用户名: 密码: 验证码:
钢结构浪溅区腐蚀防护技术及缓蚀剂在干湿交替下的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浪花飞溅区是海洋环境中腐蚀最严重的区带。复层矿脂包覆防腐技术(PTC)已经被证明为一种长期有效的钢结构浪花飞溅区腐蚀防护技术。矿脂防蚀膏是PTC技术的核心内容,它的性能决定了PTC技术的稳定性和耐久性,对矿脂防蚀膏的配方进行优化具有重要意义。本文采用山东省地方标准《矿脂防蚀膏》中规定的耐温流动性和锥入度检测方法,结合中性盐雾和电化学交流阻抗实验,通过选用不同种类的基础油,添加降凝剂和硬脂酸钙等功能组分,对矿脂防蚀膏的基础配方进行优化。研究结果表明:当硬脂酸钙含量为3%时,以T13号石蜡油为基础油配制的矿脂防蚀膏的各项性能良好。
     干湿交替是导致钢结构在浪花飞溅区腐蚀严重的一个重要因素,矿脂防蚀膏中含有的缓蚀剂成分可以从腐蚀电化学的角度对碳钢进行保护,研究缓蚀剂在干湿交替环境下对碳钢的缓蚀作用有助于人们理解PTC技术的内在保护机理,同时为人们提供了一种研究缓蚀剂的新方法。本文选取单宁酸和聚天冬氨酸作为缓蚀剂,采用极化曲线和交流阻抗等电化学实验方法,研究了它们在干湿交替环境下对碳钢的缓蚀作用;采用表面扫描电镜、X-射线衍射和傅里叶红外光谱等手段对腐蚀产物进行表征。研究结果表明:单宁酸可以有效抑制碳钢在干湿交替环境下的腐蚀;单宁酸浓度为1g/L时,缓蚀效率可达86%;单宁酸与FeOOH的优先反应抑制了锈层的腐蚀加速作用。含有聚天冬氨酸的复配缓蚀剂对碳钢在干湿交替环境下的缓蚀效果更好;复配缓蚀剂的缓蚀效率为92.6%;经过8次干湿交替后,碳钢表面的腐蚀程度明显减弱。
     作为对聚天冬氨酸研究的拓展,考察了它在酸洗缓蚀剂领域中的应用。本文利用极化曲线、交流阻抗、扫描电镜和光电子能谱等技术,研究了聚天冬氨酸与碘化钾(KI)复配后对碳钢在硫酸溶液中的缓蚀作用。研究结果表明:聚天冬氨酸与KI复配使用,缓蚀效率达到95%以上;缓蚀效率提高是由于I-的阴离子效应加强了聚天冬氨酸在金属表面的吸附。
Splash zone is the most severe corrosion damage area in marine environment.Petrolatum tape cover (PTC) has been proved to be an effectively technology toprotect the steel structures away from corrosion in splash zone. Petrolatum is one ofthe important components in PTC, which properties affect the stability and durabilityof PTC. It would be significantly to optimize the composition of petrolatum. Testmethods according to the local standards of Shandong Province such as temperaturefluidity and cone penetration, as well as salt spray and electrochemical impedancespectroscopy were performed to detect the properties of petrolatum. Kinds of base oil,pour point depressant, and calcium stearate were added to improve the petrolatum.The petrolatum based on liquid paraffin make a good performance when the contentof calcium stearate up to3%.
     Note that wet/dry cyclic conditions greatly account for corrosion of steelstructures in the splash zone. Inhibitors in petrolatum can protect the steels from theviewpoint of electrochemical corrosion. By studying the corrosion in wet/dry cyclicconditions, the important influence factors of corrosion as well as corrosion inhibitionin the real system can be determined. The inhibition effect of tannic acid andpolyaspartic acid on mild steel corrosion in seawater wet/dry cyclic conditions wasstudied by weight loss and electrochemical methods. X-ray diffraction, and Fouriertransform infrared reflection are performed to study the corrosion inhibition. Resultshows that the inhibition efficiency run up to86%when the concentration of tannicacid was1g/L. The inhibition effect of the compound is attributed to ferric tannatefilm formation on the steel surface. The mixed inhibitors contain polyaspartic acidleading to higher inhibition efficiency up to92.6%. The metal surface immersed inmixed inhibitors was in better condition compared to others according to the results ofSEM.
