用户名: 密码: 验证码:
异径管应力分析及极限载荷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异径管在受压管道系统中是常见的重要部件,但对异径管问题的研究基本还是空白。本文通过理论分析对内压以及面内弯矩、扭矩作用下同心异径管、偏心异径管、异径弯管的应力及极限载荷进行了研究,通过有限元数值分析和实验进行了验证。主要工作有:
     1推导了内压作用下异径弯管的环向应力公式和经向应力公式。在相应的结构参数条件下,异径弯管的环向应力公式可以转化为同心异径管、偏心异径管、或等径弯管的环向应力公式。在此基础上推导了异径管的极限压力式。异径管的极限内压由其大端截面控制。
     2推导了异径管的极限弯矩公式,异径管的极限弯矩由其小端截面控制。同心异径管、偏心异径管极限弯矩均相当于与小端口截面尺寸相同的直管的极限弯矩。异径弯管极限弯矩由与小端面尺寸相同的同心异径管、偏心异径管的极限弯矩作为基础项,再乘以弯矩系数。根据异径弯管弯曲系数的大小分为四个区间,弯矩系数分别按相应区间的回归式计算。
     3推导了异径管的极限扭限公式,异径管的极限扭矩均由其小端截面控制,相当于与小端口截面尺寸相同的直管的极限扭矩公式作为基础项,再乘以系数。同心异径管极限扭矩相对要比偏心异径管的极限扭矩略大一点,异径弯管大端面截面承受扭矩时的极限扭矩相对要比小端面截面承受扭矩时的极限扭矩小。在异径弯管承受端面扭矩作用上,还提出了一端的扭矩无法完全传递到另一端的概念,扭矩在传递中会逐渐转化为弯矩。90°弯管一个端面的弯矩既可由另一个端面的扭矩转化而来。
     4.提出了同心异径管、偏心异径管和异径弯管的有限元模型建模法。总结出应力分布或变形的特征:(1)内压作用下同心异径管大小端的面积压力差产生的弯矩引起大端相对张开、小端相对收缩的现象;(2)内压作用下偏心异径管偏心侧大端内表面及偏心侧中部外表面的环向应力最大。
     5.上述理论成果经过了有限元数值分析和实验验证。实验还表明,内压作用下环壳的弯曲半径和管截面半径均增大,而管壁厚变化很小。假设壁厚不变时弯曲系数随内压增大而减小。
Reducer is one of ordinary and important components for pressure piping, but little study about it has been done. Stresses analysis and limit load of bend reducer, concentric reducer and eccentric reducer under internal pressure, bending moment in plane and torque have been studied separately. The results have been examined by finite element method and experiment. The main results were summarized as follows.
     i. The formulas used for calculating the circumferential stress and meridian stress of bend reducer under internal pressure were inferred. The circumferential stress formulas of bend reducer may be change into the circumferential stress formulas of concentric reducer and eccentric reducer or elbow under internal pressure. The formula used for calculating limit pressure that all of concentric reducer and eccentric reducer and bend reducer were inferred. The limit pressure is generally controlled by the cross section of larger end.
     ii. The formula used for calculating limit bending moment that all of concentric reducer and eccentric reducer and bend reducer were inferred. The limit bending moment is generally controlled by the cross section of smaller end. The limit bending moment for both of concentric reducer and eccentric reducer is equal to the limit bending moment of pipe that has the same dimension with the small end. The limit bending moment of bend reducer is equal to a basic bending moment multiplied by bending moment coefficient. The basic bending moment is the limit bending moment of concentric reducer or eccentric reducer that has the same dimension with the small end. The bending moment coefficient should be calculating by four different formula that according to bending coefficient.
