用户名: 密码: 验证码:
多层钢板转子阻尼器及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于转子是高速旋转设备中的主要部件,转子使用寿命的降低将直接导致整台机器使用寿命的降低。因此,如何减振成为高速旋转设备研究中的一项重要的关键技术。多层钢板阻尼器是一种性能优良的阻尼减振装置,是由前苏联科研人员提出的应用于航空发动机上的一种干摩擦阻尼器。多层钢板阻尼器性能受温度影响小,能够在一定程度上克服挤压油膜阻尼器存在的结构复杂、非线性特性强和受温度影响大等问题,适用于结构空间要求紧凑、高低温或大温差等条件下的转子系统。目前国外对该技术研究还处于深入探索和不断完善阶段,而在国内关于该技术的研究成果报道甚少,因此对多层钢板阻尼器的相关技术进行深入研究具有重要意义。
     本文从多层钢板阻尼器的几何结构入手,分析了各种波纹的形状结构特点,对多层钢板阻尼器进行了曲线方程优化,选取了适合的阻尼器材料,并提出了阻尼器波纹结构的成型工艺,确定了波纹钢板成型的相关参数,制定了阻尼器的装配工艺。
     根据对多层钢板阻尼器工作条件下的受力分析可知,阻尼器的载荷分为预变形载荷和径向载荷。在研究中,将阻尼器简化成连续的曲梁,分别对其在两种载荷条件下的刚度特性进行了理论研究。在预变形载荷的分析中,根据载荷和结构的对称性,采用力法求解静不定问题,然后在弹性接触弯曲变形理论基础上分析预变形载荷引起的曲梁挠度变化,得出了阻尼器的预变形刚度特性。在分析径向载荷时,假设力与位移成线性关系,通过力的投影合成得出阻尼器整体的径向刚度。通过实验结果和数值计算结果的对比分析,验证了理论分析的正确性。
     针对阻尼器内部多层钢板之间及钢板与内、外环之间的相互作用,分析了接触面上存在的摩擦力对阻尼器动力学参数的影响。根据干摩擦系统模型的计算方法,对阻尼器的摩擦力进行了计算。分析了摩擦力对刚度的影响。采用Mindlin接触模型分析多层钢板波纹各层之间的摩擦情况,对变形过程中产生的能量耗散进行了分析,推导出了多层钢板阻尼器能量耗散系数的计算公式,并采用有限元方法对层与层之间的接触进行了仿真研究。
     根据哈密顿原理建立多层钢板阻尼器支撑的转子系统动力学模型。对转子系统模型中的刚度系数进行推导,得出转子系统的固有频率。采用数值方法对系统模型进行求解,得到了转子系统的临界转速等系统特性。
     对多层钢板阻尼器进行了相关的实验研究。通过静态实验,得出了不同结构参数和不同工作条件下的多层钢板阻尼器弹性迟滞特性。利用迟滞回线验证转子阻尼器的刚度、能量耗散系数等动力学参数的理论计算公式,得出阻尼器主要参数对其动力学特性的影响,从而验证了理论分析结果。在转子实验台上对阻尼器支撑的转子进行动态实验,获得了不同参数条件下的转子系统的响应曲线。实验结果为多层钢板阻尼器的工程应用提供了依据。
     本文研究内容是国家自然科学基金资助项目“具有干摩擦阻尼和粘性阻尼的多层钢板式阻尼器的研究”(项目编号50275030)的一部分。
As a rotor is the main part in the equipment with a high rotation speed, its working performance determines the lifetime of the whole system directly. Therefore, the vibration control for high rotation speed equipment is an key technology in practical applications. Researchers in Soviet Union developed a kind of dry friction damper, named multi-layer steel plate damper, which performed well enduring high or low temperature and overcoming the disadvantages of squeeze film dampers, such as the complex structure, the strong nonlinearity, and the temperature-influenced properties. The multi-layer steel plate damper could be used as a support in a rotor system with compact structural space working at high or low temperature, or large temperature difference. However, the application of the damper is not practicable presently in high-speed rotor systems in China because of the technology blockage between countries.
     In the present study, the discussion on the characteristics of dampers with different wave shapes based on its geometric structure was first presented. The curve equation of multi layer steel plates was optimized. The fabrication process of wave curves of damper was presented after selecting appropriate material. Then, the related parameters for shaping the curved steel plate were studied to determine the assembling process of the damper.