     In order to enlarge the use of polyaspartic acid, the inhibition effect ofpolyaspartic acid and its synergistic effect with KI on mild steel corrosion in H2SO4 solution are studied by weight loss, electrochemical methods, SEM, and XPS. Theinhibition efficiency increases to95%with the presence of KI. Results show thatiodide ion promotes the film formation of polyaspartic acid greatly.
引文
[1]侯保荣.海洋钢结构浪花飞溅区腐蚀控制技术[M].北京:科学出版社,2011.
    [2]2013年中国海洋经济统计公报[N].国家海洋局,2013.
    [3]侯保荣.海洋腐蚀环境理论及其应用[M].北京:科学出版社,1999.
    [4]李运德,师华,徐永祥,等. ISO12944《色漆和清漆钢结构防腐涂层保护体系》浅述[J].中国涂料,2008,(08):10-13.
    [5]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2008.
    [6]黄桂桥,金威贤,侯文泰.不锈钢在海水中的耐蚀性与腐蚀电位的关系[J].中国腐蚀与防护学报,2000,(01):35-40.
    [7]周文木.生物表面海洋防污性能研究[D].国防科学技术大学,2010.
    [8]王虹斌,方志刚.舰船海水管系异金属电偶腐蚀的控制[J].腐蚀科学与防护技术,2007,(02):145-147.
    [9]陈庆,时黎霞,腾玉华.介质的成分、浓度和温度对金属材料电化学腐蚀的影响[J].吉林化工学院学报,2000,(01):63-66.
    [10]李凌杰,于生海,雷惊雷,等. AZ31和AZ61镁合金在模拟海水中的腐蚀电化学行为[J].电化学,2008,(01):95-99.
    [11]郭凯伟,周永璋,杨春艳,等. Q235钢在采出液中表面产物膜的结构及其对腐蚀的影响[J].腐蚀与防护,2012,(03):206-208.
    [12] I. Cvijovi-Alagi, Z. Cvijovi, S. Mitrovi, et al. Wear and corrosion behaviour ofTi–13Nb–13Zr and Ti–6Al–4V alloys in simulated physiological solution[J]. Corros. Sci.,2011,53(2):796-808.
    [13] T.A. Adler, R.P. Walters. Corrosion and wear of304stainless steel using a scratch test[J].Corros. Sci.,1992,33(12):1855-1876.
    [14] Humble. H. A, The cathodic protection of steel piling in sea water[J]. Corrosion,1949,5(9):292-302.
    [15] T. Tsuru, A. Nishikata, J. Wang. Electrochemical studies on corrosion under a water film[J].Materials Science and Engineering: A,1995,198(1–2):161-168.
    [16]张际标,王燕华,姜应律,等.微液滴现象与大气腐蚀——Ⅱ.微液滴现象的电化学表征[J].中国腐蚀与防护学报,2006,(05):282-285.
    [17] A. Nishikata, Y. Yamashita, H. Katayama, et al. An electrochemical impedance study onatmospheric corrosion of steels in a cyclic wet-dry condition[J]. Corros. Sci.,1995,37(12):2059-2069.
    [18]郭娟,侯文涛,许立坤,等.海洋干湿交替环境下电偶腐蚀及其研究方法进展[J].装备环境工程,2012,(05):67-70.
    [19]侯保荣,郭公玉,马士德,等.海洋环境中海-气与海-泥交换界面区腐蚀与防护研究[J].海洋科学,1993,(02):31-34.
    [20]侯保荣,西方篤,水流徹.钢材在海水—海气变换界面区的腐蚀行为[J].海洋与湖沼,1995,(05):514-519.
    [21]马燕燕,许立坤,王洪仁,等.锌合金牺牲阳极海水干湿交替条件下的电化学性能研究[J].腐蚀与防护,2007,(01):9-12.
    [22]张亮,唐聿明,左禹.氟碳涂层在干湿交替环境下失效过程研究[J].化工学报,2011,(07):1977-1982.
    [23]张伟.干湿交替环境中有机涂层失效过程的研究[D].中国海洋大学,2010.
    [24] A.J. López, M. Proy, V. Utrilla, et al. High-temperature corrosion behavior of Ni–50Crcoating deposited by high velocity oxygen–fuel technique on low alloy ferritic steel[J]. Materials&Design,2014,59(0):94-102.