     iii. The formula used for calculating limit torque that all of concentric reducer and eccentric reducer and bend reducer were inferred. The limit torque is generally controlled by the cross section of smaller end regardless the torque is acting on the larger end or on the smaller end. It is equal to a basic torque multiplied by a coefficient. The basic torque is the limit torque of pipe that has the same dimension with the small end of bend reducer. The limit torque on the larger end of bend reducer is some smaller than the limit torque on its small end. The torque on one end of 90°elbow can not transfer into the other end perfectly, and it would change into bending moment. The bend moment on one end of 90°elbow may change from the torque on the other end.
     iv. The methods set up corresponding finite element models of bend reducer and concentric reducer and eccentric reducer were provided. Some important features about stress distribution or deformation is as follows: (a) The bending moment tend to open the larger end and to close the small end relatively when concentric reducer is under internal pressure, which induced by the area difference between the diameter of transverse cross section at larger end and the diameter of transverse cross section at small end; (b) The largest stress is circumferential stress which occur at inside in the larger end or at outside on the middle of eccentric sides when eccentric reducer is under internal pressure.
     v. The academic analysis was identified with the FEM and experiments. The result of experiment also show that both bending radius of ring shell and radius of its cross section should augment as the increasing of internal pressure, but the bending coefficient of ring shell should reduce.
引文
[1] 杨国义,孔胜先. 污水汽提塔锥形塔段连接边缘机械设计安全性有限元评估[J]. 石化技术,1998,5(1):46-49
    [2] 唐永进. 压力管道与压力容器应力分类及校核准则的比较[J]. 中国锅炉压力容器安全,2001,17(3):12-14
    [3] 严丹,林亲深主编. 《实用管道安装工程手册》[M]. 北京:机械工业出版社,1997. 133
    [4] 谷其发,李文戈.炼油厂设备腐蚀与防腐图解[M] .北京:中国石化出版社,2000, 43,71,101
    [5] 中国石油化工总公司生产管理部. 石油化工典型事故汇编(1983-1987)[R],1988
    [6] 李大成. 乙烯装置裂解炉管断裂原因分析[J]. 压力容器,2002,19(5):39
    [7] 王冰,马金华,杨伟仁等. 石化热电厂超高压蒸汽管线应力分析与失效原因初步分析[C]. 第二届全国管道技术学术交流会议,中国压力容器学会管道委员会,宁波,2002. 《压力容器》,2002,增刊. 300
    [8] 黄振仁. 压力管道安全技术现状及对提高压力管道安全性的建议[J]. 化工机械,1997, 24(6):49~53
    [9] 黄振仁,宋建华,查向东等. 偏心及同心异径管的三维有限元应力分析[J]. 南京化工大学学报,1994,16(3):79~84
    [10] 潘文越. Cr5Mo 工艺管线异质焊接接头性能分析[J]. 石油化工设备技术,1997,18(6):50-53
    [11] 俞春尧,唐明忠,叶玉芬等. 制氢转化炉炉管的修复[J]. 石油化工设备技术,1998,9(4):42-45
    [12] 栗雪勇. 加氢裂化装置炼高含硫油后的腐蚀与防腐[C]. 第五届压力容器使用管理学术会议论文集——加工高含硫油设备和管道防腐蚀技术研讨,南京,2002. 压力容器,2002,增刊. 147
    [13] 吴岩石,徐光远,朴春爱. 合成氨碳黑水系统冲刷腐蚀分析与措施[J]. 压力容器,2004,21(11):1-4
    [14] 郭其新. 炼制高硫高酸原油装置设备防腐技术[C]. 第二届中国国际腐蚀控制大会论文集,中国北京:中国石油和化学工业协会,中国化工学会,中国防腐蚀技术协会,2002. Paper No.02204
    [15] 刘小辉,郑文龙,王建军. 渣油加氢冷高分底排污水管大小头开裂分析[J]. 腐蚀与防护, 2002.