     The load on the damper can be divided into pre-deformation and radial loads. In the research, the damper was modelled into continuous bending beams, on which the stiffness performance under these two kinds of loads was theoretically explored, respectively. In the analysis of pre-deformation, based on the symmetry of load and structure, the force method was used to solve statically indeterminate problems. Then, the deflection of bending beam caused by pre-deformation was analyzed on the basis of elastic contact bending deformation theory to get the stiffness characteristics of the damper. To analyze radial load on the damper, the radial stiffness of the damper was calculated through the force projection with an assumption of a linear relation between the force and the displacement. The theoretical analysis was verified by comparing the experimental and calculated results.
     The effect of the friction at the contact surface on the dynamic parameters of damper was analyzed considering the interactions between adjacent layers in the damper and interaction between the damper and the inner/outer rings. The friction force at the contact interfaces of damper was calculated based on the modeling method of dry friction system, and its effect on the stiffness of damper was analyzed. In the study, the Mindlin contact model was adopted to analyze the friction in the steel plates of damper and the energy dissipation in the process of deformation by formulatiing energy dissipation in the damper. The contact behavior between layers was simulated with finite element method.
     Based on the rotor experimental platform, the dynamic model of rotor system supported by the multi-layer steel plate damper was developed based on Hamilton principle. The natural frequency of the rotor system was obtained by deriving the stiffness coefficient of the rotor system. A numerical method was used to solve the equation of motion of rotor system to obtain the critical rotation speed and other essential parameters of the system.
     A series of experiments related to the damper and the rotor system wre explored. Through the static experiments, the hysteresis loop of the multi-layer steel plate damper with different parameters and work conditions was presented. The stiffness and the energy dissipation coefficient of the damper were verified. The effect of the structural and geometric parameters of the damper on its dynamic performance was presented. The former theoretical analysis was verified by the experimental results. With the help of a test setup, the dynamic behavior of the rotor with a support of multi-layer steel plate damper and a high rotation speed was studied. The response of the rotor system under different working conditions was obtained. These experimental results are helpful for the practical application of multi-layer steel plate damper.
     This study is a part of the research project named“Research on Multi-Layer Steel Plate Damper with Dry Friction and Viscosity Damping”sponsored by National Natural Science Foundation of China (Grant Number: 50275030).
引文
1李文忠,王黎钦.高速转子系统振动控制技术评述.力学强度, 2005, 27 (1): 44-49
    2黄文俊,李录平.透平叶片干摩擦阻尼减振研究综述.热力透平, 2006, 35(2): 95-100.
    3徐自力,张春梅,杜秀杰.非线性干摩擦阻尼结构叶片系统动力学研究现状.振动工程学报, 2004, 17:31-33
    4 G. Hamburg, J. Parkinson. Gas Turbine Shaft Dynamics. SAE Trans, 1962, 170: 74-84
    5 S. Cooper. Preliminary Investigation of Oil Film for the Control of Vibration. Institute of Mechanical Engineers. Lubrication and Wear Convention, 1963: 305-315
    6 E. J. Hahn, S. Simandiri. Squeeze Film Mounts for Vibration Attenuation in Rigid Rotors. Proceedings of the Noise, Shock and Vibration Conference, Monarch University, Melbourne, Australia,1974: 435-444
    7 E. J. Hahn. Unbalance Behavior of Squeeze Film Supported Rigid Rotors. Proceedings of the Conference on the Stability and Dynamic Response of Rotors with Squeeze Film Bearings, U.S. A.R.O., Charlottesvill, 1979: 176-188