    [25] M. Goudarzi, F. Batmanghelich, A. Afshar, et al. Development of electrophoreticallydeposited hydroxyapatite coatings on anodized nanotubular TiO2structures: Corrosion andsintering temperature[J]. Appl. Surf. Sci.,2014,301(0):250-257.
    [26] R. Ghasemi, R. Shoja-Razavi, R. Mozafarinia, et al. The influence of laser treatment on hotcorrosion behavior of plasma-sprayed nanostructured yttria stabilized zirconia thermal barriercoatings[J]. J. Eur. Ceram. Soc.,2014,34(8):2013-2021.
    [27] M. Ananda Rao, K. Rajesh, M.V. Pavan Kumar. Evolution of corrosion damage to cold rolledgrain oriented steel sheets under rainwater followed by ambient atmosphere exposure[J]. Eng. Fail.Anal.,2013,30(0):10-16.
    [28] M.A. Uusitalo, P.M.J. Vuoristo, T.A. M ntyl. High temperature corrosion of coatings andboiler steels in oxidizing chlorine-containing atmosphere[J]. Materials Science and Engineering: A,2003,346(1–2):168-177.
    [29] M.A. Uusitalo, P.M.J. Vuoristo, T.A. M ntyl. High temperature corrosion of coatings andboiler steels in reducing chlorine-containing atmosphere[J]. Surf. Coat. Technol.,2002,161(2–3):275-285.
    [30]赵增元,吕伟艳,刘存,等.阴极保护和有机涂层联合防腐在深海石油设施中的应用研究[J].全面腐蚀控制,2012,(09):20-22.
    [31]刘建国,李言涛,侯保荣.海洋浪溅区钢铁腐蚀与防护进展[J].腐蚀与防护,2012,(10):833-836.
    [32]孙红尧,傅宇方,陆采荣,等.海港工程浪溅区和水位变动区结构的防腐蚀技术回顾[J].腐蚀与防护,2011,(09):716-720.
    [33]田惠文,李伟华,侯保荣.纳米SiO_2改性环氧涂层海洋腐蚀规律[J].腐蚀与防护,2010,(07):515-519.
    [34]洪定海.新建海港工程浪溅区钢筋防腐蚀的根本措施[J].水运工程,1995,(06):1-5.
    [35]朱锡昶.码头钢管桩潮差浪溅区防腐蚀方案推荐[J].港工技术,1988,(04):52-54.
    [36]侯保荣,张经磊.海洋钢结构浪溅区、潮差区防腐蚀方法的研究[J].海洋科学,1983,(04):31-33.
    [37] Jun Chen, Yanliang Huang, X. Dong. Study on the Splash Zone Corrosion Protection ofCarbon Steel by Sacrificial Anode[J]. Int. J. Electrochem. Sci.,2012,(7):4114-4120.
    [38]高宏飙,陈强,王静,等. PTC复层矿脂包覆防腐技术在海上风电的应用[J].中国涂料,2013,(12):39-43.
    [39]王静,侯保荣,钱备.海洋浪花飞溅区复层矿脂包覆防腐技术[C].中国海洋湖沼学会第十次会员代表大会2012海洋腐蚀与生物污损学术研讨会,中国山东青岛,2012, pp.2.
    [40]张坚彬,杨小刚.复层矿脂包覆技术在滨海电厂钢结构关键部位的防护应用[J].腐蚀与防护,2011,(11):896-899.
    [41]赵建龙,衣守志,丁涛.环保型铁锈转化剂的制备及其性能[J].材料保护,2013,(01):25-27.
    [42]杨万国,丁国清,杨海洋,等.2种铁锈转化底漆的性能研究[J].现代涂料与涂装,2011,(11):11-13.
    [43]李振华,范细秋,余永群.铁锈转化剂防锈机理研究[J].涂装与电镀,2009,(04):19-20.
    [44]李振华,范细秋,余永群.铁锈转化剂防锈机理研究[J].科技信息,2009,(19):415.
    [45]顾宝珊,纪晓春,张启富,等. PS-02铁锈转化剂的研制[J].材料保护,1999,(12):19-20.
    [46]陈恕华.专利文献中的铁锈转化剂13例[J].电镀与涂饰,1994,(02):62-63.