    [16] 周积富,欧阳汉州,刘小辉. 炼油厂设备腐蚀与防护状况调查报告[J]. 石油化工腐蚀与防护,1995,16(2):9-13
    [17] 刘晓钟. 1 号气分装置的应力腐蚀控制[J]. 高桥石化,2000,15(5):19-22
    [18] 梁自生,夏延燊. 炼制高含硫原油蒸馏装置的腐蚀状况与防腐措施[C]. 第五届压力容器使用管理学术会议论文集——加工高含硫油设备和管道防腐蚀技术研讨,南京,2002.《压力容器》,2002,增刊. 42
    [19] 中国石化茂名分公司研究院. 2000 年焦化装置腐蚀情况调查报告[R]. 2000. 8
    [20] 沈中华. 乙二醇装置六效蒸发系统腐蚀分析[J]. 扬子石油化工, 1999, 14(3):10-13
    [21] 田吉新,王国璋. 烷基化装置的氢氟酸腐蚀分析及对策[J]. 石油化工设备技术,1993,14(2):55-61
    [22] 任有才,张德印. 炼制高硫(含硫)原油主要装置腐蚀及防护调查[J]. 石油化工腐蚀与防护,2001,18(6):18-28
    [23] 陈鹭滨,王威强,张炳胜等. φ1m氨合成塔20钢异径管失效分析[J]. 机械工程材料,2002,26(4):40-42
    [24] 吕战鹏,黄德伦,赵国珍等. 富气反应器F316不锈钢变径管接头腐蚀破裂原因分析[J]. 腐蚀与防腐,2000,21(2):80-82
    [25] 陈嘉南,翟俊霞,宋颖坚等. 乙烯裂解炉下集气锥形管服役寿命分析[J]. 石油化工设备. 2004,33(3):24~26
    [26] Pipeline Accident Report [R]. Southern Union Gas Company El Paso, Texas April 22, 1973. Source of Information: National Transportation Safety Board, Washington, D.C. 13 Feb 1974. 22. Report: NTSB-PAR-74-2, SS-P-18
    [27] 李祖贻. 压力容器和管道在线断裂泄漏实例分析[J]. 压力容器,1985,2(2):51~54.
    [28] 陈登丰. 近代压力容器和管道事故分析[J]. 压力容器,1987,4(4):50~60.
    [29] 石国怀. 广西武鸣氮肥厂合成塔冷气副线异径管爆裂事故技术分析[J]. 化工劳动保护(安全技术与管理分册)1998,19(6):21-23
    [30] 李祖贻. 石化工业管道的故障、失效与提高安全运行可靠度的途径[J]. 压力容器,2002,19(12):36~42.
    [31] 茂名石化报,2005,第 1162 期,第二版
    [32] 陆世杨.主抽风机安装中一起重大未遂事故的处理[J]. 烧结球团,1998,(2):19-21
    [33] 贾青. 加氢装置管线开裂分析[J]. 化工机械,2002,29(1):29~32
    [34] 杨钢. 化工压力管道的破坏[J]. 压力容器,1996;13 (5):56~60
    [35] 陈曙光. 氨合成塔出口异径管爆炸事故分析[J]. 化工劳动保护,2000,21(8):280-281
    [36] 曹元祥. 高压异径管断裂分析[J]. 中国锅炉压力容器安全,1993,9(3):49-49
    [37] 曹元祥. 高压异径管断裂分析[J]. 压力容器,1992,9(2):64-67,85
    [38] Mallett R H, Kumar S, Thomas K ELTEMP. ASME Code Stress Evaluation of Piping [R]. Source of Information: Westinghouse Electric Corp., Pittsburgh, PA. Advanced Reactors Div. 1985. mag tape. Report: ANL/NESC-9708R
    [39] 胡兆吉,严军华,徐宏等. 基于NSC准则的周向裂纹管极限载荷分析[J]. 压力容器,1998,15 (6):1~9
    [40] 燕林. 美国机械工程师学会配管减薄容许基准简介. 石油化工腐蚀与防腐,2004,21(4):18
    [41] 潘家华,郭光臣等. 油罐及管道强度设计[M]. 北京:石油工业出版社,1986,234~236
    [42] 王行山. 弯管在内压及平面内弯矩作用下的应力分析及试验研究[J]. 电力建设,1983,(5):7~15
    [43] [苏]А.Б.阿英宾杰尔,А.Г.卡麦尔什捷英著. 干线管道强度及稳定性计算[M]. 石油工业出版社,1986. 367
    [44] BSI PD6493-Draft Appendix F 1995 [S], British Standard Institution
    [45] Goodall I W. Lower Bound Analysis of Curved Tubes Loaded by Combined Internal Pressure and In-plane Bending [R], CEGB RD/B/N4360, August 1978
    [46] 郭茶秀. 拉、弯、扭、内压载荷下面型缺陷直管与弯管的极限载荷:[学位论文].上海:华东理工大学,1999
    [47] Clark R A. Reissner E., Bending of Curved Tube [J], Advances in Applied Mechanics, 1951,Vol. 2
    [48] S S 吉尔. 压力容器及其部件的应力分析[M]. 原子能出版社,1975
    [49] Turner C E. Ford H., Examination of the theories for Calculating the Stresses in Pipe Bends Subjected to In-plane Bending [J], Proc. Inst. Mech. Eng., 1957,Vol. 171, 513~515
    [50] Jones N. In-plane Bending of a Short-radius Curved Pipe Bend [J]. Trans. ASME J. of Engineer. For Industry, 1967,Vol. 89
