chem Rev,2012,112(2):782-835.
    [31] WU H H, GONG Q H, OLSON D H, et al. Commensurate adsorption ofhydrocarbons and alcohols in microporous metal organic frameworks [J].Chem Rev,2012,112(2):836-868.
    [32] LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks forseparations [J]. Chem Rev,2012,112(2):869-932.
    [33] STOCK N, BISWAS S. Synthesis of metal-organic frameworks(MOFs): routes to various MOF topologies, morphologies, and composites [J].Chem Rev,2012,112(2):933-969.
    [34] COHEN S M. Postsynthetic methods for the functionalization of metal-organic frameworks [J]. Chem Rev,2012,112(2):970-1000.
    [35] ZHANG J P, ZHANG Y B, LIN J B, et al. Metal azolate frameworks:from crystal engineering to functional materials [J]. Chem Rev,2012,112(2):1001-1033.
    [36] CLEARFIELD A. Recent advances in metal phosphonate chemistry II[J]. Curr Opin Solid St M,2002,6(6):495-506.
    [37] WANG C, ZHANG T, LIN W B. Rational synthesis ofnoncentrosymmetric metal-organic frameworks for second-order nonlinearoptics [J]. Chem Rev,2012,112(2):1084-1104.
    [38] KRENO L E, LEONG K, FARHA O K, et al. Metal-organic frameworkmaterials as chemical sensors [J]. Chem Rev,2012,112(2):1105-1125.
    [39] CUI Y J, YUE Y F, QIAN G D, et al. Luminescent functional metal-organic frameworks [J]. Chem Rev,2012,112(2):1126-1162.
    [40] ZHANG W, XIONG R G. Ferroelectric metal-organic frameworks [J].Chem Rev,2012,112(2):1163-1195.
    [41] YOON M, SRIRAMBALAJI R, KIM K. Homochiral metal-organicframeworks for asymmetric heterogeneous catalysis [J]. Chem Rev,2012,112(2):1196-1231.
    [42] HORCAJADA P, GREF R, BAATI T, et al. Metal-organic frameworksin biomedicine [J]. Chem Rev,2012,112(2):1232-1268.
    [43] HORCAJADA P, SERRE C, MAURIN G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery [J]. Journal of the AmericanChemical Society,2008,130(21):6774-6780.
    [44] PARK Y K, CHOI S B, KIM H, et al. Crystal structure and guest uptakeof a mesoporous metal-organic framework containing cages of3.9and4.7nmin diameter [J]. Angew Chem Int Edit,2007,46(43):8230-8233.
    [45] HERMES S, SCHRODER F, CHELMOWSKI R, et al. Selectivenucleation and growth of metal-organic open framework thin films onpatterned COOH/CF3-terminated self-assembled monolayers on Au(111)[J].Journal of the American Chemical Society,2005,127(40):13744-13745.
    [46] ARNOLD M, KORTUNOV P, JONES D J, et al. Orientedcrystallisation on supports and anisotropic mass transport of the metal-organicframework manganese formate [J]. Eur J Inorg Chem,2007,1:60-64.
    [47] GASCON J, AGUADO S, KAPTEIJN F. Manufacture of densecoatings of Cu3(BTC)2(HKUST-1) on alpha-alumina [J]. Micropor MesoporMat,2008,113(1-3):132-138.
    [48] ZACHER D, BAUNEMANN A, HERMES S, et al. Deposition ofmicrocrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at alumina and silicasurfaces modified with patterned self assembled organic monolayers: evidenceof surface selective and oriented growth [J]. Journal of Materials Chemistry,2007,17(27):2785-2792.
    [49] BIEMMI E, DARGA A, STOCK N, et al. Direct growth ofCu3(BTC)2(H2O)3center dot xH2O thin films on modified QCM-goldelectrodes-Water sorption isotherms [J]. Micropor Mesopor Mat,2008,114(1-3):380-386.
    [50] BIEMMI E, SCHERB C, BEIN T. Oriented growth of the metal organicframework Cu3(BTC)2(H2O)3center dot xH2O tunable with functionalized self-assembled monolayers [J]. Journal of the American Chemical Society,2007,129(26):8054-8055.
    [51] GUO H L, ZHU G S, HEWITT I J, et al."Twin copper source" growthof metal-organic framework membrane: Cu3(BTC)2with high permeability andselectivity for recycling H2[J]. Journal of the American Chemical Society,2009,131(5):1647-1648.
    [52] AMELOOT R, PANDEY L, VAN DER AUWERAER M, et al.Patterned film growth of metal-organic frameworks based on galvanicdisplacement [J]. Chem Commun,2010,46(21):3735-3737.
    [53] AMELOOT R, STAPPERS L, FRANSAER J, et al. Patterned growth ofmetal-organic framework coatings by electrochemical synthesis [J]. ChemMater,2009,21(13):2580-2582.
    [54] SHEKHAH O, WANG H, KOWARIK S, et al. Step-by-step route forthe synthesis of metal-organic frameworks [J]. Journal of the AmericanChemical Society,2007,129(49):15118-15119.
    [55] ZYBAYLO O, SHEKHAH O, WANG H, et al. A novel method tomeasure diffusion coefficients in porous metal-organic frameworks [J]. PhysChem Chem Phys,2010,12(28):8092-8097.
    [56] SHEKHAH O, WANG H, ZACHER D, et al. Growth mechanism ofmetal-organic frameworks: insights into the nucleation by employing a step-by-step route [J]. Angew Chem Int Edit,2009,48(27):5038-5041.
    [57] ALLENDORF M D, HOUK R J T, ANDRUSZKIEWICZ L, et al.Stress-induced chemical detection using flexible metal-organic frameworks [J].Journal of the American Chemical Society,2008,130(44):14404-14405.
    [58] KRENO L E, HUPP J T, VAN DUYNE R P. Metal-organic frameworkthin film for enhanced localized surface plasmon resonance gas sensing [J].Anal Chem,2010,82(19):8042-8046.
    [59] SCHOEDEL A, SCHERB C, BEIN T. Oriented nanoscale films ofmetal-organic frameworks by room-temperature gel-layer synthesis [J]. AngewChem Int Edit,2010,49(40):7225-7228.
    [60] GUERRERO V V, YOO Y, MCCARTHY M C, et al. HKUST-1membranes on porous supports using secondary growth [J]. Journal ofMaterials Chemistry,2010,20(19):3938-3943.
    [61] KUSGENS P, SIEGLE S, KASKEL S. Crystal growth of the metal-organic framework Cu3(BTC)2on the surface of pulp fibers [J]. Adv EngMater,2009,11(1-2):93-95.