    [47]徐辉.预制锂基和脲基稠化剂的应用研究[J].石油商技,2013,(06):20-26.
    [48]赵改青,张遂心,王晓波,等.聚脲润滑脂稠化剂结构与其性能的关系[J].润滑与密封,2012,(07):5-9.
    [49]郭小川,蒋明俊,施航,等.预制稠化剂法制备聚脲润滑脂的研究[J].石油炼制与化工,2012,(02):71-75.
    [50]宁少武,赵玉贞,刘广友.润滑脂稠化剂的发展[J].合成润滑材料,2011,(01):9-13.
    [51]杨祖国,罗跃,张建国,等.耐温抗盐酸液稠化剂的合成及性能[J].精细石油化工进展,2006,(07):5-7.
    [52]管保山,朱建峰,周晓群.缓蚀剂和稠化剂在酸液中配伍性的研究[J].油田化学,1996,(04):22-24.
    [53]孔劲媛.国内外润滑油基础油市场分析及展望[J].国际石油经济,2009,(10):49-53.
    [54]白雪松,于殿名.国内外润滑油基础油市场供求情况及需求预测[J].化工技术经济,2007,(01):28-34.
    [55]屈清洲,徐丽秋.中国石油润滑油基础油生产技术现状及发展[J].润滑油,2003,(01):1-11.
    [56]张天胜.缓蚀剂[M].北京:化学工业出版社,2008.
    [57] E.-S.M. Sherif, H.R. Ammar, K.A. Khalil. Effects of copper and titanium on the corrosionbehavior of newly fabricated nanocrystalline aluminum in natural seawater[J]. Appl. Surf. Sci.,2014,301(0):142-148.
    [58] E.-S.M. Sherif. Chapter20-The Role of Corrosion Inhibitors in Protecting MetallicStructures against Corrosion in Harsh Environments, in: M. Fanun (Ed.) The Role of ColloidalSystems in Environmental Protection, Elsevier, Amsterdam,2014, pp.509-526.
    [59] C. Pillay, J. Lin. The impact of additional nitrates in mild steel corrosion in aseawater/sediment system[J]. Corros. Sci.,2014,80(0):416-426.
    [60] L.L. Machuca, R. Jeffrey, S.I. Bailey, et al. Filtration–UV irradiation as an option formitigating the risk of microbiologically influenced corrosion of subsea construction alloys inseawater[J]. Corros. Sci.,2014,79(0):89-99.
    [61] M. Cabrini, S. Lorenzi, T. Pastore. Cyclic voltammetry evaluation of inhibitors for localisedcorrosion in alkaline solutions[J]. Electrochim. Acta,2014,124(0):156-164.
    [62] B.V. Appa Rao, K. Chaitanya Kumar. Effect of Hydrodynamic Conditions on CorrosionInhibition of Cu–Ni (90/10) Alloy in Seawater and Sulphide Containing Seawater Using1,2,3-Benzotriazole[J]. Journal of Materials Science&Technology,2014,30(1):65-76.
    [63] A. Drach, I. Tsukrov, J. DeCew, et al. Field studies of corrosion behaviour of copper alloys innatural seawater[J]. Corros. Sci.,2013,76(0):453-464.
    [64] B. Liu, H. Xi, Z. Li, et al. Adsorption and corrosion-inhibiting effect of2-(2-{[2-(4-Pyridylcarbonyl)hydrazono]methyl}phenoxy)acetic acid on mild steel surface inseawater[J]. Appl. Surf. Sci.,2012,258(17):6679-6687.
    [65] B.-Y. Liu, Z. Liu, G.-C. Han, et al. Corrosion inhibition and adsorption behavior of2-((dehydroabietylamine)methyl)-6-methoxyphenol on mild steel surface in seawater[J]. ThinSolid Films,2011,519(22):7836-7844.
    [66] H. Gerengi, K. Darowicki, G. Bereket, et al. Evaluation of corrosion inhibition of brass-118in artificial seawater by benzotriazole using Dynamic EIS[J]. Corros. Sci.,2009,51(11):2573-2579.
    [67] K. Habib, K. Al-Muhana, A. Habib. Holographic interferometry as electrochemical emissionspectroscopy of carbon steel in seawater with low concentration of RA-41corrosion inhibitor[J].Opt. Lasers Eng.,2008,46(2):149-156.
