用户名: 密码: 验证码:
Mg-Zn-Ca-Zr/Nd/Y生物镁合金组织、力学性能和腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1878年第一次在人体中应用可降解生物镁合金开始,镁合金生物材料的开发设计及应用逐渐成为众多研究学者的热点。这是由于与高分子聚合物材料相比,镁合金材料具有一定的承载能力和良好的生物相容性;与传统金属硬组织植入材料相比,镁合金材料具有可降解吸收性能,不需要经过二次手术将植入材料摘除;但是与钛合金和钴-铬合金等金属材料相比,镁合金力学性能稍低,并且腐蚀速度过快,在使用过程中会因为承载能力不够和降解速度过快导致生物植入材料失效,影响镁合金生物材料在临床医学领域的应用。本工作为了改善可降解镁合金生物材料的力学性能和耐腐蚀性能,以少量多元原则对Mg-Zn-Ca系合金进行改性处理,并选择了生物相容性好,对合金强化效果好同时能够提高合金耐腐蚀性能的Zr、Nd、Y元素作为合金元素,设计熔炼出新型四元Mg-Zn-Ca-Nd/Zr/Y系生物镁合金。重点研究Zr、Nd、Y等元素及固溶处理对合金显微组织、相组成、力学性能和腐蚀行为的影响。研究结果表明:
     1.铸态Mg-4Zn-0.5Ca-xNd合金主要由-Mg基体和MgZn、Ca2Mg6Zn3、Mg41Nd5化合物组成,随着合金中Nd含量的增加,其显微组织逐渐细化,并且Mg41Nd5化合物的析出量逐渐增多,当Nd含量为2wt.%时,合金晶界上析出Ca2Mg6Zn3+Mg41Nd5共晶组织。当合金中Nd含量由1wt.%增至2wt.%时,晶内和晶界析出的化合物逐渐增多,强化了合金的基体和晶界;同时合金晶粒明显细化,合金力学性能提高。若继续增加Nd的含量,脆性相在合金晶界上聚集粗化,网状晶界的数量增多,降低了晶粒间结合力,合金力学性能下降。实验结果显示Mg-4Zn-0.5Ca-1Nd合金在37oC的SBF溶液中具有最佳的耐腐蚀性能,当Nd含量达到2wt.%以上时,尽管合金晶粒尺寸不断减小,但是在合金晶内和晶界上析出的化合物增多,导致合金腐蚀电流密度增加,合金耐腐蚀性能降低。
     2.铸态Mg-4Zn-0.5Ca-xZr合金主要由-Mg基体和Mg0.97Zn0.3、Ca2Mg6Zn3化合物组成,XRD图谱中没有出现Zr单质衍射峰。当Zr元素含量由0.1wt.%增至0.7wt.%时,合金的晶粒从65m降至30m,Zr元素细化晶粒作用明显,合金的强度和塑性变形能力提高,其中铸态Mg-4Zn-0.5Ca-0.7Zr具有最好的力学性能。析氢速率和电化学极化曲线结果表明,当Zr含量小于0.5wt.%时,合金的耐腐蚀性能随Zr含量的增加而增加。这是因为添加Zr元素改善了合金显微组织,使晶粒细化且组织均匀致密,有效降低合金的腐蚀电流密度,增加合金的耐腐蚀性能;但是当Zr含量大于0.5wt.%时,合金的耐腐蚀性能反而随着Zr含量的增加而降低,这是由于晶界上析出的Zr颗粒将晶界上连续分布的化合物截断,不能有效阻止腐蚀现象从一个晶粒向另一个晶粒的蔓延,提高了合金的腐蚀电流密度,降低了合金的耐腐蚀性能;铸态Mg-4Zn-0.5Ca-0.5Zr合金具有最好的耐腐蚀性能。固溶处理后合金的相组成不变,合金晶粒尺寸仍然随着Zr含量的增加而减小,部分合金元素固溶于合金基体中提高了合金的力学性能;同时合金中析出化合物的摩尔分数减少,合金的电化学性能提高。其中固溶态Mg-4Zn-0.5Ca-0.5Zr合金具有最好的综合性能,屈服强度达到153MPa,腐蚀速度仅为0.451mm/year。
     3.铸态Mg-6Zn-0.5Ca合金主要由-Mg固溶体和MgZn2、Ca2Mg6Zn3化合物组成。添加稀土元素Y后,颗粒状Mg12ZnY化合物弥散分布于基体上,并且Mg12ZnY化合物的摩尔分数随着Y元素含量的增加而增加。当Y元素的含量从0wt.%增至1.5wt.%时,合金晶粒的尺寸从118m降至79m。添加Y元素后,合金力学性能明显提高,这主要与Y元素的固溶强化,Y元素细化晶粒引起的晶界强化和Mg12ZnY化合物弥散析出强化有关。固溶处理后合金晶粒尺寸变大,但相组成未变。同样固溶处理能够提高合金的力学性能,其中固溶态Mg-6Zn-0.5Ca-1.0Y合金力学性能最好,其中抗拉强度、屈服强度和延伸率分别达到284MPa、166MPa、14.7%。
     4.铸态Mg-2Zn-0.5Ca合金主要有-Mg固溶体和CaZn3化合物组成,随着稀土元素Y的添加出现镁稀土强化相Mg24Y5。室温压缩实验显示,Mg-2Zn-0.5Ca合金断口比较平齐而光亮,断裂类型为脆性断裂;随着稀土元素Y的添加,以固溶形式和形成稀土强化相两种方式改善了合金的力学性能。将铸态和固溶态Mg-2Zn-0.5Ca-xY合金分别在SBF溶液中腐蚀浸泡30天发现,在本论文实验条件下,浸泡合金的腐蚀溶液pH值均随浸泡时间的增长而增大,其中铸态合金浸泡溶液的pH增加较快,最大极值为pH=10.4,而固溶态合金浸泡溶液的pH增加较慢,最大极值为pH=8.7。这一结果显示,与铸态合金相比,固溶态合金的腐蚀速率明显较小。对于Mg-2Zn-0.5Ca-1.5Y合金来讲,铸态合金的耐腐蚀性能较差,腐蚀速率达到最大值为9.748×10-4g/cm2/day,而固溶态合金的耐腐蚀性能较好,腐蚀速率达到最小值为0.2917×10-4g/cm2/day。
Biodegradable magnesium implants were first applied to the human body in1878,many researchers had gradually focused on the design and application of biodegradablemagnesium alloys in recent years. It was due to magnesium alloys had more sufficientload-bearing ability and better biocompatibility than those of polymers; magnesium alloyshad degradation ability compared with traditional biological metal materials, then, it is notnecessary to be removed the implants through a second surgical operation; however,magnesium alloys had worse mechanical properties and faster corrosion degradable velocitythan those of titanium alloys and Co-based alloys, which restricts it from wide application inthe field of biological materials. For improving the mechanical properties and corrosionresistance of medical degradable magnesium alloys in this paper, based on a few amount andmulti-element principle, Mg-Zn-Ca alloys are treated in modification, thus, Zr, Nd and Yelements which have good biocompatibility, improve the mechanical properties andcorrosion resistance of medical degradable magnesium alloys are selected as alloy elements,then, Mg-Zn-Ca-Zr/Nd/Y biological magnesium alloys are designed. It was investigated thatZr, Nd and Y elements and solid solution treatment influence on the microstructure,mechanical properties and corrosion behavior of the biodegradable magnesium alloys. Theresults are summarized as follows:
     1. The as-cast Mg-4Zn-0.5Ca-xNd alloys mainly consist of-Mg matrix, MgZn,Ca2Mg6Zn3and Mg41Nd5compounds. The microstructure is gradually refined and thenumber of Mg41Nd5compounds increases with the increasing of the content of Nd. When thecontent of Nd is2wt.%, eutectic structure of Ca2Mg6Zn3+Mg41Nd5can be found at grainboundaries. Compounds precipitated at grain boundaries and in grain interior graduallyincrease and strengthen the-Mg matrix and grain boundaries as the content of Nd increasesfrom1wt.%to2wt.%, meanwhile, the grains are obviously refined and alloys’mechanicalproperties are improved. If the content of Nd continues to be increased, brittle phases areaggregated at grain boundaries, forces among grains and alloys’mechanical properties areboth decreased. The experiment’s result indicates that Mg-4Zn-0.5Ca-1Nd alloy has thebest corrosion resistance of these alloys in SBF fluid at37oC. When the content of Nd is more than2wt.%, even if the sizes of grains are decreased, compounds precipitated at grainboundaries and in grain interior gradually increase, which lead to the increase corrosioncurrent density of alloys, the corrosion resistance properties of alloys decreases.
     2. The as-cast Mg-4Zn-0.5Ca-xZr alloys mainly consist of-Mg matrix, Mg0.97Zn0.3and Ca2Mg6Zn3compounds, The Ca2Mg6Zn3compound precipitates in grains interior andgrain boundaries, but XRD pattern of the Mg-4Zn-0.5Ca-xZr alloys has no diffraction peaksof Zr particles. The alloys’grains decrease from65m to30m as the content of Zrincreases from0.1wt.%to0.7wt.%, that is, the grains are obviously refined, the strength andplastic deformation are improved, especially, the as-cast Mg-4Zn-0.5Ca-0.7Zr alloy has thebest mechanical properties. The curves of the rate of the evolved hydrogen and polarizationrepresent that corrosion resistance of these alloys increases with the increasing of as thecontent of Zr is less than0.5wt%. The reason is that the grains are refined, the distribution ofthe grains are uniform, the corrosion current density of alloys are effectively decreased andthe corrosion resistance properties of alloys are increased after adding Zr element. If thecontent of Zr is more than0.5wt%, the corrosion resistance properties of alloys decreasewith the increasing of the content of Zr. It dues to the Zr particles congregate at the grainboundaries as impurities to dissever the continuity of the compounds, which can noteffectively stop corrosion spreading from one grain to another grain, therefore the corrosioncurrent density of alloys increases, the corrosion resistance properties of alloys decreases andthe as-cast Mg-4Zn-0.5Ca-0.5Zr alloy has the best corrosion resistance properties. The phasecomposition of alloys is unchanged after solid solution treatment. The mechanical propertiesof alloys are improved since the sizes of the grains are still decreased with the increasing ofcontent of Zr and some of solute atoms solubilize in the-Mg matrix; Meanwhile, the molefraction of compounds is decreased, then the electrochemical properties are improved. Thesolution-treated Mg-4Zn-0.5Ca-0.5Zr alloy has the best comprehensive properties, the yieldstrength is153MPa, the rate of corrosion is only0.451mm/year.