    8 M. D. Rabinowitzs, E. J. Hahn. Optimal Design of Dqueeze Film Supports for Flexible Rotors. ASME Journal of Engineer for Power, 1983: 485-503
    9 R. Holmes. Vibration and its Control in Rotating System. Proceedings of the Symposium on the Dynamics of Rotor, IUTAM, Copenhagen, 1972: 156-182
    10 R Holmes. The Damping Characteristics of Vibration Rotors Used in Gas Turbines. Journal of Mechanical Engineer. Sci, 1977, 19(6): 271-277
    11 R. Holmes. The Nonlinear Performance of Squeeze Film Bearing. Journal of Mechanical Engineer. Sci, 1972, 19(6): 74-77
    12 G. R. Kirk, D. H. Hibners. A Note on Blade Loss Dynamics of Rotor Bearing Systems. Journal of Engineer for Industry, 1976 , 96(2): 497-503
    13 L. E. Barrett, E. J. Gunter. Steady State and Transient Analysis of a SqueezeFilm Damper Bearing for Rotor Stability. University of Virginia, Charlottesville, 1973: 185-197
    14 E. J. Gunter, L. E. Barrett, P. E. Allaire. Stabilization of Turbo-machinery with Squeeze Film Damper-theory and Application. Institute of Mechanical Engineers., 1976, C233/76
    15 R. E. Cunnigham. Inference of Oil-squeeze-film Damping on Steady-state Response of Flexible Rotor Operating to Supercritical Speed. NASA TP-1094, 1977: 351-369
    16 R. E. Cunnigham. Steady-state Unbalance Response of a Three-disk Flexible Totor on Flexible Damped Supports. Journal of Mech. Design, Trans. ASME, 1978, 100: 563-573
    17 M. D. Rabinowits, E. J. Hahn. Steady-state Performance of Squeeze Film Damper Supported Flexible Rotors. Journal of Engineer for Power, Trans. ASME, 1977: 552-558
    18 M. D. Rabinowits, E. J. Hahn. Stability of Squeeze Film Damper Supported Flexible Rotors. Journal of Engineer for Power, Trans. ASME, Series A,1977, 199(4): 545-551
    19 J. M. Vance. A Current Review of Rotor Dynamics Problems in High Speed Light Weight Turbo-machinery and Power Shafting. Proceedings of the Conference on the Stability and Dynamic Response of Rotors with Squeeze Film Bearings, U.S. A.R.O., Charlottesvill, 1979: 7-19
    20 R. A. Cookson, S. S. Kossa. The Effectiveness of Squeeze Film Damper Bearings Supported Rigid Rotor without a Centralizing Spring. Int. J. Mech. Sci, 1980, 122: 313-324
    21 R. A. Cookson, S. S. Kossa. Theoretical and Experimental Investigation the Effectiveness of Squeeze Film Damper Bearings without a Centralizing Spring. Institute of Mechanical Engineers, 1980: 304-316
    22 R. A. Cookson, S. S. Kossa. The Vibration Isolating Properties of Uncentralized Squeeze-film Damper Bearings Supporting a Flexible Rotor. Journal of Engineer for Power, Trans. ASME, 1980, 103(1): 781-787
    23 D. L. Taylor, B. R. Kumar. Nonlinear Response of Short Squeeze Film Dampers. J. Lab. Tech., ASME, 1980, 102(1): 51-58
    24 D. L. Taylor, B. R. Kumar. Closed-form, Steady-state Solution for theUnbalance Response of a Rigid Rotor in Squeeze Film Damper. Journal of Engineer for Power, Trans. ASME, 1983, 105: 551-559
    25 R. A. Cookson, S. S. Kossa. The Effectiveness of Squeeze Film Damper Bearings Supported Rigid Rotor without a Centralizing Spring. Int. Journal of Mechanical. Sci, 1986, 121: 639-650
    26 J. E. Sykes, R. Holmes. The Effects of Bearing Misalignment on the Nonlinear Vibration of Air-engine Rotor Damper Assembling. J. of Aerospace Eng, 1991, 204: 83-99
    27 J. B. Roberts, J. Ellis, Carrasco A. Experiment Study of the Nonlinear Behavior of SFDB. ASME J. of Tribology, 1993, 115: 312-318
    28 A. J. EI-Shafei. Stability Analysis of Intershaft SFDB.J. Sound and Vib, 1991, 148(3): 395-408
    29 J. L. Hwang, T. N. Shiau. An Application of the Generalized Polynomial Expansion Method to Nonlinear Rotor Bearing Systems. ASME J. of Vib. and Acous., 1991, 113(3): 299-308
    30 T. N. Shiau, J. L. Hwang, Y. B. Chang. A Study on Stability and Response Analysis of a Nonlinear Rotor System with Mass Unbalance and Side Load. ASME J. of Eng. for Gas Turbines and Power, 1993, 115: 216-226
    31 Sundarajan, S.T. Noah. Dynamics of Forced Nonlinear System Using Shorting Arc-lengthen Continuation Method-application to Rotor System. ASME J. of Vib. and Acous, 1997, 119: 9-20