    [68] C.A. González-Rodríguez, F.J. Rodríguez-Gómez, J. Genescá-Llongueras. The influence ofDesulfovibrio vulgaris on the efficiency of imidazoline as a corrosion inhibitor on low-carbonsteel in seawater[J]. Electrochim. Acta,2008,54(1):86-90.
    [69] H. Amar, T. Braisaz, D. Villemin, et al. Thiomorpholin-4-ylmethyl-phosphonic acid andmorpholin-4-methyl-phosphonic acid as corrosion inhibitors for carbon steel in natural seawater[J].Mater. Chem. Phys.,2008,110(1):1-6.
    [70] R.K. Gupta, R.A. Singh. Inhibition of corrosion by poly(N-hexadecylaniline)/docosanolmixed Langmuir–Blodgett films on copper in sea water[J]. Mater. Chem. Phys.,2006,97(2–3):226-229.
    [71] A.U. Malik, I. Andijani, F. Al-Moaili, et al. Studies on the performance of migratorycorrosion inhibitors in protection of rebar concrete in Gulf seawater environment[J]. Cem. Concr.Compos.,2004,26(3):235-242.
    [72]马志红,陆忠兵,石碧.单宁酸的化学性质及应用[J].天然产物研究与开发,2003,(01):87-91.
    [73] H. Winkelmann, E. Badisch, M. Roy, et al. Corrosion mechanisms in the wood industry,especially caused by tannins[J]. Mater. Corros.,2009,60(1):40-48.
    [74] H. Winkelmann, E. Badisch, S. Ilo, et al. Corrosion behaviour of tool steels in tannic acids[J].Mater. Corros.,2009,60(3):192-198.
    [75] T.K. Ross, R.A. Francis. The treatment of rusted steel with mimosa tannin[J]. Corros. Sci.,1978,18(4):351-361.
    [76] J.C. Galván Jr, J. Simancas, M. Morcillo, et al. Effect of treatment with tannic, gallic andphosphoric acids on the electrochemical behaviour of rusted steel[J]. Electrochim. Acta,1992,37(11):1983-1985.
    [77] S. Feliu, J.C. Galván, S. Feliu Jr, et al. An electrochemical impedance study of the behaviourof some pretreatments applied to rusted steel surfaces[J]. Corros. Sci.,1993,35(5–8):1351-1358.
    [78] M. Favre, D. Landolt. The influence of gallic acid on the reduction of rust on painted steelsurfaces[J]. Corros. Sci.,1993,34(9):1481-1494.
    [79] K. Hoffmann, M. Stratmann. The delamination of organic coatings from rusty steelsubstrates[J]. Corros. Sci.,1993,34(10):1625-1645.
    [80] N. S. The application of infrared spectroscopy to a study of phosphoric and tannic acidsinteractions with magnetite (Fe3O4), goethite (α-FeOOH) and lepidocrocite (γ-FeOOH)[J]. Corros.Sci.,1997,39(10–11):1845-1859.
    [81] G. Matamala, W. Smeltzer, G. Droguett. Comparison of steel anticorrosive protectionformulated with natural tannins extracted from acacia and from pine bark[J]. Corros. Sci.,2000,42(8):1351-1362.
    [82] C.A. Barrero, L.M. Ocampo, C.E. Arroyave. Possible improvements in the action of somerust converters[J]. Corros. Sci.,2001,43(6):1003-1018.
    [83] J. Iglesias, E. García de Salda a, J. Jaén. On the Tannic Acid Interaction with Metallic Iron[J].Hyperfine Interact.,2001,134(1):109-114.
    [84] L.M. Ocampo, I.C.P. Margarit, O.R. Mattos, et al. Performance of rust converter based inphosphoric and tannic acids[J]. Corros. Sci.,2004,46(6):1515-1525.
    [85] A. Collazo, X.R. Nóvoa, C. Pérez, et al. EIS study of the rust converter effectiveness underdifferent conditions[J]. Electrochim. Acta,2008,53(25):7565-7574.
    [86] A. Collazo, X.R. Nóvoa, C. Pérez, et al. The corrosion protection mechanism of rustconverters: An electrochemical impedance spectroscopy study[J]. Electrochim. Acta,2010,55(21):6156-6162.