     3. The as-cast Mg-6Zn-0.5Ca alloys mainly consist of-Mg matrix, MgZn2andCa2Mg6Zn3compounds. After adding the rare earth element Y, the granular compoundMg12ZnY dispersive distributes in the matrix, and as the increase of the content of elementY, the sizes of grains decrease and the mole fraction of the Mg12ZnY compound increasegradually. The sizes of grains of the as-cast alloys are decreased from118m to79m withthe increasing of Y content from0wt.%up to1.5wt.%. The mechanical properties are greatlyimproved after adding Y, which has relationship with solid solution strengthening resulting from element Y, grain size refinement strengthening and the precipitation strengtheningresulting from compound Mg12ZnY. The phase composition of alloys is unchanged aftersolid solution treatment, but the sizes of grains become increase. In the same way, solidsolution treatment could improve the mechanical properties of alloys, namely, thesolution-treated Mg-6Zn-0.5Ca-1.0Y alloy has the best mechanical properties, the ultimatetensile strength, yield strength and elongation whose values are284MPa,166MPa,14.7%,respectively.
     4. The as-cast Mg-2Zn-0.5Ca alloy mainly consist of-Mg matrix and CaZn3compounds. After adding the rare earth element Y, the rare earth compound Mg24Y5distributes in the matrix. The compression test at room temperature indicates that thecompression fracture of solution-treated Mg-2Zn-0.5Ca alloy is relatively flat and bright, thefracture surface exhibits brittle fracture pattern. Because solid solution is strengthenedresulting from element Y and precipitation is strengthened resulting from compound Mg24Y5,the mechanical properties of alloys improve. It indicates that the pH value of the corrosionliquor increases with the increasing of the immersion time, the pH value of the corrosionliquor immersed with the as-cast alloys reaches the maximum of10.4, and the pH value ofthe corrosion liquor immersed with the solution-treated alloys reaches the maximum of8.7under the condition of experiment after the as-cast and solution-treated Mg-2Zn-0.5Ca-xYalloys of immerse in SBF fluid for30days. Compared with the as-cast alloys, the corrosionrate of solution-treated is obviously smaller. As for the Mg-2Zn-0.5Ca-1.5Y alloy, the seriesof as-cast Mg-2Zn-0.5Ca-хY alloys have worse corrosion resistance abilities than those ofthe solution-treated alloys, the maximum corrosion rate of as-cast Mg-2Zn-0.5Ca-1.5Yalloys is9.748×10-4g/cm2/day, the minimum corrosion rate of solution-treatedMg-2Zn-0.5Ca-1.5Y alloys is0.2917×10-4g/cm2/day.
引文
[1]. Handbook A S M S. Magnesium and magnesium alloys[J]. ASM International,1999:106-118.
    [2].马培华.中国盐湖资源的开发利用与科技问题[J].地球科学进展,2000,15(4):365-375.
    [3].宋彭生.盐湖及相关资源开发利用进展[J].盐湖研究,2000,8(1):1-16.
    [4].宋雨来.稀土改性AZ91镁合金组织与腐蚀性能[D].吉林长春:吉林大学博士论文,2007.
    [5]. Zheng B, Ertorer O, Li Y, et al. High strength, nano-structured Mg-Al-Zn alloy[J].Materials Science and Engineering: A,2011,528(4):2180-2191.
    [6]. Shanthi M, Jayaramanavar P, Vyas V, et al. Effect of niobium particulate addition onthe microstructure and mechanical properties of pure magnesium[J]. Journal of Alloysand Compounds,2012,513:202-207.
    [7]. Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. MaterialsScience and Engineering: A,2001,302(1):37-45.
    [8].陈振华.镁合金[M].北京:化学工业出版社,2004.
    [9]. Thomas J R, Darry I L. High ductility magnesium alloys in automotive applications[J].Adv. Mater. Processes,1994,145(6):28.
    [10]. Polmear I J. Magnesium alloys and applications[J]. Materials science and technology,1994,10(1):1-16.
    [11].程丽任.铸造态,挤压态,半固态Mg-Li-Al系合金组织和力学性能研究[D].吉林长春:吉林大学博士论文,2011.
    [12]. Notin M, Mejbar J, Bouhajib A, et al. The thermodynamic properties of calciumintermetallic compounds[J]. Journal of alloys and compounds,1995,220(1):62-75.
    [13]. Hosono T, Kuramoto M, Matsuzawa Y, et al. Formation of CaMgSi at Ca2Si/Mg2Siinterface[J].Applied surface science,2003,216(1):620-624.
    [14]. Gr bner J, Chumak I, Schmid-Fetzer R. Experimental study of ternary Ca-Mg-Siphase equilibria and thermodynamic assessment of Ca-Si and Ca-Mg-Si systems[J].Intermetallics,2003,11(10):1065-1074.
    [15].丁文江.镁合金科学与技术[M].北京:科学出版社,2007.
    [16].曾小勤,王渠东.镁合金应用新进展[J].铸造,1998(11):39-43.
    [17]. Polmear I J. Recent developments in light alloys[J]. JIM, Materials Transactions,1996,37(1):12-31.
    [18].王渠东,宫宜振.镁合金在电子器材壳体中的应用[J].材料导报,2000,14(6):22-24.
    [19]. Froes F H, Eliezer D, Aghion E. The science, technology, and applications ofmagnesium[J]. Jom,1998,50(9):30-34.
    [20]. Raymond F D. The renaissance in magnesium[J]. Adv Mate Pro,1998,154(3):31-33.
    [21]. Magers D M. A global review of magnesium parts in automobiles[J]. LIGHT METALAGE-CHICAGO,1996,54:60-65.