    32 J. Bonnean. Non-linear Behavior of a Flexible Shaft Partly Supported by SFDB. Wear, 1997, 206: 244-250
    33 Den Hartog. Forced Vibrations With Combined Coulomb and Viscous Friction. Transactions of the ASME, APM-53-9, 1931: 107-115
    34 J.T. Oden, J.A.C. Martins. Models and Computational Methods for Dynamic Friction Phenomenon. Computer Method in Applied Mechanics and Engineering, 1985, 52(1-3):527-634
    35 A.V. Srinivasan, Cassenti B.N. A Nonlinear Theory of Dynamic Systems with Dry Friction Forces. ASME Journal of Engineering for Gas Turbine and Power, 1986, 108: 525-530
    36彭献,唐驾实.非线性隔振理论初探.振动与冲击, 1996, 15(4): 13-17
    37周纪卿,朱因远.非线性振动.西安:西安交通大学出版社, 1997:178-183
    38 A.A. Ferri, A.C. Bindemann. Damping and Vibration of Beams with Various Types Frictional Support Conditions. ASME Journal of Vibration and Acoustics. 1992, 114(3): 289-296
    39 C.H. Menq, J. Bielak, J.H. Griffin. Influence of a Microslip on Vibratory Response. Part I: A New Microslip Model. Journal of Sound and Vibration. 1986, 107(2): 279-307
    40 B. Feeny, F.C. Moon. Chaos in a forced Dry Friction Oscillator: Experi- ments and1 Numerical Modeling. Journal of Sound and Vibration, 1994, 170 (3): 303-323
    41 P.E. Dupont, D. Bapna. Stability of Sliding Frictional Surface with Varying Normal Force. ASME J. of Vibration and Acoustics. 1994, 116(4): 237-242
    42 D.I.G. Jones. Two Decades of Progress in Damping Technology. Aircraft Engineering. 1979, I: 9-16
    43 D.I.G. Jones. Viscoelastic Materials for Damping Applications. J. of App. Mech., Trans. ASME, 1980, 38: 27-51
    44韩清凯,闻邦椿.一种不对称滞回受迫振动系统及其应用.振动工程学报. 1998,11(3): 291-297
    45 W, D.Iwan. The Dynamic Response of the 1-DOF Bilinear Hysteretic System. In: Proc. 3rd World Conf. Earthquake Eng., New Zealand: University of Auckland, 1965, 2: 783-796
    46 W. D. Iwan, Lures L. D. Response of the Bilinear Hysteretic System to Stationary Random Excitation. J. of the Acoustical Society of America, 1968, 43: 545-552
    47 T. K.Caughey. Random Excitation of a System with Bilinear Hysteresis. J. of App. Mech., Trans. ASME, 1960, 12: 649-652
    48 T. K.Caughey. Equivalent Linearization Techniques. J. of the Acoustical Society of America, 1963, 35 (11): 851-972
    49 T.Takeda. Reinforced Concrete Response to Simulated Earthquakes. J. Struct. Div. ASCE, 1970, 96: 2557-2573
    50 W. D. Iwan. A Generalization of the Method of Equivalent Linearization. Int. J. Nonlinear Mech., 1973, 8: 431-442
    51 Clough R. W. Biaxial Seismic Response of R/C Frames. J. of Structural Engineering, 1987, 113(6): 1264-128
    52 A.V.Srinivasan, B.N. Cassenti. A Nonlinear Theory of Dynamic Systems with Dry Friction Forces. ASME, J. of Engineering for Gas Turbine and Power, 1986, 108: 525-530
    53 Bouc R. Forced Vibration of Mechanincal System with Hysteresis. In: Proc. IV Conf. on Nonlinear Oscillations. Czechoslovakia: University of Prague, 1967
    54 Wen Y. K. Equivalent Linearization for Hysteretic Systems under Random Excitation. J. App. Mech., Trans. ASME, 1980,47(1): 150-154
    55吴斌,张纪刚,欧进萍.一种改进的拟粘滞摩擦阻尼器的实验研究与数值分析.土木工程学报, 2004, 37(1): 24-30
    56杨飏,欧进萍.压电变摩擦阻尼器减振结构的数值分析.振动与冲击, 2006, 24(6): 1-4
    57 C. M. Firrone, D.G. Botto, M. Muzio. Modelling a Friction Damper: Analysis of the Experimental Data and Comparison with Numerical Results. Proc. Biennial ASME Conf. Eng. Syst. Design Anal., 2006: 543-552
    58 S. G. Juraj, Z. Raduz, M. Peter. On Dry Friction Modelling and Simulation in Kinematically Excited Oscillatory Systems. J. of Sound and Vibration,. 2008, 311(18): 74-96
    59李全通,廖明夫.缘板干摩擦阻尼叶片振动计算的传递矩阵法,机械科学与技术, 2005, 124(5): 584-587
    60李全通,廖明夫.用传递矩阵法分析缘板干摩擦阻尼叶片的减振.航空动力学报, 2005, 120(2): 255-261
    61王明义,贾玉红.基于能量法的缓冲器参数设计.振动与冲击, 2005, 24(6): 117-119
    62金靖,江晓峰.粘滞阻尼器与金属屈服耗能器的设计参数与性能比较.浙江工业大学学报, 2008, 36(1): 102-107
    63 Jin Weiliang. Identifying Coulomb and Viscous Damping from Free-vibration Acceleration Decrements. J. of Sound and Vibration, 2005, 282: 1208-1220.