    [62] AMELOOT R, GOBECHIYA E, UJI-I H, et al. Direct patterning oforiented metal-organic framework crystals via control over crystallizationKinetics in clear precursor solutions [J]. Advanced Materials,2010,22(24):2685-2688.
    [63] CARBONELL C, IMAZ I, MASPOCH D. Single-crystal metal-organicframework arrays [J]. Journal of the American Chemical Society,2011,133(7):2144-2147.
    [64] KAYAERT S, BAJPE S, MASSCHAELE K, et al. Direct growth ofKeggin polyoxometalates incorporated copper1,3,5-benzenetricarboxylatemetal organic framework films on a copper metal substrate [J]. Thin SolidFilms,2011,519(16):5437-5440.
    [65] LIU J, SUN F X, ZHANG F, et al. In situ growth of continuous thinmetal-organic framework film for capacitive humidity sensing [J]. Journal ofMaterials Chemistry,2011,21(11):3775-3778.
    [66] MEILIKHOV M, YUSENKO K, SCHOLLMEYER E, et al. Stepwisedeposition of metal organic frameworks on flexible synthetic polymer surfaces[J]. Dalton T,2011,40(18):4838-4841.
    [67] NAN J P, DONG X L, WANG W J, et al. Step-by-step seedingprocedure for preparing HKUST-1membrane on porous alpha-alumina support[J]. Langmuir,2011,27(8):4309-4312.
    [68] O'NEILL L D, ZHANG H F, BRADSHAW D. Macro-microporousMOF composite beads [J]. Journal of Materials Chemistry,2010,20(27):5720-5726.
    [69] SCHWAB M G, SENKOVSKA I, ROSE M, et al. MOF@PolyHIPEs[J]. Adv Eng Mater,2008,10(12):1151-1155.
    [70] ZHUANG J L, CEGLAREK D, PETHURAJ S, et al. Rapid room-temperature synthesis of metal-organic framework HKUST-1crystals in bulkand as oriented and patterned thin films [J]. Advanced Functional Materials,2011,21(8):1442-1447.
    [71] HERMES S, ZACHER D, BAUNEMANN A, et al. Selective growthand MOCVD loading of small single crystals of MOF-5at alumina and silicasurfaces modified with organic self-assembled monolayers [J]. Chem Mater,2007,19(9):2168-2173.
    [72] YOO Y, JEONG H K. Rapid fabrication of metal organic frameworkthin films using microwave-induced thermal deposition [J]. Chem Commun,2008,(21):2441-2443.
    [73] YOO Y, LAI Z P, JEONG H K. Fabrication of MOF-5membranesusing microwave-induced rapid seeding and solvothermal secondary growth[J]. Micropor Mesopor Mat,2009,123(1-3):100-106.
    [74] LIU Y Y, NG Z F, KHAN E A, et al. Synthesis of continuous MOF-5membranes on porous alpha-alumina substrates [J]. Micropor Mesopor Mat,2009,118(1-3):296-301.
    [75] MUNCH A S, SEIDEL J, OBST A, et al. High-separation performanceof chromatographic capillaries coated with MOF-5by the controlled SBUapproach [J]. Chem-Eur J,2011,17(39):10958-10964.
    [76] FALCARO P, HILL A J, NAIRN K M, et al. A new method to positionand functionalize metal-organic framework crystals [J]. Nat Commun,2011,2,237.
    [77] LU G, HUPP J T. Metal-organic frameworks as sensors: a ZIF-8basedFabry-Perot device as a selective sensor for chemical vapors and gases [J].Journal of the American Chemical Society,2010,132(23):7832-7833.
    [78] DEMESSENCE A, BOISSIERE C, GROSSO D, et al. Adsorptionproperties in high optical quality nano ZIF-8thin films with tunable thickness[J]. Journal of Materials Chemistry,2010,20(36):7676-7681.
    [79] BUX H, LIANG F Y, LI Y S, et al. Zeolitic imidazolate frameworkmembrane with molecular sieving properties by microwave-assistedsolvothermal synthesis [J]. Journal of the American Chemical Society,2009,131(44):16000-16001.
    [80] BUX H, FELDHOFF A, CRAVILLON J, et al. Oriented zeoliticimidazolate framework-8membrane with sharp H2/C3H8molecular sieveseparation [J]. Chem Mater,2011,23(8):2262-2269.
    [81] VENNA S R, CARREON M A. Highly permeable zeolite imidazolateframework-8membranes for CO2/CH4separation [J]. Journal of the AmericanChemical Society,2010,132(1):76-78.
    [82] MCCARTHY M C, VARELA-GUERRERO V, BARNETT G V, et al.Synthesis of zeolitic imidazolate framework films and membranes withcontrolled microstructures [J]. Langmuir,2010,26(18):14636-14641.
    [83] YAO J F, DONG D H, LI D, et al. Contra-diffusion synthesis of ZIF-8films on a polymer substrate [J]. Chem Commun,2011,47(9):2559-2561.
    [84] LI Y S, BUX H, FELDHOFF A, et al. Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes [J].Advanced Materials,2010,22(30):3322-3326.
    [85] LI Y S, LIANG F Y, BUX H, et al. Molecular sieve membrane:supported metal-organic framework with high hydrogen selectivity [J]. AngewChem Int Edit,2010,49(3):548-551.
    [86] LI Y S, LIANG F Y, BUX H G, et al. Zeolitic imidazolate frameworkZIF-7based molecular sieve membrane for hydrogen separation [J]. JMembrane Sci,2010,354(1-2):48-54.
    [87] HUANG A S, BUX H, STEINBACH F, et al. Molecular-sievemembrane with hydrogen permselectivity: ZIF-22in LTA topology preparedwith3-aminopropyltriethoxysilane as covalent linker [J]. Angew Chem IntEdit,2010,49(29):4958-4961.
    [88] LIU Y Y, HU E P, KHAN E A, et al. Synthesis and characterization ofZIF-69membranes and separation for CO2/CO mixture [J]. J Membrane Sci,2010,353(1-2):36-40.
    [89] HUANG A S, CARO J. Covalent post-functionalization of zeoliticimidazolate framework ZIF-90membrane for enhanced hydrogen selectivity[J]. Angew Chem Int Edit,2011,50(21):4979-4982.
    [90] HUANG A S, DOU W, CARO J. Steam-stable zeolitic imidazolateframework ZIF-90membrane with hydrogen selectivity through covalentfunctionalization [J]. Journal of the American Chemical Society,2010,132(44):15562-15564.