    [22].黄启德.镁合金市场趋势及工业应用前景[J].金属工业,2000(1):74-77.
    [23]. Ruden T J, Albright D L. Magnesium castings for auto applications[J]. AdvancedMaterials and Processes,1994,145(6):28-32.
    [24]. Paul M B. Automotive die casting magnesium reviving up for the21^st century[J].Die Casting Engineer,1997,41(3):68-70.
    [25]. Heime H J. Magnesium industry looks to the future[J]. Foundry Management andTechnology,1997,4:48-53.
    [26]. Kojima Y. Project of platform science and technology for advanced magnesiumalloys[J]. Materials transactions-JIM,2001,42(7):1154-1159.
    [27]. Aghion E, Bronfin B. Magnesium alloys development towards the21st century[C]//Materials Science Forum.2000,350:19-30.
    [28].夏德宏,郭梁,余涛.镁及镁合金广阔的应用前景[J].金属世界,2005(2):47-48.
    [29].史文方,周昆.我国镁合金的开发应用现状及展望[J].汽车工艺与材料,2004(6):32-37.
    [30].刘静安,李建湘.镁及镁合金材料的应用及其加工技术的发展[J].四川有色金属,2007,3(1):1-5.
    [31]. Kuwahara H, Al-Abdullat Y, Mazaki N, et al. Precipitation of magnesium apatite onpure magnesium surface during immersing in Hank's solution[J]. MaterialsTransactions(Japan),2001,42(7):1317-1321.
    [32]. Finn A V, Joner M, Nakazawa G, et al. Pathological correlates of late drug-elutingstent thrombosis strut coverage as a marker of endothelialization[J]. Circulation,2007,115(18):2435-2441.
    [33]. Steffel J, Eberli F R, Lüscher T F, et al. Drug-eluting stents-what should beimproved?[J].Annals of medicine,2008,40(4):242-252.
    [34].王迎军,刘康时.生物医学材料的研究与发展[J].中国陶瓷,1998,34(5):26-29.
    [35]. Black J. Biological performance of materials: fundamentals of biocompatibility[M].CRC Press,2005.
    [36].俞耀庭,王连永,王深琪.生物医学材料发展状况与对策[R].2002高技术发展报告.北京:科学技术出版社,2003.
    [37].李伟.生物可降解稀土镁合金血管支架无缝管材的制备技术及性能研究[D].重庆:重庆大学,2011.
    [38].刘成龙.医用金属材料表面惰性涂层改性研究[D].大连:大连理工大学,2006.
    [39]. Hench L L, Polak J M. Third-generation biomedical materials[J]. Science,2002,295(5557):1014-1017.
    [40].蒋电明,权正学,欧云生,等. n-HA/PA66复合生物活性支撑材料在重建椎体结构中的初步临床应用[J].重庆医学,2007,36(11):1010-1012.
    [41].魏大庆. Ti6Al4V表面微弧氧化生物涂层结构修饰与磷灰石形成动力学[D].黑龙江哈尔滨:哈尔滨工业大学,2008.
    [42].李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000.
    [43].阮建明,邹俭鹏,黄伯云.生物材料学[M].北京:科学出版社,2004.
    [44].俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000.
    [45].崔福斋,冯庆玲.生物材料学[M].北京:清华大学出版社有限公司,2004.
    [46]. Takadama H, Kim H M, Kokubo T, et al. An X-ray photoelectron spectroscopy studyof the process of apatite formation on bioactive titanium metal[J]. Journal ofbiomedical materials research,2001,55(2):185-193.
    [47]. Ryan G, Pandit A, Apatsidis D P. Fabrication methods of porous metals for use inorthopaedic applications[J]. Biomaterials,2006,27(13):2651-2670.
    [48]. Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedicbiomaterials: a review[J]. Biomaterials,2006,27(9):1728-1734.
    [49].顾汉卿,徐国风.生物医学材料学[M].天津:天津科技翻译出版公司,1993.
    [50].师昌绪.材料科学技术百科全书[M].第l版.北京:中国大百科全书出版杜,1995.
    [51]. Tipper J L, Hatton A, Nevelos J E, et al. Alumina–alumina artificial hip joints. Part II:characterisation of the wear debris from in vitro hip joint simulations[J]. Biomaterials,2002,23(16):3441-3448.
    [52]. Miyazaki T, Kim H M, Kokubo T, et al.Mechanism of bonelike apatite formation onbioactive tantalum metal in a simulated body fluid[J].Biomaterials,2002,23(3):827-832.
    [53]. Niki Y, Matsumoto H, Suda Y, et al. Metal ions induce bone-resorbing cytokineproduction through the redox pathway in synoviocytes and bone marrowmacrophages[J]. Biomaterials,2003,24(8):1447-1457.
    [54].陈锡民.外科植入物用不锈钢工艺及性能研究[J].上海钢研,2003(2):8-18.
    [55].张恩科,李宪军.不锈钢植入物材料及其抗腐蚀性能探讨[J].医疗设备信息,2001,16(11):36-37.
    [56]. Disegi J A, Eschbach L. Stainless steel in bone surgery[J]. Injury,2000,31: D2-D6.
    [57]. Holmes Jr D R. In-stent restenosis[J]. Reviews in cardiovascular medicine,2000,2(3):115-119.
    [58]. Reimers B, Moussa I, Akiyama T, et al. Long-term clinical follow-up after successfulrepeat percutaneous intervention for stent restenosis[J]. Journal of the AmericanCollege of Cardiology,1997,30(1):186-192.