    64 S. A. Luis, D. Adolfo. Identification of Force Coefficients in a Squeeze Film Damper with a Mechanical Seal. Part I- unidirectional load tests. Proc. ASME Turbo Expo, 2006, 5: 1285-1293
    65 S. A. Luis, D. Adolfo. Identification of Force Coefficients in a SqueezeFilm Damper with a Mechanical End Seal-centered Circular Orbit Tests. Proc. ASME Turbo Expo, 2007,5: 833-841
    66韩清凯,闻邦椿.不对称滞回模型的一般形式及其参数慢变特性.振动与冲击, 2000, 19(3):14-16
    67陈乃立,童忠钫.非线性迟滞系统的参数分离识别.振动与冲击, 1999,18(4):8-14
    68张向慧.迟滞非线性系统参数识别方法的研究.噪声与振动控制, 2001, 6:13-16
    69李伟,王轲,朱德懋,吴菊林.基于遗传算法的非线性迟滞系统参数识别.振动与冲击, 2000, 19(1):8-11
    70 M. G. Jones. An Experimental Investigation of Squeeze-film Rotor Dynamics. In: Report No R320, NGTE, Ministry of Defense, London, 1973: 156-167
    71袁向荣,杨绍普,陈恩利.迟滞非线性钢丝绳减震器实验研究.振动测试与诊断, 1998,18(增刊):93-95
    72 G. S. Pisarenko. Dissipation of Energy in Mechanical Vibrations. USSR: Izd-Vo Nauk, 1962
    73 M. L.Cartwright. Forced Oscillations in Nearly Sinusoidal Systems. J. Inst. Elec. Eng., 1948, 95: 88-94
    74 P. C. Jennings. Earthquake Response of a Yielding Structure. J. Eng. Mech. Div., ASCE, 1965, 91,: 8-15
    75 R. N. Iyengar. Inelastic Response of Beams Under Sinusoidal and Random Loads. J. Sound Vibration, 1979, 64(2): 161-172
    76 S.Otani. Hysteresis Models of Reinforced Concrete for Earthquake Response Analysis. J. Faculty of Engineering, 1981, 26(2):125-159
    77 B. R. El-Zaouk, C. L. Dym Nonlinear Vibrations of Orthotropic Doubly-Curved Shallow Shells. J. Sound and Vibration, 1973, 31: 89-103
    78白鸿柏,黄协清.黏性阻尼双线性滞迟振子简谐激励响应的Krylov-Bogoliubov计算方法.机械工程学报, 2000,36(10):27-29
    79白鸿柏,黄协清.两自由度滞迟振动系统简谐激励响应的Krylov-Bogoliubov计算方法.振动与冲击, 2000,19(4):78-80
    80 D. Amitabba. Periodic Response of Yielding Oscillatiors. ASCE 1985, 111(8):822-829
    81 P.C.Jennings. Periodic Response of a General Yielding Structure. ASCE, 1964,90.EM2:581-589
    82 C. Danilo, V. Fabrizio Steady-state Dynamic Analysis of Hysteretic Systems. ASCE, 1985, 111(12):1515-1531
    83 R.M. Evan-Iwanowski. Effects of Hysteretic Dissipation on Forced Dynamic Resonance. Material Nonlinearity in Vibration Problem, ASCE 1985, 71:61-67
    84 A.A. Ferri, E.W. Whiteman. Free Response of a System with Negative Viscous Damping and Displacement-dependent Dry Friction Damping. J. of Sound and Vibration, 2007, 306(10): 400-418
    85丁千,孙艳红.干摩擦阻尼叶片多谐波激振的共振响应.非线性动力学报, 2004, 11(1):12~18
    86丁千,黄毅,孙艳红.干摩擦阻尼叶片多谐波激振下的共振响应.振动与冲击, 2005, 24(4): 103-105.