    [91] KUBO M, CHAIKITTISILP W, OKUBO T. Oriented films of porouscoordination polymer prepared by repeated in situ crystallization [J]. ChemMater,2008,20(9):2887-2889.
    [92] AGUADO S, CANIVET J, FARRUSSENG D. Facile shaping of animidazolate-based MOF on ceramic beads for adsorption and catalyticapplications [J]. Chem Commun,2010,46(42):7999-8001.
    [93] AGUADO S, NICOLAS C H, MOIZAN-BASLE V, et al. Facilesynthesis of an ultramicroporous MOF tubular membrane with selectivitytowards CO2[J]. New J Chem,2011,35(1):41-44.
    [94] MAKIURA R, MOTOYAMA S, UMEMURA Y, et al. Surface nano-architecture of a metal-organic framework [J]. Nature materials,2010,9(7):565-571.
    [95] MOTOYAMA S, MAKIURA R, SAKATA O, et al. Highly crystallinenanofilm by layering of porphyrin metal-organic framework sheets [J]. Journalof the American Chemical Society,2011,133(15):5640-5643.
    [96] SHEKHAH O, WANG H, PARADINAS M, et al. Controllinginterpenetration in metal-organic frameworks by liquid-phase epitaxy [J].Nature materials,2009,8(6):481-484.
    [97] YUSENKO K, MEILIKHOV M, ZACHER D, et al. Step-by-stepgrowth of highly oriented and continuous seeding layers of [Cu2(ndc)2(dabco)]on bare oxide and nitride substrates [J]. Crystengcomm,2010,12(7):2086-2090.
    [98] BETARD A, BUX H, HENKE S, et al. Fabrication of a CO2-selectivemembrane by stepwise liquid-phase deposition of an alkylether functionalizedpillared-layered metal-organic framework [Cu2L2P]non a macroporous support[J]. Micropor Mesopor Mat,2012,150(1):76-82.
    [99] LIU B, MA M Y, ZACHER D, et al. Chemistry of SURMOFs: layer-selective installation of functional groups and post-synthetic covalentmodification probed by fluorescence microscopy [J]. Journal of the AmericanChemical Society,2011,133(6):1734-1737.
    [100] SHEKHAH O, HIRAI K, WANG H, et al. MOF-on-MOFheteroepitaxy: perfectly oriented [Zn2(ndc)2(dabco)]ngrown on
    [Cu2(ndc)2(dabco)]n thin films [J]. Dalton T,2011,40(18):4954-4958.
    [101] ZACHER D, YUSENKO K, BETARD A, et al. Liquid-phase epitaxy ofmulticomponent layer-based porous coordination polymer thin films of
    [M(L)(P)0.5] type: importance of deposition sequence on the oriented growth[J]. Chem-Eur J,2011,17(5):1448-1455.
    [102] BETARD A, ZACHER D, FISCHER R A. Dense and homogeneouscoatings of CPO-27-M type metal-organic frameworks on alumina substrates[J]. Crystengcomm,2010,12(11):3768-3772.
    [103] CENTRONE A, YANG Y, SPEAKMAN S, et al. Growth of metal-organic frameworks on polymer surfaces [J]. Journal of the AmericanChemical Society,2010,132(44):15687-15691.
    [104] YOO Y, JEONG H K. Heteroepitaxial Growth of isoreticular metal-organic frameworks and their hybrid films [J]. Cryst Growth Des,2010,10(3):1283-1288.
    [105] YOO Y, VARELA-GUERRERO V, JEONG H K. Isoreticular metal-organic frameworks and their membranes with enhanced crack resistance andmoisture stability by surfactant-assisted drying [J]. Langmuir,2011,27(6):2652-2657.
    [106] HU Y X, DONG X L, NAN J P, et al. Metal-organic frameworkmembranes fabricated via reactive seeding [J]. Chem Commun,2011,47(2):737-739.
    [107] HINTERHOLZINGER F, SCHERB C, AHNFELDT T, et al. Orientedgrowth of the functionalized metal-organic framework CAU-1on-OH-and-COOH-terminated self-assembled monolayers [J]. Phys Chem Chem Phys,2010,12(17):4515-4520.
    [108] RANJAN R, TSAPATSIS M. Microporous metal organic frameworkmembrane on porous support using the seeded growth method [J]. ChemMater,2009,21(20):4920-4924.
    [109] ZOU X Q, ZHU G S, ZHANG F, et al. Facile fabrication of metal-organic framework films promoted by colloidal seeds on various substrates [J].Crystengcomm,2010,12(2):352-354.
    [110] SCHERB C, KOEHN R, BEIN T. Sorption behavior of an orientedsurface-grown MOF-film studied by in situ X-ray diffraction [J]. Journal ofMaterials Chemistry,2010,20(15):3046-3051.
    [111] SCHERB C, SCHODEL A, BEIN T. Directing the structure of metal-organic frameworks by oriented surface growth on an organic monolayer [J].Angew Chem Int Edit,2008,47(31):5777-5779.
    [112] HORCAJADA P, SERRE C, GROSSO D, et al. Colloidal route forpreparing optical thin films of nanoporous metal-organic frameworks [J].Advanced Materials,2009,21(19):1931-1935.
    [113] DEMESSENCE A, HORCAJADA P, SERRE C, et al. Elaboration andproperties of hierarchically structured optical thin films of MIL-101(Cr)[J].Chem Commun,2009,(46):7149-7151.
    [114] RAMOS-FERNANDEZ E V, GARCIA-DOMINGOS M, JUAN-ALCANIZ J, et al. MOFs meet monoliths: hierarchical structuring metalorganic framework catalysts [J]. Appl Catal a-Gen,2011,391(1-2):261-267.
    [115] ZOU X Q, ZHU G S, HEWITT I J, et al. Synthesis of a metal-organicframework film by direct conversion technique for VOCs sensing [J]. Dalton T,2009,(16):3009-3013.
    [116] ZHANG F, ZOU X Q, FENG W, et al. Microwave-assistedcrystallization inclusion of spiropyran molecules in indium trimesate films withantidromic reversible photochromism [J]. Journal of Materials Chemistry,2012,22(48):25019-25026.
    [117] ZHANG F, ZOU X Q, GAO X, et al. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability [J]. Advanced FunctionalMaterials,2012,22(17):3583-3590.
    [118] ZHANG F, ZOU X Q, SUN F X, et al. Growth of preferentialorientation of MIL-53(Al) film as nano-assembler [J]. Crystengcomm,2012,14(17):5487-5492.