    [51] Cheng D H. Thailer H.J., In-plane Bending of Curved Circular Tubes [J]. Trans. ASME J. of Engineer. For Industry, 1968,Vol. 90
    [52] Dodge W G. Moore S.E., Stress Indices and Flexibity Factors for Moment Loadings on Elbows and Curved Pipe [R]. 1972,WRC Bulletin, 179
    [53] Cheng D H. Thailer H.J., On Bending of Curved Circular Tubes [J]. Trans. ASME J. of Engineer. For Industry, 1970,Vol. 92
    [54] Rodabaugh E C. Interpretive Report on Limit Load Analysis and Plastic Deformation of Piping Products [R]. 1979, WRC Bulletin, No.254.65-82.
    [55] Griffiths J E. The Effect of Cracks on Limit Load of Pipes under In-plane Bending [R]. CEGB,Uk, TPRD/B/3694,1976
    [56] Chain K L C. Approximate Limit Loads for Pipe Bends with End Constraints [J]. Applied Solid Mechanics, 1985. 275-285
    [57] Rodabaugh E C. End Effects on Elbows Subjected to Moment Loading [J]. ASME PVP-Vol.56, 1982. 99-123
    [58] Yahiaoui K. Moffat D.G and Moreton . D.N. Piping Elbows with Cracks. Part 1: a parametric study of the influence of crack size on limit loads due to pressure and opening bending [J]. J. Strain Analysiis, 2000, 35(1):35~46
    [59] Imamasa D J,Oragami K. Experimental Study of Flexibility Factors and Stresses of Welding Elbows with End Effects[C]. Proc. 2th Int. Conf. On Pressure Vessel Tech., Part 1,1973. 1-30
    [60] Ying Tan,Vernon Matzen. Correlation of in-plane bending test and FEA results for thin-walled elbow [J]. Nuclear Engineering and Design, 217(2002):21~39
    [61] 许志香,李培宁. 无缺陷压力管道弯头极限载荷的估价[C]. 第二届全国管道技术学术交流会议. 中国压力容器学会管道委员会,宁波,2002. 压力容器,2002增刊. 3. 压力容器,2002,19(12):187~192
    [62] Kano T, Iwata K. Stress Distributions of an Elbow with Straight Pipes [R]. SMIRT4, F1/5,1977
    [63] Chattopadhyay J, Dutta B K, Kushwaha H S, et al. Limit load analysis and safety assessment of an elbow with a circumferential crack under a bending moment[J]. Int. J. Pres. Ves. & Piping , vol.62(1995) , pg109-116
    [64] 徐思浩. 90°管弯头的应力分布[J]. 化工设备与管理,2001,38(4):38~39
    [65] Osage D A,P.Krishnaswamy P, Stephens D R et al. Technologies for the Evaluation of Non-Crack-Like Flaws in Pressurized Components—Erosion/Corrosion, Pitting,Bliste Shell Out-of-Roundness, Weld Misalignment, Bulges and Dents [R]. WRC Bulletin 465, 2001
    [66] Sang Z F. 孙儒荣. 板制同心大小头的应力和强度分析[J]. 化工设备设计,1989, 26(3):8-15
    [67] Raetz R V. An Experimental Investigation of the Strength of Small-Scale Conical Reducer Sections Between Cylindrical Shells under External Hydrostatic Pressure [R]. Source of Information: David Taylor Model Basin Washington D C Structural Mechanics Lab. Mar 1960,Report:DTMB1397
    [68] Wang A. Stresses and stability for the cone-cylinder shell with toroidal transition [J]. Int. J. Pres. Ves. & Piping, 1998,75(1):49-56.