    87 Ding Qian, Zhou, Xiang. Analytical Method Determining Resonant Response of Blade with Dry Friction Famper. Transactions of Tianjin University, 2007, 8: 291-296
    88郭树起,杨绍普,郭京波.干摩擦阻尼系统的非粘结受迫振动分析.振动工程学报, 2005, 18(3): 276-281
    89 Shi Yajie, Hong Jie, Shan Yingchun et al. Forced Response Analysis of Shrouded Blades by an Alternating Frequency/Time Domain Method. Proc. ASME Turbo Expo, Barcelona, 2006, 5: 865-872
    90 M. Lorenz, B. Heimann, V. Hartel. A Novel Engine Mount with Semi-active Dry Friction Damping. Shock and Vibration, 2006, 13: 559-571
    91Ф.В.Паровай,В.А.Борисов.ИсследованиеВлиянияПолимернойОболочкинаРаботоспособностьРадиальныхУплотненийсУпругимЭлементомизМатериалаМр.ВибрационнаяПрочностьиНадежностьДвигателейиСистемЛетательныхАппаратов:Сб.Науч.Тр.Куйбышев:КуАИ, 1987: 100-105
    92В.А.Борисов,Ф.В.Паровай.РелаксацияНапряженийвУплотненияхсУпругимиЭлементамиизМатериалаМР.ИсследованиеГидростатиче-СкихОпориУплотненийДвигателейЛетательныхАппаратов:Межвуз.темат.сб.науч.тр.Харьков:ХАИ, 1986: 60-63
    93А.ИБелоусов,В.Б.Балякин.Теорияипроектированиегидродинамиче-скихдемпферовопорроторов.ИздательствоСамарскогоНаучногоЦентраРАН, 2002: 44-49
    94Л.И.Калакутский,В.А.ейнер,Е.А.Нэжеуровидр.Материалдлямедицинскихэлементовизметалла.Заявл.24.11.83 ,Опубл. 07.07.85
    95 D. M. Karnopp, J. Grosby, R. A. Harwood. Vibration Control Using Semi-Active Force Generator,ASME J. of Engineering of Industry, 1974, 5: 619-626
    96 K. Kasai, J. A. Mushi, M. L. Lai, et al. Viscoelastic Damper Hysteretic Model. J. of Theory,Experiment and Application, 1993,1: 521-532
    97 N. Magge. Philosophy Design and Evaluation of soft-Mounted Engine Rotor system. J. of Aircraft. 1975,12(4):318-324
    98姜洪源,闫辉,李瑰贤.专用多层钢板隔振器实验研究.推进技术, 2005, 26(6): 531-534
    99 Hongrui Ao, Hongyuan Jiang, Wei Wei et al. Study on the Damping Characteristics of MR Damper in Flexible Supporting of Turbo-pump Rotor for Engine. Int. Symp. syst. Contr. Aeros. Astron. Harbin, 2006: 618-622
    100郭晨光,周德玉.耗能型粘滞阻尼器在高层建筑制振作用的研究.工程结构, 2004, 24(4): 94-95.