    [119] ZHOU S Y, ZOU X Q, SUN F X, et al. Challenging fabrication ofhollow ceramic fiber supported Cu3(BTC)2membrane for hydrogen separation[J]. Journal of Materials Chemistry,2012,22(20):10322-10328.
    [120] ZOU X Q, GOUPIL J M, THOMAS S, et al. Detection of harmful gasesby copper-containing metal-organic framework films [J]. J Phys Chem C,2012,116(31):16593-16600.
    [121] FAN S J, SUN F X, XIE J J, et al. Facile synthesis of a continuous thinCu(bipy)2(SiF6) membrane with selectivity towards hydrogen [J]. J MaterChem A,2013,1(37):11438-11442.
    [122] LIANG X Q, ZHANG F, FENG W, et al. From metal-organicframework (MOF) to MOF-polymer composite membrane: enhancement oflow-humidity proton conductivity [J]. Chemical Science,2013,4(3):983-992.
    [123] ZHOU S Y, ZOU X Q, SUN F X, et al. Development of hydrogen-selective CAU-1MOF membranes for hydrogen purification by 'dual-metal-source' approach [J]. Int J Hydrogen Energ,2013,38(13):5338-5347.
    [124] SHEKHAH O, WANG H, STRUNSKUS T, et al. Layer-by-layergrowth of oriented metal organic polymers on a functionalized organic surface[J]. Langmuir,2007,23(14):7440-7442.
    [125] HWANG Y K, LEE U H, CHANG J S, et al. Microwave-inducedfabrication of MFI zeolite crystal films onto various metal oxide substrates [J].Chem Lett,2005,34(12):1596-1597.
    [126] MINTOVA S, MO S, BEIN T. Nanosized ALPO4-5molecular sievesand ultrathin films prepared by microwave synthesis [J]. Chemical ofMaterials,1998,10(12):4030-4036.
    [127] CHOI J Y, KIM J, JHUNG S H, et al. Microwave synthesis of a porousmetal-organic framework, zinc terephthalate MOF-5[J]. B Kor Chem Soc,2006,27(10):1523-1524.
    [128] JHUNG S H, LEE J H, YOON J W, et al. Microwave synthesis ofchromium terephthalate MIL-101and its benzene sorption ability [J].Advanced Materials,2007,19(1):121-124.
    [129] NI Z, MASEL R I. Rapid production of metal-organic frameworks viamicrowave-assisted solvothermal synthesis [J]. Journal of the AmericanChemical Society,2006,128(38):12394-12395.
    [130] MULLER U, PUTTER H, HESSE M. Method for electrochemicalproduction of a crystalline porous metal organic skeleton material [J]. WOPatent,2005.
    [131] DOMENECH A, GARCIA H, DOMENECH-CARBO M T, et al.Electrochemistry nanometric patterning of MOF particles: Anisotropic metalelectrodeposition in Cu/MOF [J]. Electrochem Commun,2006,8(12):1830-1834.
    [132] DOMENECH A, GARCIA H, DOMENECH-CARBO M T, et al.Electrochemistry of metal-organic frameworks: A description from thevoltammetry of microparticles approach [J]. J Phys Chem C,2007,111(37):13701-13711.
    [133] FARHA O K, HUPP J T. Rational design, synthesis, purification, andactivation of metal-organic framework materials [J]. Accounts Chem Res,2010,43(8):1166-1175.
    [134] KITAGAWA S, MATSUDA R. Chemistry of coordination space ofporous coordination polymers [J]. Coordination Chemistry Reviews,2007,251(21-24):2490-2509.
    [135] QIU S L, ZHU G S. Molecular engineering for synthesizing novelstructures of metal-organic frameworks with multifunctional properties [J].Coordination Chemistry Reviews,2009,253(23-24):2891-2911.
    [136] TRANCHEMONTAGNE D J, MENDOZA-CORTES J L, O'KEEFFEM, et al. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1257-1283.
    [137] COUNCIL N R. Separation technologies for the industries of the future[J]. National Academy Press: Washington, DC,1998.
    [138] BAKER R W. Future directions of membrane gas separation technology[J]. Ind Eng Chem Res,2002,41(6):1393-1411.
    [139] ROBESON L M. Correlation of separation factor versus perme-abilityfor polymeric membranes [J]. J Membrane Sci,1991,62(2):165-185.
    [140] ROBESON L M. The upper bound revisited [J]. J Membrane Sci,2008,320(1-2):390-400.
    [141] BURNS R L, KOROS W J. Defining the challenges for C3H6/C3H8separation using polymeric membranes [J]. J Membrane Sci,2003,211(2):299-309.
    [142] CARO J, NOACK M. Zeolite membranes-recent developments andprogress [J]. Micropor Mesopor Mat,2008,115(3):215-233.
    [143] CARO J, NOACK M, KOLSCH P, et al. Zeolite membranes-state oftheir development and perspective [J]. Micropor Mesopor Mat,2000,38(1):3-24.
    [144] LIN Y S, KUMAKIRI I, NAIR B N, et al. Microporous inorganicmembranes [J]. Separ Purif Method,2002,31(2):229-379.
    [145] MATSUKATA M, KIKUCHI E. Zeolitic membranes: synthesis,properties, and prospects [J]. Bull Chem Soc Jpn,1997,70(10):2341-2356.
    [146] CHOI J, JEONG H K, SNYDER M A, et al. Grain boundary defectelimination in a zeolite membrane by rapid thermal processing [J]. Science,2009,325(5940):590-593.
    [147] LAI Z P, BONILLA G, DIAZ I, et al. Microstructural optimization of azeolite membrane for organic vapor separation [J]. Science,2003,300(5618):456-460.
    [148] POSHUSTA J C, TUAN V A, PAPE E A, et al. Separation of light gasmixtures using SAPO-34membranes [J]. Aiche J,2000,46(4):779-789.
    [149] MCLEARY E E, JANSEN J C, KAPTEIJN F. Zeolite based films,membranes and membrane reactors: Progress and prospects [J]. MicroporMesopor Mat,2006,90(1-3):198-220.
    [150] CARO J, NOACK M. Zeolite Membranes status and prospective [J]. InAdvances in Nanoporous Materials; Stefan, E, Ed; Elsevier: New York,2010,1:1-96.
    [151] MAHAJAN R, VU D Q, KOROS W J. Mixed matrix membranematerials: An answer to the challenges faced by membrane based gasseparations today?[J]. J Chin Inst Chem Eng,2002,33(1):77-86.
    [152] MOORE T T, KOROS W J. Non-ideal effects in organic-inorganicmaterials for gas separation membranes [J]. J Mol Struct,2005,739(1-3):87-98.