    [59]. Gunn J, Malik N, Shepherd L. In-stent restenosis: more metal and more symmetryrequired[J]. Heart,1997,77(5s):46.
    [60]. Hoffmann R, Mintz G S, Dussaillant G R, et al. Patterns and mechanisms of in-stentrestenosis a serial intravascular ultrasound study[J]. Circulation,1996,94(6):1247-1254.
    [61]. Fini M, Nicoli Aldini N, Torricelli P, et al. A new austenitic stainless steel withnegligible nickel content: an in vitro and in vivo comparative investigation[J].Biomaterials,2003,24(27):4929-4939.
    [62]. Reclaru L, Lüthy H, Eschler P Y, et al. Corrosion behaviour of cobalt–chromiumdental alloys doped with precious metals[J]. Biomaterials,2005,26(21):4358-4365.
    [63]. Jacobs J J, Skipor A K, Doorn P F, et al. Cobalt and chromium concentrations inpatients with metal on metal total hip replacements[J]. Clinical orthopaedics andrelated research,1996,329: S256-S263.
    [64]. Lin C W, Ju C P, Chern Lin J H. A comparison of the fatigue behavior of cast Ti-7.5Mo with cp titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys[J]. Biomaterials,2005,26(16):2899-2907.
    [65].金万军.生物医用Ti-Ta基合金的形状记忆效应和力学性能的研究[D].厦门:厦门大学,2009.
    [66]. Long M, Rack H J. Titanium alloys in total joint replacement-a materials scienceperspective[J]. Biomaterials,1998,19(18):1621-1639.
    [67].李关芳.医用贵金属材料的研究与发展[J].贵金属,2004,25(3):54-61.
    [68]. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedicalapplications[J].Acta biomaterialia,2012,8(11):3888-3903.
    [69]. Zhu S L, Wang X M, Inoue A. Glass-forming ability and mechanical properties ofTi-based bulk glassy alloys with large diameters of up to1cm[J]. Intermetallics,2008,16(8):1031-1035.
    [70]. Br nemark P I, Breine U, Adell R, et al. Intra-osseous anchorage of dental prostheses:I. experimental studies[J]. Scandinavian Journal of Plastic and ReconstructiveSurgery and Hand Surgery,1969,3(2):81-100.
    [71].张明华,蔡和平.微孔涂层植入物与骨组织界面骨小梁的疲劳微观损伤[J].骨与关节损伤杂志,2000,15(2):115-117.
    [72]. Bansiddhi A, Sargeant T D, Stupp S I, et al. Porous NiTi for bone implants: areview[J].Acta Biomaterialia,2008,4(4):773-782.
    [73]. Zhu S L, Wang X M, Qin F X, et al. A new Ti-based bulk glassy alloy with potentialfor biomedical application[J]. Materials Science and Engineering: A,2007,459(1):233-237.
    [74]. Morinaga M, Murata Y, Yukawa H. Molecular orbital approach to alloydesign[M]//Applied Computational Materials Modeling. Springer US,2007:255-306.
    [75]. Wang Y Z, Ma N, Chen Q, et al. Predicting phase equilibrium, phase transformation,and microstructure evolution in titanium alloys[J]. JOM,2005,57(9):32-39.
    [76]. Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new βtype titanium alloys for implant materials[J]. Materials Science and Engineering: A,1998,243(1):244-249.
    [77]. Xu L J, Chen Y Y, Liu Z G, et al. The microstructure and properties of Ti–Mo–Nballoys for biomedical application[J]. Journal of Alloys and Compounds,2008,453(1):320-324.
    [78]. Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via adislocation-free plastic deformation mechanism[J]. Science,2003,300(5618):464-467.
    [79].赵振心,刘道志,张一.血管支架材料及其临床研究进展[J].中国医疗器械杂志,2006,29(6):391-395.
    [80]. Strecker E P, Berg G, Schneider B, et al. A new vascular balloon-expandableprosthesis: Experimental studies and first clinical results[J]. J intervent Radiol,1988,3:59-62.
    [81]. Leng Y X, Chen J Y, Yang P, et al. The biocompatibility of the tantalum and tantalumoxide films synthesized by pulse metal vacuum arc source deposition[J]. NuclearInstruments and Methods in Physics Research Section B: Beam Interactions withMaterials and Atoms,2006,242(1):30-32.
    [82]. Ryh nen J, Kallioinen M, Tuukkanen J, et al. Bone modeling and cell–materialinterface responses induced by nickel-titanium shape memory alloy after periostealimplantation[J]. Biomaterials,1999,20(14):1309-1317.
    [83]. Berger-Gorbet M, Broxup B, Rivard C, et al. Biocompatibility testing of NiTi screwsusing immunohistochemistry on sections containing metallic implants[J]. Journal ofbiomedical materials research,1996,32(2):243-248.
    [84]. Bogdanski D, K ller M, Müller D, et al. Easy assessment of the biocompatibility ofNi-Ti alloys by in vitro cell culture experiments on a functionally graded Ni-NiTi-Timaterial[J]. Biomaterials,2002,23(23):4549-4555.
    [85]. Ryh nen J, Niemi E, Serlo W, et al. Biocompatibility of nickel-titanium shapememory metal and its corrosion behavior in human cell cultures[J]. Journal ofbiomedical materials research,1997,35(4):451-457.