    101季葆华,王乐天,李辛毅,孟庆集.带阻尼结构长叶片振动响应的研究.西安交通大学学报, 1996.30(12): 53-59
    102季葆华,张改慧,袁奇等.阻尼连接叶片的实验研究.汽轮机技术, 1997, 39(4): 238-243
    103季葆华,王乐天,袁奇等.汽轮机叶片干摩擦阻尼机理及其数学描述.汽轮机技术, 1997, 39(6): 345-349
    104季葆华,李锋,谢永慧等.现代汽轮机叶片阻尼结构形式设计方法的研究.西安交通大学学报, 1999.33(8):40-43
    105季葆华,丁家峰,王乐天等.求解带阻尼围带或凸肩叶片动力特性的复模态方法.机械强度,1998.20(3): 219-222
    106徐自力,李辛毅,袁奇等.用改进的摩擦模型计算带阻尼结构叶片的响应.西安交通大学学报,1998.32(1):42~44
    107李锋,孟庆集,谢浩等.阻尼叶片振动特性的优化研究.西安交通大学学报, 2001.35(l): 33-36
    108单颖春,郝燕平,朱梓根等.干摩擦阻尼块在叶片减振方面的应用与发展.航空动力学报. 2001.16(3): 218-223
    109郝燕平,朱梓根.带摩擦阻尼的叶片响应求解方法.航空学报, 2001, 22(5): 411-414
    110郝燕平,朱梓根,叶片摩擦阻尼器切向刚度研究.航空动力学报, 2002, 4: 426-431
    111任勇生,朱德愚,带凸肩叶片的稳态响应计算及其阻尼减振分析.振动工程学报, 1994.7(2): 103-111
    112任勇生,朱德懋,具有干摩擦阻尼的叶片组振动的理论与实验研究.航空学报, 94.15(l):1306-1314
    113胡寻峰,王亲猛,张锦,刘晓平.带摩擦阻尼叶片与轮盘祸合系统的振动分析.航空动力学报, 1998.13(4):375-379
    114宋方臻,宋波.含立方非线性干摩擦滞迟弹簧支承转子系统的瞬态响应计算.山东建材学院学报, 1999.13(3): 227-229
    115马晓秋,王亲猛,张锦,程滔.带干摩擦阻尼结构叶/盘系统动力学分析.航空动力学报, 2002.17(l):110-114
    116 G. Rahmi. Fuzzy Logic Control of Seat Vibrations of a Non-linear Full Vehicle Model. Nonlinear Dyn., 2005, 40(4): 21-34
    117黄文俊,李录平,祁立君等.几种常见阻尼器的减振特性分析.振动与冲击, 2007, 26(7): 40-42
    118 M. J. Goodwin, J. E. Penny, C. J. Hooke. Variable Impedance Bearing for Turbogenerator Rotors. 3rd Int. Conf. on Vibration in Rotating Machinery, 1984: 535-541
    119 G. P. Feng, N. Xin. Automatic Control of the Vibration of the Flexible Rotor with Microcomputer. Proc. Of Int. Conf. Rot. Dyn., Tokyo, 1986: 443-448
    120 Musynska, W. P. Franklin, D. E. Bently. Rotor active Anti-Awirl Control. ASME J. of Vibration, Acoustics Stress and Reliability in Design, 1988: 143-150
    121 H. Hooshang, J. F. Waltton. Advanced Multi-squeeze Film Dampers for Rotor Vibration Control. STLE Trib. Tran, 1991, 134: 489-496
    122 P.D. Fleming. Dual Clearance Squeeze Film Damper for High Load Conditions. ASME J. of Tribology, 1985, 107(1): 275-279
    123张世平,晏砺堂.高效油膜阻尼器的研究与开发.航空动力学报, 1991,16(2): 180-185
    124祝长生,汪希萱.新型动静压挤压油膜阻尼器对柔性转子系统振动的控制.机械工程学报, 1996, 132(3): 76-83
    125李运华,王占林等.电液主动控制挤压油膜阻尼器的理论分析.北京航空航天大学学报, 1999, 125(4): 422-425
    126周明,李其汉,晏砺堂.弹性环式挤压油膜阻尼器实验研究与应用.航空动力学报, 1998, 113(4): 408-413
    127赵杰.新型可动外环挤压油膜阻尼器减振特性研究.航空动力学报, 1998, 113(4): 353-357
    128任兴民等.悬臂转子—CSGDB系统振动主动控制研究.机械科学与技术, 2002,121: 7-9
    129马艳红.金属橡胶外环自适应挤压油膜阻尼器实验研究.北京航空航天大学硕士学位论文, 2002: 55
    130张韬,孟光等.电磁轴承—挤压油膜阻尼器支承转子系统的主动控制.西安石油学院学报, 2002, 117(6): 80-84
    131张蕊华.新型金属橡胶挤压油膜阻尼器理论和实验的研究.哈尔滨工业大学博士论文, 2006: 15-30
    132贾崇田,李名望.冲压工艺与模具设计.人民邮电出版社, 2006: 105-130
    133敖宏瑞,孟庆鑫,姜洪源等.安装预紧量对金属橡胶构件干摩擦阻尼的影响.材料科学与工艺, 2005, 13(3): 225-227