    [153] BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis ofzeolitic imidazolate frameworks and application to CO2capture [J]. Science,2008,319(5865):939-943.
    [154] EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore sizeand functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-472.
    [155] ROSI N L, ECKERT J, EDDAOUDI M, et al. Hydrogen storage inmicroporous metal-organic frameworks [J]. Science,2003,300(5622):1127-1129.
    [156] HALDOUPIS E, NAIR S, SHOLL D S. Efficient calculation ofdiffusion limitations in metal organic framework materials: a tool foridentifying materials for kinetic separations [J]. Journal of the AmericanChemical Society,2010,132(21):7528-7539.
    [157] KESKIN S, VAN HEEST T M, SHOLL D S. Can Metal-organicframework materials play a useful role in large-scale carbon dioxideseparations?[J]. Chemsuschem,2010,3(8):879-891.
    [158] WATANABE T, KESKIN S, NAIR S, et al. Computationalidentification of a metal organic framework for high selectivity membrane-based CO2/CH4separations: Cu(hfipbb)(H2hfipbb)0.5[J]. Phys Chem ChemPhys,2009,11(48):11389-11394.
    [159] PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, structure,and carbon dioxide capture properties of zeolitic imidazolate frameworks [J].Accounts Chem Res,2010,43(1):58-67.
    [160] SOFFER A, KORESH J E, SAGGY S. Separation device. US patent4685940.1987.
    [161] SORIN M, RHEAULT F. Thermodynamically guided intensifcation ofseparation processes [J]. Appl Therm Eng,2007,27(7):1191-1197.
    [162] BURSTEIN G T. Revealing corrosion pits [J]. Nature,1991,350:188-9.
    [163] NEWMAN R C, SIERADZKI K. Metallic corrosion [J]. Science,1994,263(5154):1708-1709.
    [164] RABBETTS A. Replacements for hexavalent chromium in anodisingand conversion coating [J]. Trans Inst Met Finish,1998,76: B4.
    [165] WALDROP J R, KENDIG M W. Nucleation of chromate conversioncoating on aluminum2024-T3investigated by atomic force microscopy [J]. JElectrocem Soc,1998,145(1): L11-L13.
    [166] ZHAO J, FRANKEL G, MCCREERY R L. Corrosion protection ofuntreated AA-2024-T3in chloride solution by a chromate conversion coatingmonitored with raman spectroscopy [J]. J Electrochem Soc,1998,145(7):2258-2264.
    [167] RODZEWICH E A, OUYANG J, MURPHY J E. U.S. Pat.5,801,217[J].1998.
    [168] VOEVODIN N, JEFFCOATE C, SIMON L, et al. Characterization ofpitting corrosion in bare and sol-gel coated aluminum2024-T3alloy [J]. SurfCoat Tech,2001,140(1):29-34.
    [169] VOEVODIN N N, GREBASCH N T, SOTO W S, et al.Potentiodynamic evaluation of sol-gel coatings with inorganic inhibitors [J].Surf Coat Tech,2001,140(1):24-28.
    [170] GUGLIELMI M. Sol-gel coatings on metals [J]. Journal of Sol-GelScience and Technology,1997,8(1-3):443-449.
    [171] MENNING M, SCHELLE C, DURAN A, et al. Investigation of glass-like sol-gel coating for corrosion protection of stainless steel against liquid andgaseous attack [J]. Journal of Sol-Gel Science and Technology,1998,13(1-3):717-722.
    [172] METROKE T L, PARKHILL R L, KNOBBE E T. Passivation of metalalloys using sol-gel derived materials-a review [J]. Prog Org Coat,2001,41(4):233-238.
    [173] THIM G P, OLIVEIRA M A S, OLIVEIRA E D A, et al. Sol-gel silicafilm preparation from aqueous solutions for corrosion protection [J]. J Non-Cryst Solids,2000,273(1-3):124-128.
    [174] DI MAGGIO R, FEDRIZZI L, ROSSI S, et al. Dry and wet corrosionbehaviour of AISI304stainless steel coated by sol-gel ZrO2-CeO2films [J].Thin Solid Films,1996,286(1-2):127-135.
    [175] IROH J O, SU W C. Corrosion performance of polypyrrole coatingapplied to low carbon steel by an electrochemical process [J]. ElectrochimicaActa,2000,46(1):15-24.
    [176] PERUCKI M, CHANDRASEKHAR P. Corrosion protection ofaluminum alloys by coatings of unique poly(diphenyl amine)-derivativeconducting polymers [J]. Synthetic Met,2001,119(1-3):385-386.
    [177] DOMINGO C, GARCIA-CARMONA J, FANOVICH M A, et al. Studyof adsorption processes of model drugs at supercritical conditions using partialleast squares regression [J]. Anal Chim Acta,2002,452(2):311-319.
    [178] DYER A, MORGAN S, WELLS P, et al. The use of zeolites as slowrelease anthelmintic carriers [J]. J Helminthol,2000,74(2):137-141.
    [179] PAVELIC K, HADZIJA M, BEDRICA L, et al. Natural zeoliteclinoptilolite: new adjuvant in anticancer therapy [J]. J Mol Med-Jmm,2001,78(12):708-720.
    [180] FLANIGEN E M, BENNETT J M, GROSE R W, et al. A newhydrophobic crystalline silica molecular sieve [J]. Nature,1978,271(5645):512-516.
    [181] BEVING D E, MCDONNELL A M P, YANG W S, et al. Corrosionresistant high-silica-zeolite MFI coating-One general solution formulation foraluminum alloy AA-2024-T3, AA-5052-H32, AA-6061-T4, and AA-7075-T6[J]. J Electrochem Soc,2006,153(8): B325-B329.
    [182] CHENG X L, WANG Z B, YAN Y S. Corrosion-resistant zeolitecoatings by in situ crystallization [J]. Electrochem Solid St,2001,4(5): B23-B26.
    [183] MITRA A, WANG Z B, CAO T G, et al. Synthesis and corrosionresistance of high-silica zeolite MTW, BEA, and MFI coatings on steel andaluminum [J]. J Electrochem Soc,2002,149(10): B472-B478.
    [184] CHOW G, BEDI R S, YAN Y S, et al. Zeolite as a wear-resistantcoating [J]. Micropor Mesopor Mat,2012,151:346-351.
    [185] BEVING D E, O'NEILL C R, YAN Y S. Hydrophilic and antimicrobiallow-silica-zeolite LTA and high-silica-zeolite MFI hybrid coatings onaluminum alloys [J]. Micropor Mesopor Mat,2008,108(1-3):77-85.