    [87]许哲峰,梅东生,刘常升,等.热镀锌板表面单宁酸-H_2TiF_6/SiO_2复合涂层的防腐性能研究[J].四川大学学报(工程科学版),2011,(02):197-201.
    [88]闫捷,赵立红,蒋元力,等.镀锌层上单宁酸钝化膜的耐腐蚀性能[J].材料保护,2011,(09):6-8.
    [89]王济奎,刘宝春,蔡璐,等. A3钢表面的单宁酸化学转化膜[J].南京化工大学学报,1996,(03):56-59.
    [90]刘昕,朱雪梅,张彦生. Fe-30Mn-2.7Si合金单宁酸化学转化膜研究[J].大连铁道学院学报,2006,(01):66-70.
    [91]陈晓明.镁合金上单宁酸系转化膜和钙系磷化膜的制备和性能的研究[D].吉林大学,2010.
    [92] S. Martinez, I. Stern. Thermodynamic characterization of metal dissolution and inhibitoradsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system[J]. Appl. Surf.Sci.,2002,199(1–4):83-89.
    [93] J. Mabrour, M. Akssira, M. Azzi, et al. Effect of vegetal tannin on anodic copper dissolutionin chloride solutions[J]. Corros. Sci.,2004,46(8):1833-1847.
    [94] A.A. Rahim, E. Rocca, J. Steinmetz, et al. Mangrove tannins and their flavanoid monomers asalternative steel corrosion inhibitors in acidic medium[J]. Corros. Sci.,2007,49(2):402-417.
    [95] M. Pérez, G. Blustein, M. García, et al. Cupric tannate: A low copper content antifoulingpigment[J]. Prog. Org. Coat.,2006,55(4):311-315.
    [96] N. Bellotti, B. del Amo, R. Romagnoli. Tara tannin a natural product with antifouling coatingapplication[J]. Prog. Org. Coat.,2012,74(3):411-417.
    [97]王海平,海霞,李春梅,等.聚天冬氨酸的研究及应用进展[J].河北师范大学学报(自然科学版),2008,(04):517-522.
    [98]王朝阳,任碧野,童真.可生物降解材料聚天冬氨酸的研究进展[J].高分子通报,2002,(05):29-34.
    [99]赵彦生,袁广薇,马兴吉,等.聚天冬氨酸的改性及其应用研究进展[J].化学与生物工程,2009,(06):15-18.
    [100]李风亭,张冰如,李璐,等.聚天冬氨酸的合成及应用研究进展[J].工业水处理,2007,(07):5-7.
    [101]冷一欣,韶晖,欧阳平凯.绿色化学品聚天冬氨酸的合成与应用进展[J].江苏工业学院学报,2004,(03):46-49.
    [102]霍宇凝,刘珊,陆柱.新型聚合物阻垢剂聚天冬氨酸的合成与性能[J].精细化工,2000,(10):581-583.
    [103]刘英华,李春梅,谷宁.环境友好缓蚀剂聚天冬氨酸在自来水中对碳钢的缓蚀性能研究[J].四川环境,2013,(04):11-14.
    [104]王昕,刘振法,高玉华,等.环境友好型缓蚀剂在浓缩海水中对A3碳钢的缓蚀性能[J].腐蚀与防护,2013,(10):889-892.
    [105]徐群杰,黄诗俊.绿色水处理缓蚀剂聚天冬氨酸的研究进展[J].上海电力学院学报,2006,(01):71-74.
    [106]何蕊,杜盼盼,李春梅,等.聚天冬氨酸与三聚氰胺复配对铜的协同缓蚀机理[J].腐蚀与防护,2012,(09):761-764.
    [107]霍宇凝,蔡张理,赵岩,等.聚天冬氨酸及其与锌盐的复配物对碳钢缓蚀性能的影响[J].华东理工大学学报,2001,(06):669-672.
    [108]山东省质量技术监督局. DB37/T2316-2013矿脂防蚀膏[S].山东山东省标准化研究院,2013.
    [109]国家技术监督局. GB/T269-91润滑脂和石油脂锥入度测定法[S].中国标准出版社,1991.
    [110]国家技术监督局. GB/T10125-1997人造气氛腐蚀实验-盐雾试验[S].中国标准出版社,1997.
    [111]刘林林,王宝辉,王丽,等.原油降凝剂种类及应用[J].化工技术与开发,2006,(02):12-16.