    [86].马根山,王世栋.镍钛形状记忆合金血管内支架组织相容性实验研究[J].中国生物医学工程学报,1995,14(3):198-201.
    [87]. Armitage D A, Grant D M, Parker T L, et al. Haemocompatibility of surface modifiedNiTi[C]//Proceedings of the2nd international conference on shape memory andsuperelastic technologies, SMST, Monterey, CA.1997:401-406.
    [88].皇甫强,于振涛,罗丽娟,等.新型高强度钛合金血管支架的制备与性能研究[J].稀有金属,2006(z2):125-128.
    [89].信运昌.医用镁合金在生理环境中降解机理及其表面改性研究[D].北京:清华大学,2009.
    [90]. Hort N, Huang Y, Fechner D, et al. Magnesium alloys as implant materials–principlesof property design for Mg-RE alloys[J].Acta biomaterialia,2010,6(5):1714-1725.
    [91]. Shadanbaz S, Dias G J. Calcium phosphate coatings on magnesium alloys forbiomedical applications: a review[J].Acta biomaterialia,2012,8(1):20-30.
    [92].杨柯,谭丽丽,任伊宾,等.AZ31镁合金的生物降解行为研究[J].中国材料进展,2009,28(2):26-30.
    [93]. Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys andthe associated bone response[J]. Biomaterials,2005,26(17):3557-3563.
    [94]. Willbold E, Kaya A A, Kaya R A, et al. Corrosion of magnesium alloy AZ31screwsis dependent on the implantation site[J]. Materials Science and Engineering: B,2011,176(20):1835-1840.
    [95]. Wolf F I, Cittadini A. Chemistry and biochemistry of magnesium[J]. Molecularaspects of medicine,2003,24(1):3-9.
    [96]. Hartwig A. Role of magnesium in genomic stability[J].Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2001,475(1):113-121.
    [97]. Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binarymagnesium alloys[J]. Biomaterials,2009,30(4):484-498.
    [98]. Li L, Gao J, Wang Y. Evaluation of cyto-toxicity and corrosion behavior ofalkali-heat-treated magnesium in simulated body fluid[J]. Surface and CoatingsTechnology,2004,185(1):92-98.
    [99].黄晶晶,任伊宾,张炳春,等.镁及镁合金的生物相容性研究[J].稀有金属材料与工程,2007,36(6):1102-1105.
    [100]. Pietak A, Mahoney P, Dias G J, et al. Bone-like matrix formation on magnesium andmagnesium alloys[J]. Journal of Materials Science: Materials in Medicine,2008,19(1):407-415.
    [101]. Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for boneimplant application[J]. Journal of Biomedical Materials Research Part A,2007,83(3):703-711.
    [102]. Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a newprinciple in cardiovascular implant technology?[J]. Heart,2003,89(6):651-656.
    [103]. Di Mario C, Griffiths H U W, Goktekin O, et al. Drug-eluting bioabsorbablemagnesium stent[J]. Journal of interventional cardiology,2004,17(6):391-395.
    [104]. Bobe K, Willbold E, Morgenthal I, et al. In vitro and in vivo evaluation ofbiodegradable, open-porous scaffolds made of sintered magnesium W4short fibres[J].Acta biomaterialia,2013,9(10):8611-8623.
    [105]. Stanford N, Barnett M R. The origin of “rare earth” texture development in extrudedMg-based alloys and its effect on tensile ductility[J]. Materials Science andEngineering: A,2008,496(1):399-408.
    [106]. Hansen N. Polycrystalline strengthening[J]. Metallurgical Transactions A,1985,16(12):2167-2190.
    [107]. Raghunathan N, Sheppard T. Evolution of structure in roll gap when rollingaluminium alloys[J]. Materials science and technology,1989,5(2):194-201.
    [108]. Nussbaum G, Sainfort P, Regazzoni G, et al. Strengthening mechanisms in the rapidlysolidified AZ91magnesium alloy[J]. Scripta Metallurgica,1989,23(7):1079-1084.
    [109]. Han B Q, Dunand D C. Microstructure and mechanical properties of magnesiumcontaining high volume fractions of yttria dispersoids[J]. Materials Science andEngineering:A,2000,277(1):297-304.
    [110].孟宪宝,毛红奎,徐宏,等. Nd含量对ZM6镁合金力学性能的影响[J].热加工工艺,2013,42(6):8-9.
    [111]. Zhang E, Yang L. Microstructure, mechanical properties and bio-corrosion propertiesof Mg-Zn-Mn-Ca alloy for biomedical application[J]. Materials Science andEngineering:A,2008,497(1):111-118.
    [112]. Homma T, Mendis C L, Hono K, et al. Effect of Zr addition on the mechanicalproperties of as-extruded Mg-Zn-Ca-Zr alloys[J]. Materials Science and Engineering:A,2010,527(9):2356-2362.
    [113]. Ardell A J. Precipitation hardening[J]. Metallurgical Transactions A,1985,16(12):2131-2165.
    [114].张继东,李亚国,张少卿,等.钇对MB25镁合金组织及强度的影响[J].中国稀土学报,1989,7(3):55-58.
    [115]. Ning Z L, Wang H, Liu H H, et al. Effects of Nd on microstructures and properties atthe elevated temperature of a Mg-0.3Zn-0.32Zr alloy[J]. Materials&Design,2010,31(9):4438-4444.
    [116]. Janning C, Willbold E, Vogt C, et al. Magnesium hydroxide temporarily enhancingosteoblast activity and decreasing the osteoclast number in peri-implant boneremodelling[J].Acta biomaterialia,2010,6(5):1861-1868.