    [186] CHEN G, BEVING D E, BEDI R S, et al. Initial bacterial deposition onbare and zeolite-coated aluminum alloy and stainless steel [J]. Langmuir,2009,25(3):1620-1626.
    [187] COOPER E R, ANDREWS C D, WHEATLEY P S, et al. Ionic liquidsand eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature,2004,430(7003):1012-1016.
    [188] PARNHAM E R, MORRIS R E.1-alkyl-3-methyl imidazolium bromideionic liquids in the ionothermal synthesis of aluminium phosphate molecularsieves [J]. Chem Mater,2006,18(20):4882-4887.
    [189] PARNHAM E R, MORRIS R E. The ionothermal synthesis of cobaltaluminophosphate zeolite frameworks [J]. Journal of the American ChemicalSociety,2006,128(7):2204-2205.
    [190] PARNHAM E R, MORRIS R E. Ionothermal synthesis using ahydrophobic ionic liquid as solvent in the preparation of a novelaluminophosphate chain structure [J]. Journal of Materials Chemistry,2006,16(37):3682-3684.
    [191] PARNHAM E R, WHEATLEY P S, MORRIS R E. The ionothermalsynthesis of SIZ-6-a layered aluminophosphate [J]. Chem Commun,2006,(4):380-382.
    [192] TAUBERT A, LI Z. Inorganic materials from ionic liquids [J]. DaltonT,2007,(7):723-727.
    [193] XU Y P, TIAN Z J, WANG S J, et al. Microwave-enhanced ionothermalsynthesis of aluminophosphate molecular sieves [J]. Angew Chem Int Edit,2006,45(24):3965-3970.
    [194] CAI R, SUN M W, CHEN Z W, et al. Ionothermal synthesis of orientedzeolite AEL films and their application as corrosion-resistant coatings [J].Angew Chem Int Edit,2008,47(3):525-528.
    [195] ETAIW S E H, FOUDA A E S, AMER S A, et al. Structure,characterization and anti-corrosion activity of the new metal-organicframework [Ag(qox)(4-ab)][J]. J Inorg Organomet P,2011,21(2):327-335.
    [196] ETAIW S E H, FOUDA A S, ABDOU S N, et al. Structure,characterization and inhibition activity of new metal-organic framework [J].Corros Sci,2011,53(11):3657-3665.
    [197] MASSOUD A A, HEFNAWY A, LANGER V, et al. Synthesis, X-raystructure and anti-corrosion activity of two silver(I) pyrazino complexes [J].Polyhedron,2009,28(13):2794-2802.
    [198] DEMADIS K D, BAROUDA E, RAPTIS R G, et al. Metaltetraphosphonate "wires" and their corrosion inhibiting passive films [J]. InorgChem,2009,48(3):819-821.
    [199] DEMADIS K D, KATARACHIA S D, KOUTMOS M. Crystal growthand characterization of zinc-(amino-tris-(methylenephosphonate)) organic-inorganic hybrid networks and their inhibiting effect on metallic corrosion [J].Inorg Chem Commun,2005,8(3):254-258.
    [200] DEMADIS K D, LYKOUDIS P, RAPTIS R G, et al.Phosphonopolycarboxylates as chemical additives for calcite scale dissolutionand metallic corrosion inhibition based on a calcium-phosphonotricarboxylateorganic-inorganic hybrid [J]. Cryst Growth Des,2006,6(5):1064-1067.
    [201] DEMADIS K D, MANTZARIDIS C, RAPTIS R G, et al. Metal-organotetraphosphonate inorganic-organic hybrids: Crystal structure andanticorrosion effects of zinc hexamethylenediaminetetrakis(methylenephospho-nate) on carbon [J]. Inorg Chem,2005,44(13):4469-4471.
    [202] DEMADIS K D, PAPADAKI M, CISAROVA I. Single-crystalline thinfilms by a rare molecular calcium carboxyphosphonate trimer offer prophylaxisfrom metallic corrosion [J]. Acs Appl Mater Inter,2010,2(7):1814-1816.
    [203] DEMADIS K D, PAPADAKI M, RAPTIS R G, et al. Corrugated, sheet-like architectures in layered alkaline-earth metal R,S-hydroxyphosphonoacetateframeworks: Applications for anticorrosion protection of metal surfaces [J].Chem Mater,2008,20(15):4835-4846.
    [204] DEMADIS K D, PAPADAKI M, RAPTIS R G, et al.2D and3Dalkaline earth metal carboxyphosphonate hybrids: Anti-corrosion coatings formetal surfaces [J]. J Solid State Chem,2008,181(3):679-683.
    [205] ZANG D M, CAO D K, ZHENG L M. Strontium and barium4-carboxylphenylphosphonates: Hybrid anti-corrosion coatings for magnesiumalloy [J]. Inorg Chem Commun,2011,14(12):1920-1923.
    [206] MESBAH A, JACQUES S, ROCCA E, et al. Compact metal-organicframeworks for anti-corrosion applications: new binary linear saturatedcarboxylates of zinc [J]. Eur J Inorg Chem,2011,2011(8):1315-1321.
    [207] ZACHER D, SHEKHAH O, WOLL C, et al. Thin films of metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1418-1429.
    [208] SHEKHAH O, LIU J, FISCHER R A, et al. MOF thin films: existingand future applications [J]. Chem Soc Rev,2011,40(2):1081-1106.
    [209] BETARD A, FISCHER R A. Metal-organic framework thin films: fromfFundamentals to applications [J]. Chem Rev,2012,112(2):1055-1083.
    [210] SHAH M, MCCARTHY M C, SACHDEVA S, et al. Current status ofmetal-organic framework membranes for gas separations: promises andchallenges [J]. Ind Eng Chem Res,2012,51(5):2179-2199.
    [211] ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organicframeworks [J]. Chem Rev,2012,112(2):673-674.
    [212] ZOU X Q, ZHANG F, THOMAS S, et al. Co3(HCOO)6microporousmetal-organic framework membrane for separation of CO2/CH4mixtures [J].Chem-Eur J,2011,17(43):12076-12083.
    [213] WANG H T, FANG Y E, YAN Y S. Surface modification of chitosanmembranes by alkane vapor plasma [J]. Journal of Materials Chemistry,2001,11(5):1374-1377.
    [214] WANG X D, ZHANG B Q, LIU X F, et al. Synthesis of b-oriented TS-1films on chitosan-modified alpha-Al2O3substrates [J]. Advanced Materials,2006,18(24):3261-3265.