    [112]康万利,马一玫.原油降凝剂研究进展[J].油气储运,2005,(04):3-7.
    [113]李传宪,张春光,孙德军.降凝剂与原油组分相互作用的影响因素及降凝剂发展[J].化学通报,2002,(12):819-823.
    [114]李传宪,张春光,孙德军.降凝剂结构性质对原油化学改性的影响及流变学改进机理[J].化学通报,2002,(11):762-766.
    [115]李永明,夏海英.降凝剂的作用机理、发展概况和发展趋势[J].内蒙古石油化工,2008,(21):45-47.
    [116]宋昭峥,葛际江,张贵才,等.高蜡原油降凝剂发展概况[J].石油大学学报(自然科学版),2001,(06):117-122.
    [117]李国锋,李小俊,黄允兰,等.硬脂酸盐对石蜡油的增稠作用与其结构的关系[J].化学研究与应用,2001,(06):645-648.
    [118] Y. Zou, J. Wang, Y.Y. Zheng. Electrochemical techniques for determining corrosion rate ofrusted steel in seawater[J]. Corros. Sci.,2011,53(1):208-216.
    [119] H. Tamura. The role of rusts in corrosion and corrosion protection of iron and steel[J].Corros. Sci.,2008,50(7):1872-1883.
    [120] M. Favre, D. Landolt, K. Hoffman, et al. Influence of gallic acid on the phasetransformation in iron oxide layers below organic coatings studied with Moessbauerspectroscopy[J]. Corros. Sci.,1998,40(4–5):793-803.
    [121] R.W. D. Molybdate and Tungstate as corrosion inhibitors and the Mechanism ofinhibition[J]. J.Electrochem.Soc,1951,98(3):94-99.
    [122] C.M. Pryor M J. The inhibition of the corrosion of iron by some anodic inhibitors[J].J.Electrochem.Soc,1953,100(5).
    [123] M.A. Deyab, S.S. Abd El-Rehim. Inhibitory effect of tungstate, molybdate and nitrite ionson the carbon steel pitting corrosion in alkaline formation water containing Cl ion[J]. Electrochim.Acta,2007,53(4):1754-1760.
    [124]李燕,张关永,陆柱.除氧中性水中钨酸盐对碳钢的缓蚀机理研究[J].中国腐蚀与防护学报,2000,(06):349-354.
    [125]李燕,陆柱.钨酸盐对碳钢缓蚀机理的研究[J].精细化工,2000,(09):526-530.
    [126]蒋黎,何晓英,邓祖宇,等.钨酸钠对X70钢在硫酸钠溶液中的缓蚀行为[J].材料保护,2008,(08):16-18.
    [127] Q. Qu, L. Li, W. Bai, et al. Sodium tungstate as a corrosion inhibitor of cold rolled steel inperacetic acid solution[J]. Corros. Sci.,2009,51(10):2423-2428.
    [128] B. Jabeera, S.M.A. Shibli, T.S. Anirudhan. Synergistic inhibitive effect of tartarate andtungstate in preventing steel corrosion in aqueous media[J]. Appl. Surf. Sci.,2006,252(10):3520-3524.
    [129]许淳淳,何海平.钨酸钠与十二烷基苯磺酸钠协同缓蚀作用研究[J].表面技术,2005,(03):33-35.
    [130]周琼花,杨道武,朱志平,等.钨酸盐与乌洛托品对碳钢协同缓蚀作用的研究[J].华北电力技术,2004,(03):3-5.
    [131]柳鑫华,韩婕,孙彩云,等.用XPS及EDS能谱研究钨酸盐复合缓蚀剂在天然海水中的缓蚀机理[J].表面技术,2011,(03):52-56.
    [132]李燕,陆柱.钨酸盐与聚天冬氨酸对碳钢协同缓蚀作用的研究[J].腐蚀与防护,2001,(09):371-374.
    [133]徐仲斌,张天红.有关锌盐缓蚀剂问题的进一步探讨[J].腐蚀与防护,2000,(09):398-401.
    [134] S.A. Umoren, M.M. Solomon, U.M. Eduok, et al. Inhibition of mild steel corrosion inH2SO4solution by coconut coir dust extract obtained from different solvent systems andsynergistic effect of iodide ions: Ethanol and acetone extracts[J]. Journal of EnvironmentalChemical Engineering,2014,2(2):1048-1060.