    134 K.J. Johnson著,徐秉业译.接触力学.高等教育出版社, 1992: 156-166
    135郭耀杰,陈焰周.压缩和弯曲共同作用下薄板屈曲分析与计算.武汉理工大学学报, 2008, 30(2): 58-61
    136张志忠,傅学怡,陈贤川.拱结构平面内稳定性能研究.深圳土木与建筑, 2007, 4(1): 25-38
    137魏德敏,江波.开口薄壁曲梁的非线性屈曲.力学与实践, 2007, 29(6): 28-31
    138 L.Е. Gооdman, I.Н. Klamp. Analysis of Slip Damping. J. of Applied Mechanics, 1956, 3: 541-554
    139漆文凯,高德平.摩擦阻尼减振设计中的局部滑动问题.航空学报, 2006, 27(5): 805-809
    140 Duan Chengwu, Singh Rajendra. Super-harmonics in a Torsional System with Dry Friction Path Subject to Harmonic Excitation under a MeanTorque. J. of Sound and Vibration, 2005, 285(8): 803-834
    141Я.Г.Пановко.ВнутреннееТрениеПриКолебанияхУпругих.Систем.Физматгиз, 1960: 196-210
    142Ю.К.Пономарёв,А.М.Уланов,ЦзянХунюань.РасчетКольцевыхВибраизоляторовИзМатериалаМРСПомощьюЭквивалентногоМодуляУпругости.НовыеМатериалыИТехнологииВМашиностроении.СборникНаучныхТрудов.Выпуск2.–Брянск, 2003: 110-122
    143В.А.Антипов.РасчётИКонструированиеСредствВиброзащитыСухогоТрения.Самара.СамГАПС, 2005: 207-231
    144 A.M.Ulanov, G.V.Lazutkin. Description of an Arbitrary Multi-axial Loading Process for Non-linear Vibration Isolators. J. of Sound and Vibration, 1997, 203(5): 903-907
    145А.И.Белоусов,В.Б.Балякин.ТеорияИПроектированиеГидродинами-ЧескихДемпферовОпорРоторов.ИздательствоСамарскогоНаучногоЦентраРАН, 2002: 44-64
    146 Ao Hongrui, Jiang Hongyuan, A.M. Ulanov. Dry Friction Damping Characteristics of a Metallic Rubber Isolator under Two-dimensional Loading Processes. Modell. Simul. Mater. Sci. Eng., 2005, 13(6): 609-620
    147 Jiang Hongyuan, Yan Hui, Ao Hongrui, et al. Calculation of Elastic Damping Characteristics of Rotor Support Made of Metal Rubber Material Under Variable Loads. Chin J Mech Eng Engl Ed, 2007, 20(9): 33-37
    148汤凤,孟光.带冠涡轮叶片的接触分析.噪声与振动控制, 2005, (4): 5-7
    149徐自力,常东锋,上官博.微滑移离散模型及在干摩擦阻尼叶片振动分析中的应用.机械科学与技术, 2007, 26(10): 1034-1037
    150温诗铸.摩擦学原理.清华大学出版社, 2005: 85-94
    151戴振东,王珉,薛群基.摩擦体系热力学引论.国防工业出版社, 2002: 4-8
    152周仲荣, Leo Vincent.微动磨损.科学出版社, 2002: 14-27
    153 S. Fouvry, Ph. Kapsa, L. Vincent. Analysis of sliding behaviour for fretting loadings: determination of transition criteria. Wear, 1995, 185:35-46
    154徐龙祥.高速旋转机械轴系动力学设计.国防工业出版社, 1994:149-164
    155钟一鄂,何衍宗,王正等.转子动力学.清华大学出版社, 1987: 21-29
    156贾九红,章振华,杜俭业等.新型阻尼器的设计与实验研究.振动与冲击, 2008, 27(2): 69-71
    157姜洪源.环形金属橡胶隔振器减振机理及实验研究.哈尔滨工业大学博士论文, 2004: 70-78
    158石博强,赵德永. LabVIEW6.1编程技术实用教程.中国铁道出版社, 2002: 85-96
    159王济,胡晓. MATLAB在振动信号处理中的应用.中国水利水电出版社, 2006: 73-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700