    [215] ZHOU M, LIU X F, ZHANG B Q, et al. Assembly of oriented zeolitemonolayers and thin films on polymeric surfaces via hydrogen bonding [J].Langmuir,2008,24(20):11942-11946.
    [216] ZHANG Z J, XIANG S C, RAO X T, et al. A rod packing microporousmetal-organic framework with open metal sites for selective guest sorption andsensing of nitrobenzene [J]. Chem Commun,2010,46(38):7205-7207.
    [217] FARRUSSENG D, DANIEL C, GAUDILLERE C, et al. Heats ofadsorption for seven gases in three metal-organic frameworks: systematiccomparison of experiment and simulation [J]. Langmuir,2009,25(13):7383-7388.
    [218] TIAN Y Y, FAN L L, WANG Z Y, et al. Synthesis of a SAPO-34membrane on macroporous supports for high permeance separation of aCO2/CH4mixture [J]. Journal of Materials Chemistry,2009,19(41):7698-7703.
    [219] KRISHNA R, VAN BATEN J M. In silico screening of metal-organicframeworks in separation applications [J]. Phys Chem Chem Phys,2011,13(22):10593-10616.
    [220] ZHU W D, HRABANEK P, GORA L, et al. Role of adsorption in thepermeation of CH4and CO2through a silicalite-1membrane [J]. Ind Eng ChemRes,2006,45(2):767-776.
    [221] GEUS E R, EXTER M J D, BEKKUM H V. Synthesis andcharacterization of zeolite (MFI) membranes on porous ceramic supports [J]. JChem Soc Faraday Trans1992,88(20):3103-3109.
    [222] POSHUSTA J C, TUAN V A, FALCONER J L, et al. Synthesis andpermeation properties of SAPO-34tubular membranes [J]. Ind Eng Chem Res,1998,37(10):3924-3929.
    [223] VOS R M, VERWEIJ H. High-Selectivity, High-flux silica membranesfor gas separation [J]. Science,1998,279(5357):1710-1711.
    [224] XU X C, YANG W S, LIU J, et al. Synthesis of NaA zeolite membranesfrom clear solution [J]. Micropor Mesopor Mat,2001,43(3):299-311.
    [225] GUAN G Q, TANAKA T, KUSAKABE K, et al. Characterization ofAIPO4-type molecular sieving membranes formed on a porous alpha-aluminatube [J]. J Membrane Sci,2003,214(2):191-198.
    [226] ALGIERI C, BERNARDO P, GOLEMME G, et al. Permeationproperties of a thin silicalite-1(MFI) membrane [J]. J Membrane Sci,2003,222(1-2):181-190.
    [227] NAM S E, LEE K H. Preparation and characterization of palladiumalloy composite membranes with a diffusion barrier for hydrogen separation[J]. Ind Eng Chem Res,2005,44(1):100-105.
    [228] YIN X J, ZHU G S, WANG Z Y, et al. Zeolite P/NaX compositemembrane for gas separation [J]. Micropor Mesopor Mat,2007,105(1-2):156-162.
    [229] HUANG A S, LIANG F Y, STEINBACH F, et al. Preparation andseparation properties of LTA membranes by using3-aminopropyltriethoxysilane as covalent linker [J]. J Membrane Sci,2010,350(1-2):5-9.
    [230] HUANG A S, LIANG F Y, STEINBACH F, et al. Neutral and cation-free LTA-type aluminophosphate (AlPO4) molecular sieve membrane withhigh hydrogen permselectivity [J]. Journal of the American Chemical Society,2010,132(7):2140-2141.
    [231] HIJIKATA T. Research and development of international clean energynetwork using hydrogen energy (WE-NET)[J]. Int J Hydrogen Energ,2002,27(2):115-129.
    [232] PERALDO BICELLI L. Hydrogen: a clean energy source.[J]. Int JHydrogen Energ,1986,11(9):555-562.
    [233] FREEMAN B, YAMPOLSKII Y, PINNAU I. Materials science ofmembranes for gas and vapor separation.1st ed.[J]. Wiley,2006.
    [234] MASPOCH D, RUIZ-MOLINA D, VECIANA J. Old materials withnew tricks: multifunctional open-framework materials [J]. Chem Soc Rev,2007,36(5):770-818.
    [235] COMOTTI A, BRACCO S, SOZZANI P, et al. Nanochannels of twodistinct cross-sections in a porous Al-based coordination polymer [J]. Journalof the American Chemical Society,2008,130(41):13664-13672.
    [236] SERRE C, MELLOT-DRAZNIEKS C, SURBLE S, et al. Role ofsolvent-host interactions that lead to very large swelling of hybrid frameworks[J]. Science,2007,315(5820):1828-1831.
    [237] HASEGAWA S, HORIKE S, MATSUDA R, et al. Three-dimensionalporous coordination polymer functionalized with amide groups based ontridentate ligand: Selective sorption and catalysis [J]. Journal of the AmericanChemical Society,2007,129(9):2607-2614.
    [238] KUPPLER R J, TIMMONS D J, FANG Q R, et al. Potentialapplications of metal-organic frameworks [J]. Coordination ChemistryReviews,2009,253(23-24):3042-3066.
    [239] LEE J, FARHA O K, ROBERTS J, et al. Metal-organic frameworkmaterials as catalysts [J]. Chem Soc Rev,2009,38(5):1450-1459.
    [240] LIU Y L, EUBANK J F, CAIRNS A J, et al. Assembly of metal-organicframeworks (MOFs) based on indium-trimer building blocks: A porous MOFwith soc topology and high hydrogen storage [J]. Angew Chem Int Edit,2007,46(18):3278-3283.
    [241] MA L Q, ABNEY C, LIN W B. Enantioselective catalysis withhomochiral metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1248-1256.
    [242] MASPOCH D, RUIZ-MOLINA D, WURST K, et al. A nanoporousmolecular magnet with reversible solvent-induced mechanical and magneticproperties [J]. Nature materials,2003,2(3):190-195.
    [243] MURRAY L J, DINCA M, LONG J R. Hydrogen storage in metal-organic frameworks [J]. Chem Soc Rev,2009,38(5):1294-1314.
    [244] NATARAJAN S, MANDAL S. Open-framework structures oftransition-metal compounds [J]. Angew Chem Int Edit,2008,47(26):4798-4828.
    [245] BOHRMAN J A, CARREON M A. Synthesis and CO2/CH4separationperformance of bio-MOF-1membranes [J]. Chem Commun,2012,48(42):5130-5132.
    [246] XIE Z, YANG J H, WANG J Q, et al. Deposition of chemicallymodified alpha-Al2O3particles for high performance ZIF-8membrane on amacroporous tube [J]. Chem Commun,2012,48(48):5977-5979.