    [117]. Song G. Control of biodegradation of biocompatable magnesium alloys[J]. CorrosionScience,2007,49(4):1696-1701.
    [118].张佳,宗阳,袁广银,等.新型医用Mg-Nd-Zn-Zr镁合金在模拟体液中的降解行为[J].中国有色金属学报,2010,20(10):1989-1997.
    [119]. Witte F, Fischer J, Nellesen J, et al. In vivo corrosion and corrosion protection ofmagnesium alloy LAE442[J]. Acta Biomaterialia,2010,6(5):1792-1799.
    [120]. Zheng Y F, Gu X N, Witte F. Biodegradable metals[J]. Materials Science andEngineering: R: Reports,2014,77:1-34.
    [121]. Udhayan R, Bhatt D P. On the corrosion behaviour of magnesium and its alloys usingelectrochemical techniques[J]. Journal of Power Sources,1996,63(1):103-107.
    [122]. Song G L, Atrens A. Corrosion mechanisms of magnesium alloys[J]. Advancedengineering materials,1999,1(1):11-33.
    [123]. Lunder O, Nisancioglu K, Hansen R S. Corrosion of die cast magnesium-aluminumalloys[J]. Magnesium,1993,2014:11-05.
    [124]. Song G, Atrens A. Understanding magnesium corrosion—a framework for improvedalloy performance[J].Advanced engineering materials,2003,5(12):837-858.
    [125]. Das S K, Davis L A. High performance aerospace alloys via rapid solidificationprocessing[J]. Materials science and engineering,1988,98:1-12.
    [126]. Hermann F, Sommer F, Jones H, et al. Corrosion inhibition in magnesium-aluminium-based alloys induced by rapid solidification processing[J]. Journal of materialsscience,1989,24(7):2369-2379.
    [127]. Song G, Atrens A, Dargusch M. Influence of microstructure on the corrosion ofdiecast AZ91D[J]. Corrosion science,1998,41(2):249-273.
    [128].曾荣昌,柯伟,徐永波,等. Mg合金的最新发展及应用前景[J].金属学报,2001,37(7):673-685.
    [129]. Mitrovic-Scepanovic V, Brigham R J. Technical Note: Localized Corrosion Initiationon Magnesium Alloys[J]. Corrosion,1992,48(9):780-784.
    [130]. Broli A, Holtan H. Determination of characteristic pitting potentials for aluminium byuse of the potentiostatic methods[J]. Corrosion Science,1977,17(1):59-69.
    [131]. Wu G, Ibrahim J M, Chu P K. Surface design of biodegradable magnesium alloys—Areview[J]. Surface and Coatings Technology,2013,233:2-12.
    [132]. Kim S M, Jo J H, Lee S M, et al. Hydroxyapatite-coated magnesium implants withimproved in vitro and in vivo biocorrosion, biocompatibility, and bone response[J].Journal of Biomedical Materials Research PartA,2014,102(2):429-441.
    [133]. Fischerauer S F, Kraus T, Wu X, et al. In vivo degradation performance ofmicro-arc-oxidized magnesium implants: A micro-CT study in rats[J]. Actabiomaterialia,2013,9(2):5411-5420.
    [134]. Polmear I J. Magnesium alloys and applications[J]. Materials science and technology,1994,10(1):1-16.
    [135]. Brar H S, Wong J, Manuel M V. Investigation of the mechanical and degradationproperties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implantmaterials[J]. Journal of the mechanical behavior of biomedical materials,2012,7:87-95.
    [136]. Zhang S, Zhang X, Zhao C, et al. Research on an Mg-Zn alloy as a degradablebiomaterial[J].Acta Biomaterialia,2010,6(2):626-640.
    [137].邹宏辉,曾小勤,翟春泉,等.镁合金的强韧化进展[J].机械工程材料,2004,28(5):1-3.
    [138]. Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use asbiodegradable materials within bone[J]. Biomaterials,2008,29(10):1329-1344.
    [139]. Wu G, Fan Y, Gao H, et al. The effect of Ca and rare earth elements on themicrostructure, mechanical properties and corrosion behavior of AZ91D[J]. MaterialsScience and Engineering: A,2005,408(1):255-263.
    [140]. Sun M, Wu G, Wang W, et al. Effect of Zr on the microstructure, mechanicalproperties and corrosion resistance of Mg-10Gd-3Y magnesium alloy[J]. MaterialsScience and Engineering: A,2009,523(1):145-151.
    [141]. Song G, StJohn D. The effect of zirconium grain refinement on the corrosionbehaviour of magnesium-rare earth alloy MEZ[J]. Journal of Light Metals,2002,2(1):1-16.
    [142].秦俊法,陈祥友,李增禧.稀土的生物学效应[J].广东微量元素科学,2002,9(3):1-16.
    [143].周京,冯芝勇,张金玲,等.稀土Nd含量对AM60镁合金耐蚀性能的影响[J].中国腐蚀与防护学报,2014.
    [144].宋雨来,刘耀辉,朱先勇,等.钕对AZ91镁合金组织及机械性能的影响[J].吉林大学学报:工学版,2006,36(3):289-293.
    [145].王斌,方西亚,易丹青,等.稀土元素钇和铈对Mg-Zn-Zr系合金组织和性能的影响[J].机械工程材料,2006,29(12):17-20.