    [69] 宋建华. 高温高压蒸汽管线的强度核算及异径管的三维有限元应力分析[J]. 石油化工设备,1993,22(3):20~25.
    [70] 刘军,吴连娣. 超高压蒸汽管线的强度核算及异径管小端裂纹的成因[J]. 化学工业与工程技术,1999,2(20):44-48
    [71] 由立臣,郭奇,陈庆等. 偏心异径管应力的有限元数值分析[J]. 吉林化工学院学报,1995,12(1):53-56
    [72] 杨铁成,胡明东,倪向贵等. 高温高压工艺管道应力分析计算[C]. 第二届全国管道技术学术交流会议. 中国压力容器学会管道委员会,宁波,2002. 压力容器,2002增刊. 3. 压力容器,2002,19(12):46~51
    [73] 蔡尔辅编著. 石油化工管道设计[M]. 北京:化学工业出版社,2002. 392-394,195
    [74] Sobel L H, Newman S Z. Instability Analysis of Elbows in the Plastic Range [C]. Proceedings 4 th SMIRT Conf. vol.L ,Paper No. L3/2,1977. 1-11
    [75] R T 罗克,W C 扬编著. 汪一麟,汪一骏译. 应力应变公式[M]. 中国建筑工业出版社,1985
    [76] 孙训方,方孝淑,陆耀洪编. 材料力学(下册)[M]. 北京:人民教育出版社,1966,267-271
    [77] Shalaby M A, Younan M Y A. Limit Loads For Pipe Elbows With Internal Pressure Under In-Plane Closing Bending Moments [J]. Trans. ASME ,J. Pres. Ves. Tech,1998,Vol.120. 35-42
    [78] 吴非文,宋守田. 对超期运行主蒸汽管寿命问题的看法[J]. 电力技术,1983,(6):1~4
    [79] 刘应华,徐秉业,陈钢. 弯管的极限载荷分析[C]. 第二届全国管道技术学术交流会议. 中国压力容器学会管道委员会,宁波,2002. 压力容器,2002增刊. 3. 压力容器,2002,19(12):238
    [80] Hilsenkpf P. Experiments Study of Behavior and Functional Capability of Ferritic Steel Elbows and Austenitic Stainless Steel Thin-walled Elbows [J]. Int. J. Pres. Ves. & Piping , 1988,33(2):111-128
    [81] 刘新民,韦曰演编著. 特种结构分析[M]. 北京:国防工业出版社,1995. 78
    [82] 余国琮主编. 化工容器及设备[M]. 化学工业出版社,1980. 85,116
    [83] 刘永健、秦江阳. ASME IWB——3650 对国产管道周向缺陷评定的适应性[J]. 压力容器. 1996,13(5):28-29
    [84] 周剑秋,朱利洪,沈士明. 20#碳钢管道流变应力不确定性分布的试验研究[J]. 压力容器, 1998,15(6):24-28
    [85] R/H/R6-Revision 3. Assessment of the Integrity of Structure Containing Defects [M]. Nuclear Electric Maintained Document. April, 1994.