    [247] ZHAO Z X, MA X L, LI Z, et al. Synthesis, characterization and gastransport properties of MOF-5membranes [J]. J Membrane Sci,2011,382(1-2):82-90.
    [248] AHNFELDT T, GUILLOU N, GUNZELMANN D, et al.
    [Al4(OH)2(OCH3)4(H2N-bdc)3]center dot xH2O: A12-Connected porous metal-organic framework with an unprecedented aluminum-containing brick [J].Angew Chem Int Edit,2009,48(28):5163-5166.
    [249] CHMELIK C, BUX H, VOSS H, et al. Adsorption and diffusion-basisfor molecular understanding of permeation through molecular sievemembranes [J]. Chem-Ing-Tech,2011,83(1-2):104-112.
    [250] BERNAL M P, CORONAS J, MENENDEZ M, et al. Characterizationof zeolite membranes by temperature programmed permeation and stepdesorption [J]. J Membrane Sci,2002,195(1):125-138.
    [251] POSHUSTA J C, NOBLE R D, FALCONER J L. Temperature andpressure effects on CO2and CH4permeation through MFI zeolite membranes[J]. J Membrane Sci,1999,160(1):115-125.
    [252] FARRUSSENG D, JULBE A, GUIZARD C. Evaluation of porousceramic membranes as O2distributors for the partial oxidation of alkanes ininert membrane reactors [J]. Sep Purif Technol,2001,25(1-3):137-149.
    [253] LIU Y Y, ZENG G F, PAN Y C, et al. Synthesis of highly c-orientedZIF-69membranes by secondary growth and their gas permeation properties[J]. J Membrane Sci,2011,379(1-2):46-51.
    [254] ROCCA E, CAILLET C, MESBAH A, et al. Intercalation in zinc-layered hydroxide: Zinc hydroxyheptanoate used as protective material on zinc[J]. Chem Mater,2006,18(26):6186-6193.
    [255] SHCHUKIN D G, LAMAKA S V, YASAKAU K A, et al. Activeanticorrosion coatings with halloysite nanocontainers [J]. J Phys Chem C,2008,112(4):958-964.
    [256] BANERJEE R, FURUKAWA H, BRITT D, et al. Control of pore sizeand functionality in isoreticular zeolitic imidazolate frameworks and theircarbon dioxide selective capture properties [J]. Journal of the AmericanChemical Society,2009,131(11):3875-3877.
    [257] HAYASHI H, COTE A P, FURUKAWA H, et al. Zeolite a imidazolateframeworks [J]. Nature materials,2007,6(7):501-506.
    [258] WU H, ZHOU W, YILDIRIM T. Hydrogen storage in a prototypicalzeolitic imidazolate framework-8[J]. Journal of the American ChemicalSociety,2007,129(17):5314-5315.
    [259] LI K H, OLSON D H, SEIDEL J, et al. Zeolitic imidazolate frameworksfor kinetic separation of propane and propene [J]. Journal of the AmericanChemical Society,2009,131(30):10368-10369.
    [260] ZHANG P, SUN F, XIANG Z H, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygenreduction reaction [J]. Energy&Environmental Science,2014,7(1):442-450.
    [261] CHIZALLET C, LAZARE S, BAZER-BACHI D, et al. Catalysis oftransesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8probed by FTIR and ab Initiocalculations [J]. Journal of the American Chemical Society,2010,132(35):12365-12377.
    [262] JIANG H L, LIU B, AKITA T, et al. Au@ZIF-8: CO oxidation overgold nanoparticles deposited to metal-organic framework [J]. Journal of theAmerican Chemical Society,2009,131(32):11302-11303.
    [263] QU M N, ZHANG B W, SONG S Y, et al. Fabrication ofsuperbydrophobic surfaces on engineering materials by a solution-immersionprocess [J]. Advanced Functional Materials,2007,17(4):593-596.
    [264] LIU T, YIN Y S, CHEN S G, et al. Super-hydrophobic surfaces improvecorrosion resistance of copper in seawater [J]. Electrochimica Acta,2007,52(11):3709-3713.
    [265] ZHU Y, ZHANG J C, ZHENG Y M, et al. Stable, superhydrophobic,and conductive polyaniline/polystyrene films for corrosive enviromnents [J].Advanced Functional Materials,2006,16(4):568-574.
    [266] WELTON T. Ionic liquids in catalysis [J]. Coordination ChemistryReviews,2004,248(21-24):2459-2477.
    [267] WELTON T. Room-temperature ionic liquids: solvents for synthesisand catalysis [J]. Chem Rev,1999,99(8):2071-2083.
    [268] WASSERSCHIED P, WELTON (EDS.) T. Ionic liquids in synthesis [J].VCH-Wiley, Weinheim ISBN3-527-30515-7,2002.
    [269] MA Z, YU J H, DAI S. Preparation of inorganic materials using ionicliquids [J]. Advanced Materials,2010,22(2):261-285.
    [270] PARNHAM E R, MORRIS R E. Ionothermal synthesis of zeolites,metal-organic frameworks, and inorganic-organic hybrids [J]. Accounts ChemRes,2007,40(10):1005-1013.
    [271] WHEATLEY P S, ALLAN P K, TEAT S J, et al. Task specific ionicliquids for the ionothermal synthesis of siliceous zeolites [J]. ChemicalScience,2010,1(4):483-487.
    [272] PARNHAM E R, DRYLIE E A, WHEATLEY P S, et al. Ionothermalmaterials synthesis using unstable deep-eutectic solvents as template-deliveryagents [J]. Angew Chem Int Edit,2006,45(30):4962-4966.
    [273] BEREKET G, GULEC M, YURT A. Inhibition efficiencies of someorganic compounds on the corrosion of zinc in alkaline media [J]. Anti-Corrosion Methods and Materials,2006,53(1):52-56.
    [274] LIU C, SUN F X, ZHOU S Y, et al. Facile synthesis of ZIF-8nanocrystals in eutectic mixture [J]. Crystengcomm,2012,14(24):8365-8367.
    [275] CHANG Y C, PRENTICE G J. A model for the anodic dissolution ofzinc in alkaline electrolyte kinetics of initial dissolution [J]. J Electrochem Soc,1984,131(7):1465-1468.
    [276] WANG J M, ZHANG Y L J, CAO C. The Influences ofpolyoxyethylene ether on the corrosion behavior of Zn—in alloy in an alkalinesolution [J]. Corros Sci,1998,40(7):1161-1168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700