    [146]. Luo T J, Yang Y S, Li Y J, et al. Influence of rare earth Y on the corrosion behavior ofas-castAZ91alloy[J]. Electrochimica Acta,2009,54(26):6433-6437.
    [147]. Yao H B, Li Y, Wee A T S, et al. Correlation between the corrosion behavior andcorrosion films formed on the surfaces of Mg82-xNi18Ndx(x=0,5,15)[J]. Appliedsurface science,2001,173(1-2):54-61.
    [148]. Yao H B, Li Y, Wee A T S. Passivity behavior of melt-spun Mg-Y alloys[J].ElectrochimicaActa,2003,48(28):4197-4204.
    [149]. Rosalbino F, Angelini E, De Negri S, et al. Effect of erbium addition on the corrosionbehaviour of Mg-Al alloys[J]. Intermetallics,2005,13(1):55-60.
    [150]. Krishnamurthy S, Khobaib M, Robertson E, et al. Corrosion behavior of rapidlysolidified Mg-Nd and Mg-Y alloys[J]. Materials Science and Engineering,1988,99(1):507-511.
    [151]. Witte F. The history of biodegradable magnesium implants: a review[J]. ActaBiomaterialia,2010,6(5):1680-1692.
    [152]. Remennik S, Bartsch I, Willbold E, et al. New, fast corroding high ductility Mg-Bi-Caand Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants[J].Materials Science and Engineering: B,2011,176(20):1653-1659.
    [153]. Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulatedphysiological environment: Areview[J].Acta biomaterialia,2011,7(4):1452-1459.
    [154]. Razavi M, Fathi M H, Meratian M. Microstructure, mechanical properties andbio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedicalapplications[J]. Materials Science and Engineering: A,2010,527(26):6938-6944.
    [155].尹冬松.医用镁合金力学性能与腐蚀行为研究[D].黑龙江哈尔滨:哈尔滨工业大学,2008.
    [156]. Zhang X, Yuan G, Mao L, et al. Biocorrosion properties of as-extruded Mg-Nd-Zn-Zralloy compared with commercial AZ31and WE43alloys[J]. Materials Letters,2012,66(1):209-211.
    [157]. Zhang X, Yuan G, Mao L, et al. Effects of extrusion and heat treatment on themechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy[J]. Journalof the mechanical behavior of biomedical materials,2012,7:77-86.
    [158]. Jiang D M, Cao Z Y, Guo L, et al. Microstructure and Corrosion Properties ofMg-Zn-Ca-Nd Alloy for Biomedical Application[J]. Advanced Materials Research,2013,750:756-759.
    [159].杨王玥,强文江,等.材料力学行为[M].北京:化学工业出版社,2009.
    [160].潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社有限公司,1998.
    [161]. Ben-Hamu G, Eliezer D, Shin K S, et al. The relation between microstructure andcorrosion behavior of Mg-Y-RE-Zr alloys[J]. Journal ofAlloys and Compounds,2007,431(1):269-276.
    [162]. Oh-Ishi K, Mendis C L, Homma T, et al. Bimodally grained microstructuredevelopment during hot extrusion of Mg-2.4Zn-0.1Ag-0.1Ca-0.16Zr (at.%) alloys[J].Acta Materialia,2009,57(18):5593-5604.
    [163]. Zhang W, Li M, Chen Q, et al. Effects of Sr and Sn on microstructure and corrosionresistance of Mg-Zr-Ca magnesium alloy for biomedical applications[J]. Materials&Design,2012,39:379-383.
    [164]. Levi G, Avraham S, Zilberov A, et al. Solidification, solution treatment and agehardening of a Mg-1.6wt.%Ca-3.2wt.%Zn alloy[J]. Acta materialia,2006,54(2):523-530.
    [165]. Jiang D M, Yu T S, Jiang D H, et al. Microstructure and Corrosion Properties ofMg-Zn-Ca-Zr Alloy for Biomedical Application[J]. Advanced Materials Research,2013,790:11-15.
    [166]. Bettles C J, Gibson M A, Venkatesan K. Enhanced age-hardening behaviour in Mg-4wt.%Zn micro-alloyed with Ca[J]. Scripta Materialia,2004,51(3):193-197.
    [167]. Jiang D M, Cao Z Y, Sun X, et al. Effect of Yttrium addition on microstructure andmechanical properties of Mg-Zn-Ca alloy[J]. Materials Research Innovations,2013,17(supplement1):33-38.
    [168]. H nzi A C, Gunde P, Schinhammer M, et al. On the biodegradation performance of anMg-Y-RE alloy with various surface conditions in simulated body fluid[J]. ActaBiomaterialia,2009,5(1):162-171.
    [169]. Hou X, Cao Z, Zhao L, et al. Microstructure, texture and mechanical properties of ahot rolled Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy[J]. Materials&Design,2012,34:776-781.
    [170]. Wang J F, Wei Y Y, Guo S F, et al. The Y-doped MgZnCa alloys with ultrahighspecific strength and good corrosion resistance in simulated body fluid[J]. MaterialsLetters,2012,81:112-114.
    [171]. Yamasaki M, Hashimoto K, Hagihara K, et al. Effect of multimodal microstructureevolution on mechanical properties of Mg-Zn-Y extruded alloy[J]. Acta Materialia,2011,59(9):3646-3658.
    [172]. Geng L, Zhang B P, Li A B, et al. Microstructure and mechanical properties ofMg-4.0Zn-0.5Ca alloy[J]. Materials Letters,2009,63(5):557-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700