    [135] A. Khamis, M.M. Saleh, M.I. Awad. Synergistic inhibitor effect of cetylpyridinium chlorideand other halides on the corrosion of mild steel in0.5M H2SO4[J]. Corros. Sci.,2013,66(0):343-349.
    [136] A.A. Farag, M.A. Hegazy. Synergistic inhibition effect of potassium iodide and novel Schiffbases on X65steel corrosion in0.5M H2SO4[J]. Corros. Sci.,2013,74(0):168-177.
    [137] M. Znini, L. Majidi, A. Bouyanzer, et al. Essential oil of Salvia aucheri mesatlantica as agreen inhibitor for the corrosion of steel in0.5M H2SO4[J]. Arabian Journal of Chemistry,2012,5(4):467-474.
    [138] M.A. Hegazy, A.S. El-Tabei, A.H. Bedair, et al. An investigation of three novel nonionicsurfactants as corrosion inhibitor for carbon steel in0.5M H2SO4[J]. Corros. Sci.,2012,54(0):219-230.
    [139] A.Y. Musa, A.A.H. Kadhum, A.B. Mohamad, et al. Molecular dynamics and quantumchemical calculation studies on4,4-dimethyl-3-thiosemicarbazide as corrosion inhibitor in2.5MH2SO4[J]. Mater. Chem. Phys.,2011,129(1–2):660-665.
    [140] X. Li, S. Deng, H. Fu. Triazolyl blue tetrazolium bromide as a novel corrosion inhibitor forsteel in HCl and H2SO4solutions[J]. Corros. Sci.,2011,53(1):302-309.
    [141] X. Li, S. Deng, H. Fu. Three pyrazine derivatives as corrosion inhibitors for steel in1.0MH2SO4solution[J]. Corros. Sci.,2011,53(10):3241-3247.
    [142] A. D ner, G. Karda. N-Aminorhodanine as an effective corrosion inhibitor for mild steel in0.5M H2SO4[J]. Corros. Sci.,2011,53(12):4223-4232.
    [143] S. Deng, X. Li, H. Fu. Alizarin violet3B as a novel corrosion inhibitor for steel in HCl,H2SO4solutions[J]. Corros. Sci.,2011,53(11):3596-3602.
    [144] A.M. Al-Turkustani, S.T. Arab, L.S.S. Al-Qarni. Medicago Sative plant as safe inhibitor onthe corrosion of steel in2.0M H2SO4solution[J]. Journal of Saudi Chemical Society,2011,15(1):73-82.
    [145] I.B. Obot, N.O. Obi-Egbedi, N.W. Odozi. Acenaphtho [1,2-b] quinoxaline as a novelcorrosion inhibitor for mild steel in0.5M H2SO4[J]. Corros. Sci.,2010,52(3):923-926.
    [146] I.B. Obot, N.O. Obi-Egbedi. Indeno-1-one [2,3-b]quinoxaline as an effective inhibitor forthe corrosion of mild steel in0.5M H2SO4solution[J]. Mater. Chem. Phys.,2010,122(2–3):325-328.
    [147] Y.-M. Tang, W.-Z. Yang, X.-S. Yin, et al. Phenyl-substituted amino thiadiazoles as corrosioninhibitors for copper in0.5M H2SO4[J]. Mater. Chem. Phys.,2009,116(2–3):479-483.
    [148] I. Bertóti, G. Varsányi, G. Mink, et al. XPS characterization of ultrafine Si3N4powders[J].Surf. Interface Anal.,1988,12(10):527-530.
    [149] O. Olivares, N.V. Likhanova, B. Gómez, et al. Electrochemical and XPS studies ofdecylamides of α-amino acids adsorption on carbon steel in acidic environment[J]. Appl. Surf. Sci.,2006,252(8):2894-2909.
    [150] A. Sadough Vanini, J.P. Audouard, P. Marcus. The role of nitrogen in the passivity ofaustenitic stainless steels[J]. Corros. Sci.,1994,36(11):1825-1834.
    [151] C. Kolbeck, M. Killian, F. Maier, et al. Surface Characterization of FunctionalizedImidazolium-Based Ionic Liquids[J]. Langmuir,2008,24(17):9500-9507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700