    [86] 韩良浩. 内压作用下局部减薄管道的极限载荷分析[J]. 压力容器,1998,15(4):1-4,48
    [87] Wilkowski G M, Ahmad J. Degraded Piping Program—Phase Ⅱ[R]. Semiannual Report, April 1986-September 1986, Battelle Columbus Laboratories, NUREG/CR—4082, BMI—2120, Vol. 5. U.S. Nuclear Regulatory Commission. 1986.
    [88] ASME Ⅺ IWB-3650 & Appendix H, Flaw Evaluation Procedures and Acceptance Criteria for Ferritic Piping [S]. The ASME,NY,1992
    [89] Matheck C, Morawietz P. Ligament Fielding of a Plate With Semi—Elliptical Surface Cracks Under Uniform Tension [J]. Int. J. of Pres. Ves. & Piping, 1984, Vol.16, 131-143
    [90] BSI PD 6493, Guidance on the method for assessing the acceptability of flaws in fusion welded structures [S], 1991
    [91] 轩福贞. 工业压力管道三通极限载荷工程分析方法:[学位论文]. 上海:华东理工大学,2001
    [92] Spence J, Findlay G E. Limit Loads for Pipe Bends Under In-plane Bending [C]. Proceedings 2nd. Int. Conf. on Pre. Ves. Tech,1973,Vol.I-28,393-399
    [93] Calladine C R. Limit Analysis of Curved Tubes [J]. J. Mech. Eng. Sci., 17(2):85-87,1974
    [94] I.W.Goodall, Large Deformations in Plastically Deforming Curved Tubes Subjected toIn-plane Bending [R], CEGB RD/B/N4312,1978
    [95] Kitching, Zarrabi, Moore. Limit Moment for Smooth Pipe Bend under In-plane Bending [J]. Int. J. Mech. Sci. 1979,Vol.21,731-738
    [96] 韩良浩. 局部减薄管道的极限载荷分析:[学位论文]. 华东理工大学,1997,32
    [97] 徐芝纶. 弹性力学简明教程(第二版)[M] . 高等教育出版社,1980.195~196
    [98] 苏翼林主编. 材料力学(上册)[M]. 人民教育出版社,1979. 7,60~75
    [99] 徐秉业,陈森灿. 塑性理论简明教程[M]. 清华大学出版社,1981. 125~128
    [100] 刘进军. 偏心大小头压制新工艺[J]. 石油化工设备,2002,31(6):40
    [101] ANSYS Engineering Analysis System User’s Manual for ANSYS Revision 5.6,1999,ANSYS Inc.建模与网络划分指南[R]
    [102] 许志香. 压力管道弯头极限载荷的有限元分析:[学位论文]. 上海:华东理工大学,2003
    [103] 苑世剑,王仲仁,王海. 环壳液压胀形过程的研究[J]. 塑性工程学报,1998,5(2):50-54
    [104] 滕步刚,苑世剑,王仲仁. 环壳初始结构对其液压胀形过程的影响[J]. 压力容器,2000,17(1):13-16
    [105] JB 4732—95 钢制压力容器——分析设计标准,中国标准出版社,1995. 148-150
    [106] JB 4732—95 钢制压力容器——分析设计标准《标准释义》,中国标准出版社,1995. 99-106
    [107] Thomas K. The Effects of Geometric Irregularities on the Design Analysis of Tin-walled Piping Elbows [J]. 1980,ASME PVP-43, 80-C2
    [108] Thomas K. Stiffening Effects on Thin-walled Piping Elbows of Adjacent Piping and Nozzle Constraints [J]. 1981,ASME PVP Vol.50, 93-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700